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A Two-Step Time-Series Data Clustering Method for 

Building-Level Load Profile 

Abstract—Residential and commercial buildings have huge 

potential to contribute value to improve grid resilience by 

participating grid services. To reveal the significant value, it is 

critical to estimate the grid service capability from these 

buildings. Unlike the large-scale distributed energy resources 

such as wind and solar farms, those buildings need to participate 

grid services in aggregation, not by individual. Therefore, it is 

important to appropriately group buildings for aggregation.   In 

this paper, we develop a load profile clustering method to classify 

the building-level load profiles for grid service capability 

estimation. In our two-step clustering approach, we first calculate 

the total load consumption for each building, clustering the load 

profiles based on energy consumption level. Then, we further 

cluster the load profiles in each energy cluster based on the load 

shape. The parameter selection for each clustering step is 

discussed. The proposed method is applied on actual building-

level load profiles, and the results have proved the effectiveness 

of this method. 

Index Terms— Advanced metering infrastructure (AMI), energy 

consumption, load profile cluster, load shape. 

I. INTRODUCTION  

The integration of distributed energy resources (DERs) in 

distribution systems has helped to reduce the emissions and 

pollutions from traditional power resources; however, the 

increasing penetrations of DERs might cause problems, such 

as power back-feeding, overvoltage, and large voltage ramps 

[1]–[2]. Traditional voltage regulation devices—such as load 

tap changers, voltage regulators, and switched capacitor 

banks—can help regulate the voltages to some extent [3]. 

Customer loads, however, which are often located far from the 

load tap changers and capacitor banks, could still experience 

voltage problems during the peak load or peak photovoltaic 

generation period because of the large voltage changes across 

the lines [4].  

With the modernization of smart grids from electric 

utilities, demand response technologies started being used to 

provide different types of grid services to eliminate the 

problems from DER integration. Among the different types of 

demand resources, buildings consume approximately 75% of 

electricity in the United States, and thermal controllable load 

contributes to more than 30% of electricity consumption in 

buildings [5]. This characteristic provides buildings great 

potential to participate in demand response activities to 

provide grid services. To implement demand response in 

distribution system operation, it is critical for electric utilities 

to know the available demand response capability at different 

times of the day. In recent years, electric utilities in the United 

States have deployed advanced metering infrastructure (AMI) 

to further modernize the grid [6]. The deployment of AMI on 

the customer side can enable the collection of smart meter 

measurements from the grid edge and set a solid foundation for 

data-driven demand response capability estimation; On the 

other hand, those grid edge customers need participate grid 

services in aggregation instead of by individual.  The load 

profiles from different buildings can vary widely because of 

different building functions, building sizes, and living patterns, 

making it hard for electric utilities to select appropriate 

buildings to aggregate together for participating grid services. 

An effective solution to this problem is to cluster the load 

profiles into different groups by load patterns. The load 

profiles in the same group will have similar characteristics, 

leading to similar demand response capability. On the other 

hand, in many utilities, smart meters are not fully deployed to 

all customers. With the clustering and estimation results from 

areas with similar demographical information, the load profiles 

for customers without AMI measurements can be estimated 

based on the available building information. 

In the literature, researchers have developed a variety of 

methods to cluster the time-series data. The authors in [7] used 

hierarchical clustering and k-means to cluster the monitored 

load profiles into groups; however, the monitored load profiles 

are from the substation level instead of the building level. A 

clustering method based on ant colony optimization was 

proposed in [8] to group the load shapes. A load profile 

clustering method was proposed for load data classification 

approximation and spectral clustering. Because the shapes 

used in [8] and [9] are the normalized load profiles, the energy 

consumption level, which is a critical factor in demand 

response estimation, was not considered. In [10], a data-driven 
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approach was proposed to cluster the seasonal load profiles 

with homeowner survey data. This study used the averaged 

seasonal load profile for clustering instead of the actual daily 

load consumption. To the best of our knowledge, there are not 

effective methods in the state-of-the-art to cluster grid edge 

load profiles.  

