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Failure Rates in 
Wind Farm Sites

● Key Observations (Chovan 2018)
- failure rate is unacceptable
- larger bearing (larger roller) fails earlier

⇒ Attributed to adhesive wear rather than subsurface fatigue

⇒ However, a recent analysis of failure data suggests a stronger 
role of spalling (Hart, et al. 2022)

● Key Elements (Kotzalas & Doll 2010, Chovan 2019)
- high loading, low speed, low lubrication layer thickness 
⇒ repeated metal-to-metal contact

*image from: https://www.energy.gov/eere/articles/advanced-wind-turbine-drivetrain-trends-and-opportunities

*image 

from Chovan 2018 
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Torque

An Important Prediction
from Large-Eddy Simulation (LES) of Daytime Atmospheric Turbulence 

with Embedded Actuator Line Model of 5 MW Wind Turbine 
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Simulation Assumptions
 constant RPM, pitch, yaw
 no blade deformation
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ANALYSIS OF DATA FROM THE 
NREL/GE 1.5 MW WIND TURBINE

… to verify with field data the LES 
prediction that atmospheric turbulence 
forces the main bearing with a 
mechanism that is fundamentally 
different from that for torque and 
power generation.

Simulation Assumptions
 Constant RPM, pitch, yaw
 No blade deformation



Field Analysis: Modeling Atmospheric Eddies 
with Eddies Generated by Front Range Mountains
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Field Analysis: Modeling Atmospheric Eddies with 
Eddies Generated by Front Range Mountains
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Met Tower and NREL/GE 1.5 MW Wind Turbine 
Instrumentation (in addition to SCADA)
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GE 1.5 MW Turbine Specs
Hub height: 80 m
Rotor Diameter: 77 m
Rated wind speed: 14 m/s
Rotor period at RWS: 3.3 s
Cut-in wind speed: 3.5 m/s



Segregation of Data in Westerly 
vs. Northerly/Southerly Directions 

10-MINUTE DATASETS:
• Total number Westerly datasets: 139 (81%)

• Total number Northerly/Southerly datasets: 33 (19%)
APPROACH:
(1) Analyze Westerly data using both met tower and nacelle 

anemometers
(2) If met and nacelle anemometers are in statistical 

agreement*, repeat analysis for Northerly/Southerly data 
using the nacelle anemometer.                 (*they are)
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Period chosen: 14 June–4 October 2018
 Anemometer calibrations and data available

Period Characteristics (to match LES)
No precipitation
Relatively constant wind speed
Constant RPM ⇒ region 2 of power curve
Constant pitch, yaw ⇒ U10 < ~9.5 m/s

Separation of
Westerly Winds  
from 
Northerly/
Southerly Winds
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Identification of a “Turbulence Eddy” in Westerly Winds
- Advection from Met Mast to Turbine -

162.2 m

U10 (10-minute averages)

U10

From a movie of ABL turbulence-rotor interactions
using the Lavely large-eddy simulations

τcrit

CRITICAL time shift

ADVECTIVE
TIME SHIFT
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τadv= 162.2m/U10

nacelle 
wind speed

met tower 
wind speed 

shifted to τcrit
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τadv= 162.2m/U10

nacelle 
wind speed

met tower 
wind speed 

shifted to τcrit

Criteria to Identify a Turbulence Eddy:
- Well-defined peak in time-shifted 

correlation coefficient
- The advection time based on U10
≈ the optimal time shift τcrit

⇒ A turbulence eddy is likely carrying the 
fluctuations from met mast to turbine



τcrit

139 10-minute Datasets with Potential Advection of 
Turbulence Eddies from Met Mast to Wind Turbine
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Final Data Set Analyzed for Westerly Winds

cc = 0.418

τadv

τcrit

ALL DATA 
(139 data periods)
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τcrit

cc = 0.593 
(cc = 0.748 without 
the 4 outlier points)

FINAL DATA SETS
(56 data periods)

