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(i) Best liquid transportation fuels we can make 
with wet waste-derived volatile fatty acids (VFAs)?

OH

O

(ii) Rapidly select “best” process 
topology from defined set of options?

Feeds

Upgrading options

Products

VFA Upgrading to Liquid 
Transportation fUels
Refinery Estimation

Miller et al. iScience (2022) Accepted.



Wet waste utilization: Two birds with one stone?
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Skaggs et al. Renewable and Sustainable Energy Reviews (2018) 82, 2640-2651.
U.S. Bureau of Transportation Statistics (2022).
Miller et al. iScience (2022) Accepted.
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Available wet waste volume can satisfy a 
significant fraction of market demand

Wet wasteVFAsfuels avoids CH4 emissions-generating 
conventional wet waste disposal (tradeoff: extra energy input); 

potential for net negative GHG emissions fuels
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Target product: Liquid transportation fuels
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Even “simple” processes yield many operating choices
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Process topology?
Neat biofuel? Blendability in petrofuels?
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Objective function defines goals
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What might we want to optimize?
• High profit
• High fuel yield
• Low greenhouse gas emissions

We choose biocontent (BC):
𝐵𝐵𝐵𝐵 = 𝑤𝑤1𝑏𝑏1 + 1 − 𝑤𝑤1 𝑏𝑏2

• w1: Weight fraction of upgraded 
product to fuel application 1

• b1,2: Weight fraction of fuels 1,2 
that is bio-derived



VULTURE in action
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Process configuration #1

Huq et al. PNAS (2021) 118 13 e2023008118
Miller et al. iScience (2022) Accepted.

Simulated upgrading via process 
configuration #1, make alcohols
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VFA profiles from experimental anaerobic 
digestion of slaughterhouse wastes…

We choose biocontent (BC):
𝐵𝐵𝐵𝐵 = 𝑤𝑤1𝑏𝑏1 + 1 − 𝑤𝑤1 𝑏𝑏2

• w1: Weight fraction of upgraded 
product to fuel application 1

• b1,2: Weight fraction of fuels 1,2 
that is bio-derived



VULTURE in action: Determining optimal 
blending/separation

8

0

10

20

30

40

50

0% 20% 40%

0

20

40

60

80

100

0% 20% 40%
0%

10%
20%
30%
40%
50%
60%

0% 20% 40%

v

To
ta

l f
ue

l b
io

-c
on

te
nt

0
1
2
3
4
5
6
7

0% 20% 40%

Vi
sc

os
ity

 /c
P

Fl
as

h 
Po

in
t /

o C

Diesel blend bio-content /wt%

Petrodiesel property
Bioblendstock (or cut 
blendstock) propertyC

et
an

e 
N

um
be

r

Diesel lower limit

Diesel limits

Diesel lower limit

Also predicted/tracked: Boiling point, lower heating value, melting 
point, water solubility

Huq et al. PNAS (2021) 118 13 e2023008118
Miller et al. iScience (2022) Accepted.

0

5

10

15

20

25

3 4 5 6 7 8 9 10 11 12 13
C

on
te

nt
 /w

t%
Alcohol carbon number

VFA-derived alcohols



0

10

20

30

40

50

0% 20% 40%

0

20

40

60

80

100

0% 20% 40%
0%

10%
20%
30%
40%
50%
60%

0% 20% 40%

v

0
1
2
3
4
5
6
7

0% 20% 40%

VULTURE in action: Determining optimal 
blending/separation

9

To
ta

l f
ue

l b
io

-c
on

te
nt

Vi
sc

os
ity

 /c
P

Fl
as

h 
Po

in
t /

o C

Diesel blend bio-content /wt%

Petrodiesel property
C

et
an

e 
N

um
be

r

Diesel lower limit

Diesel limits

Diesel lower limit

Also predicted/tracked: Boiling point, lower heating value, melting 
point, water solubility

Huq et al. PNAS (2021) 118 13 e2023008118
Miller et al. iScience (2022) Accepted.

Bioblendstock (or cut 
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Slaughterhouse waste-derived VFA profiles

Mixture 1 highest-BC case (total: 100%):

1 2 3 4 5

Neat alcohol (C3-9) gasoline

Mixture 3 highest-BC case (total: 99%):

Neat alcohol (C3-7) gasoline100% 23%

77% 98% blendable (C9-13) jet• Most VFA mixtures best utilized to make two separate fuels (gasoline+diesel or jet)
• When choosing between (alkane) jet fuel, alkane diesel, or alcohol diesel, heavy 

(C5+) VFAs best utilized as jet blendstocks
Miller et al. iScience (2022) Accepted.

VFA Carbon Number



Simple process assumptions mostly accurate for 
carbon flows
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Fuel property models mostly accurate
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Lower heating value: 
Weighted average model 

accurate within 2%!

Flash point: Blending index 
models underestimate by 

2-15°C.



Value of VULTURE: Rapid screening capability
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Rigorous evaluation:
• Process simulation, TEA/LCA
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480 scenarios!

Not feasible for all scenarios

2-3 scenarios
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Refinery Estimation

Rigorous evaluation:
• Process simulation, TEA/LCA
• Surrogate synthesis, fuel 
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Feasible for a subset of pre-
selected promising scenarios
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(i) Best liquid transportation fuels we can make 
with wet waste-derived volatile fatty acids (VFAs)?
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(ii) Rapidly select “best” process 
topology from defined set of options?
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Transportation fUels
Refinery Estimation
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Promising economics, greenhouse gas emissions
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Process technoeconomic analysis
• Plant size: 250 wet tons food waste/day (dictated by 

regional availability)
• Discounted cash flow rate of return analysis (assuming 

10% internal rate of return)
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Even “simple” processes yield many operating choices
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Process topology?
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Some decisions easy, most difficult
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Objective function defines goals
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What might we want to optimize?
• High profit
• High fuel yield
• Low greenhouse gas emissions

VFA mixture

We choose biocontent (BC):
𝐵𝐵𝐵𝐵 = 𝑤𝑤1𝑏𝑏1 + 1 − 𝑤𝑤1 𝑏𝑏2

• w1: Weight fraction of upgraded 
product to fuel application 1

• b1,2: Weight fraction of fuels 1,2 
that is bio-derived

Option 1
100% of fuel (w1=1)Diesel, 

blendable at 10% (b1=0.1)

Option 2
20% of fuel 

(w1=0.2)Gasoline, neat 
(b1=1); 80% of fuelDiesel; 
blendable at 20% (b2=0.2)

𝐵𝐵𝐵𝐵 = 1 ∗ 0.1 = 𝟎𝟎.𝟏𝟏 𝐵𝐵𝐵𝐵 = 0.2 ∗ 1 + 0.8 ∗ 0.2 = 𝟎𝟎.𝟑𝟑𝟑𝟑

X
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