In this paper, we propose a two-step load profile clustering 

method to group the load profiles with similar characteristics 

and patterns. The load profiles are clustered based on their 

energy consumption level in the first step, then the profiles in 

each energy group are further clustered based on the load 

shape. The k-means method is used for the initial clustering, 

and a multilayer perceptron (MLP) is used to classify the new 

incoming load profile. The contributions of this paper are two-

fold:  

• The proposed clustering method consider two critical 

factors in demand response capability estimation 

which are energy consumption level and consumption 

pattern. 

• We develop approaches to test and select the k-means 

and MLP parameters for maximized clustering 

performance.  

The rest of this paper is organized as follows. Section II 

describes the detailed load profile clustering method. Section 

III discusses the parameter selections for the proposed 

clustering method. Section IV presents the results generated 

from the proposed clustering method. Section V summarizes 

this paper and discusses the potential future work. 

 

II. LOAD PROFILE CLUSTERING METHOD 

This section presents the detailed load profile clustering 

method we propose. 

 

A.  Load Profile Clustering Steps 

The flowchart of the proposed load profile clustering 
algorithm is shown in Fig.  1. The raw AMI measurements from 
smart meters are first preprocessed to exclude the data with 
missing or bad measurements. This process also extracts the 
data from the desired period that we want to cluster. Then the 
extracted load profiles are clustered into M groups based on the 
energy consumption level. After that, the profiles in each 
energy group are further clustered into 𝑁𝑖  clusters. These 
clusters are the final clustering results, and the total number of 
clusters can be calculated by: 

 

𝑁𝑡𝑜𝑡 = ∑ 𝑁𝑖
𝑀
𝑖=1                             (1) 

 

where 𝑁𝑡𝑜𝑡 is the total number of clusters, M is the total 

number of energy groups, and 𝑁𝑖 is the total number of clusters 

in each energy group. 

B. K-Means Clustering 

The k-means clustering algorithm is one of the most widely 

used classification methods due to its versatility and 

applicability to large data sets [11]. It is an unsupervised 

learning algorithm, so there are no labeled data for this 

clustering. It performs the division of objects into clusters that 

share similarities and are dissimilar to the objects belonging to 

another cluster [12]. The k-means clustering algorithm aims to 

divide the time-series data into different clusters with 

maximized distance among clusters and minimized distances 

among profiles inside one cluster. In this study, k-means is 

used for both energy consumption-level clustering and load 

profile clustering. The Euclidean distance is selected as the 

reference for clustering, which can be calculated by: 

 

𝑑(𝑝, 𝑞) = √(𝑝 − 𝑞)2                         (2) 

 
where 𝑑  is defined as the Euclidean distance between 

profile p and q. 

 

 

 
Fig.  1. Flowchart of proposed load profile clustering algorithm 

 

C. Silhouette Index 

In this study, the Silhouette index is selected to evaluate 

the performance of the clustering results [13]. The silhouette 

refers to a method of interpretation and validation of 

consistency within clusters of data [14]. The silhouette index 

is a measure of how similar a profile is to its own cluster 

compared to other clusters, so it serves as an indicator of the 

clustering performance, including whether the number of 

clusters is well chosen or whether the appropriate profiles are 

clustered into one group. The Silhouette index we used in this 

paper is defined as: 

 

𝑠(𝑖𝑖) =
𝑏(𝑖𝑖)−𝑎(𝑖𝑖)

𝑚𝑎𝑥{𝑎(𝑖𝑖),𝑏(𝑖𝑖)}
,                        (3) 

 

𝑎(𝑖𝑖) =
1

𝑛𝐶𝑖−1
∑ 𝑑(𝑖𝑖, 𝑗𝑗)𝑗∈𝐶𝑖,𝑖𝑖≠𝑗𝑗

,             (4) 

 

