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Abstract—Grid resilience has become a critical topic recently be-
cause of the increasing occurrence of extreme events and the 
growing integration of intermittent renewable energy sources. To 
build a resilient distribution system, this paper develops a multi-
agent reinforcement learning-based (MARL) method to coordi-
nate distribution energy resources (DERs) dispatch, load pickup, 
and network reconfiguration for load restoration after a system 
outage. With the help of two types of control agents, namely crit-
ical load restoration (CLR) and coordination (COR) agents, sys-
tem loads can be restored efficiently, given available resources. 
The effectiveness and superiority of the proposed algorithm are 
demonstrated through simulations and comparative studies on a 
real distribution feeder in Western Colorado. 

Index Terms-- distribution system, grid resilience, load restora-
tion, multi-agent reinforcement learning. 

I. INTRODUCTION 
Although efforts have been made to enhance the grid infra-

structure and heighten power supply reliability for years, we 
have witnessed an increasing trend in outages caused by ex-
treme weather and natural disasters. After a power outage, 
loads need to be restored as soon as possible to satisfy basic 
societal needs. To this end, the increasing penetration of dis-
tributed energy resources (DERs) brings the capabilities of 
providing emergency power and assisting grid load restoration. 
However, their volatile and inconsistent behavior makes con-
trol and strategy-making more complex and challenging, espe-
cially during catastrophic incidents. As a result, it is of great 
significance to develop load restoration solutions [1], which 
allow coordination among DERs dispatch, load pickup, and 
network reconfiguration to support post-event load restoration. 

To achieve a coordinated control scheme, methods based on 
optimal power flow (OPF) have been developed to obtain op-
timal restoration. Reference [2] investigated the collaboration 
of various DERs and legacy devices in distribution system ser-
vice restoration, which is formulated as a mixed-integer, sec-
ond-order cone programming problem. In [3], the authors for-
mulated an islanding strategy in the event of line failures in 
distribution systems, and they propose a decentralized, multi-
agent system to control the DERs. Recognizing that OPF is 
nonconvex and nondeterministic polynomial-time hard (NP-
hard), the solutions generally rely on convex surrogates [4]. 

Besides, many of the required data (e.g., system models that 
include secondary, accurate load profiles on each node) might 
not be available, and the time required to solve the OPF models 
might not be consistent with distribution system dynamics. 

As an effective alternative, reinforcement learning (RL) has 
been introduced to implement sequential decision-making. 
Different from OPF-based approaches, RL trains the control 
policy based on historical data prior to implementation, which 
lessens the reliance on the distribution system power flow 
model. Once the control policy is trained, it enables near real-
time decision-making to match advanced sensing/ communi-
cations rates and hence enable the online application. Refer-
ence [5] considered the asynchronous data arrival using a deep 
Q-network (DQN). [1] explored the merits of curriculum lean-
ing on facilitating the controller’s training and enabling con-
vergence to a better control policy. These strategies consider 
the scheme of a single centralized control agent with perfect 
bidirectional communications with all controllable compo-
nents, which is reasonable and suitable for normal operating 
conditions. However, the limited communication capability af-
ter extreme events and the impacts of potential event propaga-
tion may jeopardize the foundation of the centralized scheme. 

To overcome the aforementioned drawbacks, a multi-agent 
reinforcement learning-based (MARL) load restoration ap-
proach is developed. After a system outage, the distribution 
system is partitioned into multiple cells, which is a group of 
interconnected components that makes up the smallest subset 
of the grid. During the post-event restoration phase, each cell 
can disconnect from the main grid and be operated by a critical 
load restoration (CLR) agent. Additionally, cells can connect 
with each other (to be clustered) by a coordination (COR) 
agent to respond to event propagation and achieve advanced 
load restoration. This paper contributes the following: 

1) A MARL-based control scheme is developed to coordi-
nate DER control, load pickup, and network reconfigura-
tion for load restoration in distribution grids. 

2) Two types of RL control agents, namely CLR and COR, 
are developed to facilitate DERs dispatch and cell 
clustering, respectively. 

3) The effectiveness of the proposed solution is demon-
strated by conducting reliable load restoration on the 
model of a real distribution feeder in Western Colorado. 

