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Main Bearing Failure Modes

Main Bearing
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- failure rate is unacceptable _ _ _
. . . Chovan, TDI Mainshaft Bearing — Field Test Results, AWEA 2018
- larger bearing (larger roller) fails earlier

Chovan, Seven Years of Solid Results, Wind Systems, March 2019
= Attributed to adhesive wear rather than subsurface fatigue

Kotzalas & Doll, Tribological advancements for reliable wind turbine
performance Phil. Trans. R. Soc. A (2010) 368, 4829-4850
= However, a recent analysis of failure data suggests a stronger

role of spalling (Hart, et al. 2022)

e Key Elements (Kotzalas & Doll 2010, Chovan 2019) - m
- high loading, low speed, low lubrication layer thickness :
= repeated metal-to-metal contact

230/600 Series

240/600 Series
Schaeffler Technologies

*image from: https://www.energy.gov/eere/articles/advanced-wind-turbine-drivetrain-trends-and-opportunities
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Main Bearing

Main Bearing Failure Modes
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(Kotzalas & Doll 2010, Chovan 2019)
- high loading, low speed, low lubrication layer thickness
= repeated metal-to-metal contact
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Forcing of Main Bearing by Main Shaft Moments Driven
by Atmospheric (and potentially wake) Turbulence @],
Hypothesis:

g z bending moment
‘ \;V on main shaft
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An Important Prediction

from Large-Eddy Simulation (LES) of Daytime Atmospheric Turbulence
with Embedded Actuator Line Model of 5 MW Wind Turbine
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from PhD Thesis of :
Adam Lavely, Penn State
University, August 2017.



with Embedded Actuator Line Model of 5 MW Wind Turbine

An Important Prediction
from Large-Eddy Simulation (LES) of Daytime Atmospheric Turbulence

Horizontal Velocity
over Rotor Disk
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ANALYSIS OF DATA FROM THE
NREL/GE 1.5 MW WIND TURBINE

... to verify with field data the LES
prediction that atmospheric turbulence
forces the main bearing with a
mechanism that is fundamentally
different from that for torque and
power generation.




Field Analysis: Modeling Atmospheric Eddies
with Eddies Generated by Front Range Mountains
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Field Analysis: Modeling Atmospheric Eddies with
Eddies Generated by Front Range Mountains
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Met Tower and NREL/GE 1.5 MW Wind Turbine
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Segregation of Data in Westerly
vs. Northerly/Southerly Directions

Period chosen: 14 June—4 October 2018
» Anemometer calibrations and data available

Period Characteristics (to match LES)

» No precipitation

» Relatively constant wind speed
» Constant RPM = region 2 of power curve
» Constant pitch, yaw = U10 < ~9.5 m/s

Wester]y,
Winds

10-MINUTE DATASETS:

e Total number Westerly datasets: 139 (81%)
¢ Total number Northerly/Southerly datasets: 33 (19%)
APPROACH:

(1) Analyze Westerly data using both met tower and nacelle
anemometers

(2) If met and nacelle anemometers are in statistical
agreement®, repeat analysis for Northerly/Southerly data
using the nacelle anemometer. (*they are)

Separation of
Westerly Winds
from

Northerly/
Southerly Winds

northerly/
“southerly s
winds N7

GE/NREL
1.5MW
... turbine
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Identification of a “Turbulence Eddy” in Westerly Winds
- Advection from Met Mast to Turbine - @]’

Atmospheric Eddy ‘ U, (10-minute averages)
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Identification of a "Turbulence Eddy" in Westerly Winds
- Advection from Met Mast to Turbine - @]’
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Criteria to Identify a Turbulence Eddy:
- Well-defined peak in time-shifted
correlation coefficient
- The advection time based on U,,
~ the optimal time shift 7_,

Pearson correlation coefficient

= A turbulence eddy is likely carrying the
fluctuations from met mast to turbine R e T
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139 10-minute Datasets with Potential Advection of

Turbulence Eddies from Met Mast to Wind Turbine
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Final Data Set Analyzed for Westerly Winds
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Large-Eddy Simulation with the Actuator Line Model

Analysis of the Lavely Result Using
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Result: Correlations between Time Variations in
Main Shaft and Wind Anemometer on Met Tower@],
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Conclusions

k)

(a) The passage of turbulence eddies creates very large fluctuations in all
moments, torque and non-torque.

1. Lavely Thesis Simulation-based Analysis shows that:

(b) Whereas time changes in torque correlate very strongly with
fluctuations in horizontal wind speed within eddies, non-torque bending
moments do not correlate with horizontal wind speed fluctuations.

... Instead, they correlate with the asymmetry of horizontal wind
fluctuations over the rotor disk.

2. Analysis using westerly winds where mountain turbulent eddies
pass from met tower to the NREL/GE wind turbine:
(a) Wind turbine response to eddy passage
(b) Met tower vs. nacelle anemometers

(c) Wind turbine response from mountain turbulence
vs. atmospheric boundary layer turbulence

(d) Segregation of data.

17



Conclusions @],

3.

Correlations are consistent with the LES results of Lavely & Brasseur:

High correlation between main shaft torque and rotor-averaged horizontal
wind velocity fluctuations

Low correlation between main shaft torque and out-of-plane bending
moment fluctuations

Low correlation between main shaft bending moment and horizontal wind
velocity fluctuations

Levelized Cost of Energy (LCOE)

Investment + 20-yr Operating Costs

20-yr Energy Production

(

The aerodynamics mechanism that generates power (LCOE
denominator) is fundamentally different from the turbulence
mechanisms that force the main bearing (LCOE Numerator)

= Mitigation and control must be correspondingly different

18
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Reduction due to Pitch Events

> Pitch > 9.5 m/s
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Reduction in Viable Datasets
due to Likely Incorrect t
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Result: Time-Correlations between WIND SPEED
and BLADE ROOT and TOWER BASE Moments
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Insufficient Data for a Viable "Wind Asymmetry

Parameter” (as per Lavely/Brasseur)

"Blade Flap BM Asymmetry Parameter" -

BFBM as a proxy for horizontal wind in a parameter
similar to Lavely, but only over a circle on the rotor plane:

These wind-based parameters did not provide

significant correlation: L Lo, . .

g " .

1. Wind shear across the rotor (30-130 m) £ s,
‘(—U' - *

. &=

2. Wind veer across the rotor (38-122 m) B3 et o

£% o . =
. L. . . £8 e E *
3. Standard deviation of wind speed with %5 ) PSR S _
height (30-130 m) 3 Lo ]
. . R . .

4. Mean vertical wind speed across the rotor = L% =ccisallover the map!
Z (... and when cc is high, the cc
4 06 *

(41-119 m)

between BFBM and wind is not)

-08

10-minute mean LSBMM

Conclusion: The available met tower wind data (6 pts along a vertical line)
provides insufficient coverage to design an asymmetry parameter:
- the Lavely parameter requires azimuthal integrations over the rotor area.
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