𝑏(𝑖𝑖) = 𝑚𝑖𝑛 (
1

𝑛𝐶𝑗

∑ 𝑑(𝑖𝑖, 𝑗𝑗)𝑗∈𝐶𝑗
) , 𝑗 ≠ 𝑖, 𝑗 ∈ (1, … , 𝑘) (5) 
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Here, ∑ 𝑑(𝑖𝑖, 𝑗𝑗)𝑗∈𝐶𝑖,𝑖𝑖≠𝑗𝑗
 represents the sum of the 

distances between the data point ii and other data points in the 

same cluster, 𝐶𝑖, and ∑ 𝑑(𝑖𝑖, 𝑗𝑗)𝑗∈𝐶𝑗
 represents the sum of the 

distances between the data point ii and the data points in 

another cluster, 𝐶𝑗. In this study, each data point represents a 

load profile in a cluster. The silhouette index ranges from -1 to 

+1, where a high value indicates that the load profile is well 

matched to its own cluster and poorly matched to neighboring 

clusters. While testing different numbers of clusters in k-

means, the one with a higher silhouette index and an 

appropriate number of clusters will be selected. 

D. MLP Classifier 

MLP is a supervised learning algorithm that learns to 

classify by training on a data set. It is a feed-forward artificial 

neural network model that maps sets of input data to a set of 

appropriate outputs [15]. An MLP consists of multiple layers. 

The nodes of the layers are neurons, with nonlinear activation 

functions, except for the nodes of the input layer [16]. It relies 

on this underlying neural network to perform the task of 

classification. The structure of an MLP is shown in Fig. 2. The 

number of hidden layers and the number of cells in each layer 

is predefined. An MLP can handle large amounts of input data 

and make quick predictions after training. In this study, after 

the initial k-means clustering, the MLP will be trained using 

the k-means clustering algorithm to classify the new incoming 

load profiles. 

 

 
Fig. 2. Structure of the MLP 

 

 

III. ALGORITHM PARAMETER SELECTION 

This section introduces the data used in this study and the 

tests for different parameters of the k-means and MLP in the 

load profile clustering method.  

A. Data Preparation 

In this study, realistic daily building-level load profiles are 

used to test and select parameters of the proposed algorithm. 

The data resolution is one. hour, so there are 24 data points in 

each profile. Some example building-level profiles are shown 

in Fig. 3. It can be observed that this data set contains different 

types of load shapes with different energy consumption levels. 

 

 
Fig. 3. Example building-level load profiles 

 

B. K-Means Parameter Selection 

First, the parameters for the k-means are tested for the 

energy consumption-level clustering. Two thousand daily load 

profiles are clustered by the k-means clustering algorithm, and 

different numbers of predefined clusters are tested. Because 

the large number of profiles and their daily energy ranges from 

0 to 5000 kWh, the number of clusters are tested from 8 to 15. 

For each case, the k-means clustering algorithm is conducted, 

and the silhouette score is calculated. In addition to the 

silhouette score, the size of each cluster is considered as an 

evaluation criterion for the results. We define the clusters with 

less than 5 profiles as a small cluster, and clusters with more 

than 50 profiles as a large cluster. Ideally, the results should 

have more large clusters and less small clusters so each cluster 

can represent a typical case. Fig. 4 shows that the silhouette 

score is stable when the number of clusters is between 8 and 

12. After comparing the number of small clusters and large 

clusters, we select the case when there are 9 clusters to be the 

best result. 

 

 
Fig. 4. Parameter test for k-means clustering on energy consumption 

level 

 

Second, the parameters for the k-means are tested for the 

load shape clustering. One cluster from the energy 

consumption-level clustering result is selected as an example. 

This cluster has 126 load profiles, and the number of clusters 

are tested from 3 to 10. We define the clusters with less than 3 

profiles as a small cluster and clusters with more than 15 

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications.

3



profiles as a large cluster. Fig. 5 shows that the best result 

happens when there are 4 clusters. This case has the highest 

silhouette score with more large clusters and less small 

clusters. In the clustering process, this procedure should be 

repeated for all energy groups to select the best number of 

clusters for all cases. 