τadv

Criteria to Accept Data as Representing 
Turbulence Eddy Passage 

from Met Tower to Wind Turbine
1. Misalignment in Wind Direction
2. Too Low Wind Speed
3. Pitch Events 

(< 1000 "Pitch Events" per 10 min. data period)

1000



Torque

Analysis of the Lavely Result Using 
Large-Eddy Simulation with the Actuator Line Model
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Result: Correlations between Time Variations in 
Main Shaft and Wind Anemometer on Met Tower

correlation increases to 0.828
when wind speed is averaged 
over anemometers covering 
the rotor, as per Lavely 

good correlation

poor correlation
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Conclusions
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1. Lavely Thesis Simulation-based Analysis shows that:
(a) The passage of turbulence eddies creates very large fluctuations in all 

moments, torque and non-torque.
(b) Whereas time changes in torque correlate very strongly with 

fluctuations in horizontal wind speed within eddies, non-torque bending 
moments do not correlate with horizontal wind speed fluctuations.

... Instead, they correlate with the asymmetry of horizontal wind 
fluctuations over the rotor disk.

2. Analysis using westerly winds where mountain turbulent eddies 
pass from met tower to the NREL/GE wind turbine:

(a) Wind turbine response to eddy passage
(b) Met tower vs. nacelle anemometers
(c) Wind turbine response from mountain turbulence

vs. atmospheric boundary layer turbulence
(d) Segregation of data.



Conclusions

3. Correlations are consistent with the LES results of Lavely & Brasseur:
• High correlation between main shaft torque and rotor-averaged horizontal 

wind velocity fluctuations
• Low correlation between main shaft torque and out-of-plane bending 

moment fluctuations
• Low correlation between main shaft bending moment and horizontal wind 

velocity fluctuations
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The aerodynamics mechanism that generates power (LCOE 
denominator) is fundamentally different from the turbulence 
mechanisms that force the main bearing (LCOE Numerator)

⇒ Mitigation and control must be correspondingly different

Investment

20 -yr  Energy Production
 + 20-yr  Operating Costs

Levelized Cost of Energy (LCOE)
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Regimes for the 
NREL/GE 

1.5 MW Turbine
(all data)

RPM constant > 10.5 m/s
Pitch > 9.5 m/s

Rated Power > 13.7 m/s
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Reduction due to Pitch Events
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Reduction in Viable Datasets 
due to Likely Incorrect τcrit

Misalignment in Wind Direction

•
met mast

•
wind turbineperfect wind

alignment

(drawn from above)

Too Low Wind Speed

•
met mast

•
wind turbine

U10
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Result: Time-Correlations between WIND SPEED
and BLADE ROOT and TOWER BASE Moments

blade flap tower base

Average Correlation Coefficients between time fluctuations in
THE WIND SPEED at the met mast (shifted by τcrit) and:

• BLADE FLAP Bending Moment: 0.614

• TOWER BASE Bending Moment : 0.736

• BLADE EDGE Bending Moment : 0.066

example of a high correlation period
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wind speed
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Insufficient Data for a Viable "Wind Asymmetry 
Parameter" (as per Lavely/Brasseur)

Conclusion: The available met tower wind data (6 pts along a vertical line) 
provides insufficient coverage to design an asymmetry parameter:
- the Lavely parameter requires azimuthal integrations over the rotor area.

These wind-based parameters did not provide 
significant correlation:

1. Wind shear across the rotor (30-130 m)
2. Wind veer across the rotor (38-122 m)
3. Standard deviation of wind speed with 

height (30-130 m)
4. Mean vertical wind speed across the rotor 

(41-119 m)

"Blade Flap BM Asymmetry Parameter" -
BFBM as a proxy for horizontal wind in a parameter 
similar to Lavely, but only over a circle on the rotor plane:

⇒ cc is all over the map!
(… and when cc is high, the cc 
between BFBM and wind is not)
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