 

 
Fig. 5. Parameter test for k-means clustering on load shape 
 

C. MLP Parameter Selection 

After the initial clustering results are generated by the k-

means algorithm, they can be used as a training data set to train 

the MLP neural network; therefore, we do not need to use k-

means for the clustering again for the new incoming profiles 

because they can be classified by using MLP. While training 

the MLP classifier, the number of hidden layers and the 

number of cells in each layer need to be predefined. For the 

energy consumption-level MLP classification model, we tested 

the performance with different parameters, and the results are 

presented in Table 1. The training data set for the MLP is the 

result of 2,000 clustered profiles from k-means clustering, and 

the testing data set contains 5,000 load profiles excluding the 

training data set. The results show that with different 

combinations, the highest silhouette score is near 0.61. 

Considering the computational time, we selected 3 hidden 

layers and 6 cells in each layer to be the best result. 

    The MLP parameters for the load shape clustering were also 

tested. The results are shown in Table 2, and the highest 

silhouette score happened when there are 5 hidden layers and 

4 cells in each layer. Similar to the process in the k-means 

parameter selection, this procedure can be used to select the 

best parameters for all cases. 

 
Table 1. Parameter test on MLP model for energy-level classification 

Silhouette score 
Number of hidden layers 

3 5 7 9 

N
u

m
b

er
 o

f 
c
e
ll

s 
in

 

e
a

c
h

 l
a
y

e
r 

4 0.49 0.49 0.56 0.58 

5 0.56 0.48 0.56 0.53 

6 0.61 0.56 0.61 0.60 

7 0.60 0.60 0.60 0.57 

8 0.60 0.61 0.59 0.61 

9 0.61 0.61 0.61 0.60 

 

 

 
Table 2. Parameter test on MLP model for load shape classification 

Silhouette score 
Number of hidden layers 

3 5 7 9 

N
u

m
b

er
 o

f 

c
e
ll

s 
in

 e
a

c
h

 

la
y

er
 

4 0.36 0.59 0.34 0.58 

5 0.16 0.25 0.25 0.26 

6 0.01 0.25 0.22 0.23 

7 0.23 0.24 0.15 0.19 

8 0.15 0.21 0.17 0.24 

9 0. 11 0.25 0.15 0.28 

 

IV. CLUSTERING RESULTS 

This section presents the results from the proposed load 

profile clustering method. The boxplot of load profiles in some 

example results are presented in Fig. 6. It can be observed that 

load profiles with different characteristics are classified into 

different clusters. For example, the first subplot in Fig. 6 (a) 

represents load shapes with a giant evening peak load, the 

fourth subplot is the cluster for load profiles with a higher 

consumption in daytime, and the fifth subplot contains load 

profiles with an evening peak. On the other hand, the fourth 

subplot in Fig. 6 (a) and the first subplot in Fig. 6 (b) have 

similar shapes. However, they belong to two different clusters 

because their energy consumption levels are different.  

 

 

(a) Cluster results from energy group 1 
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(b) Cluster results from energy group 2 

Fig. 6. Clustering results from two example energy group 

 

The center profiles for each cluster in each energy group 

when using the k-means and MLP are shown in Fig. 7. It can be 

observed that the center profile of each cluster is very similar 

for the two methods, which means that the trained MLP model 

can capture the results from the k-means well and classify the 

new incoming load profiles. 

 

 
Fig. 7. Center profiles for each cluster 

 

V. CONCLUSION AND FUTURE WORK  

This paper presents a two-step time-series data clustering 

method to cluster the building-level load profiles. Real world 

building-level AMI measurements are used in this study. The 

load profiles are first clustered into energy groups based on 

their energy consumption level. Then the load profiles in each 

energy group are further clustered based on the actual load 

shape. The k-means algorithm is used to generate the initial 

clustering results. After that, an MLP model was trained to 

classify the new incoming data. The algorithm was tested with 

different parameters, and the one with the best result was 

selected. The clustering results demonstrate the effectiveness 

of the proposed method. As part of future work, we will 

develop methods to quantify the demand response capability 

in each load profile cluster. 
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