This work was authored by the National Renewable Energy Laboratory, 
operated by Alliance for Sustainable Energy, LLC, for the U.S. Department 
of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding pro-
vided by the U.S. Department of Energy Office of Energy Efficiency and Re-
newable Energy Solar Energy Technologies Office Agreement Number 
37770. The views expressed in the article do not necessarily represent the 
views of the DOE or the U.S. Government. The U.S. Government retains and 
the publisher, by accepting the article for publication, acknowledges that the 
U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide li-
cense to publish or reproduce the published form of this work, or allow oth-
ers to do so, for U.S. Government purposes. 
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II. CELL-BASED LOAD RESTORATION FOR DISTRIBUTION 
SYSTEM RESILIENCE ENHANCEMENT 

A.  Resilience Concept and Cell-Based Operational Strategy 
Although with various emphases, two concepts are com-

monly shared when describing the perception of resilience [6]: 
1) The capability of a system to resist, withstand, and adapt to 

a major disruption, albeit with reduced performance. 
2) The capability of a system to recover to a normal state after 

a major disturbance. 
To improve distribution grids resilience, a cell-based opera-

tional strategy [7] is introduced in this paper. The distribution 
network is partitioned into multiple cells. A cell is a group of 
interconnected DERs and buildings that makes up the smallest 
subset of the grid capable of operating using its own generation 
resources. After extreme events happen,  

1) Each cell can disconnect from the main grid and operate in 
island mode to sustain the load supply with local DERs. 

2) Cells can connect with each other to increase total load 
pickup and assist for recovery at the system level. 

The cell-based scheme introduces two core functionalities 
(agent) for resilience enhancement, as shown in Fig. 1. One is 
the control agent that dispatches local DERs for load restora-
tion at the cell level. The other is the clustering agent that con-
figures cells connection at the system level. 
B. Formulation of Cell-Based Load Restoration Problem 

Based on the cell-based operation strategy, we consider a 
multi-step prioritized critical load restoration problem after 
cells are islanded from the main grid due to an extreme event. 
The goal is to restore as many  loads as possible in the outage 
duration, denoted by discrete steps 𝑡𝑡 ∈ 𝑇𝑇 = {1, … ,𝑇𝑇}, using lo-
cal DERs in each cell 𝑐𝑐 ∈ 𝒞𝒞 = {1, … ,𝑁𝑁𝑐𝑐}. Loads 𝑖𝑖 ∈ ℒ are pri-
oritized by importance factors 𝒷𝒷𝑖𝑖 , and 𝒛𝒛 = [𝒷𝒷1 , … ,𝒷𝒷𝑁𝑁], 𝑁𝑁 =
|ℒ|1. DERs include PV (ℋ), (mobile) battery (ℬ), and diesel 
generator (𝒟𝒟), and all together denoted as 𝒢𝒢 = ℋ⋃ℬ⋃𝒟𝒟. At 
each time step 𝑡𝑡, the CLR agent determines the power setpoints 
for all DERs (i.e., 𝑝𝑝𝑡𝑡

𝒢𝒢, 𝑞𝑞𝑡𝑡
𝒢𝒢) and the value of restored load (i.e., 

𝑝𝑝𝑡𝑡ℒ, 𝑞𝑞𝑡𝑡ℒ). The COR agent determines the switcher operation and 
power exchange among connected cells (i.e., 𝑤𝑤𝑡𝑡𝒞𝒞  𝑝𝑝𝑡𝑡𝒞𝒞, 𝑞𝑞𝑡𝑡𝒞𝒞). Let 
𝑥𝑥𝑡𝑡 ∶= (𝑝𝑝𝑡𝑡

𝒢𝒢, 𝑞𝑞𝑡𝑡
𝒢𝒢 ,𝑝𝑝𝑡𝑡ℒ, 𝑞𝑞𝑡𝑡ℒ,𝑤𝑤𝑡𝑡𝒞𝒞  𝑝𝑝𝑡𝑡𝒞𝒞, 𝑞𝑞𝑡𝑡𝒞𝒞), the load restoration problem 

can be formulated as: 
𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥𝑡𝑡: ∑ ∑ (𝑟𝑟𝑡𝑡,𝑐𝑐

CLR + 𝓋𝓋𝑡𝑡,𝑐𝑐)𝑐𝑐∈𝒞𝒞𝑡𝑡∈𝒯𝒯   (1) 
𝑠𝑠. 𝑡𝑡.:   𝑟𝑟𝑡𝑡,𝑐𝑐

𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑧𝑧𝑐𝑐⊤𝑝𝑝𝑡𝑡,𝑐𝑐
ℒ −   

               𝑧𝑧𝑐𝑐⊤𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑{𝜖𝜖𝑐𝑐}�𝑝𝑝𝑡𝑡−1,𝑐𝑐
ℒ − 𝑝𝑝𝑡𝑡,𝑐𝑐

ℒ �+, ∀𝑐𝑐 ∈ 𝒞𝒞, (2) 

 𝓋𝓋𝑡𝑡,𝑐𝑐 = −𝜆𝜆1𝑁𝑁𝑏𝑏,𝑐𝑐
⊤ diag�𝛿𝛿v𝑡𝑡,𝑐𝑐�𝛿𝛿v𝑡𝑡,𝑐𝑐 , ∀𝑐𝑐 ∈ 𝒞𝒞, (3) 

 𝛿𝛿v𝑡𝑡,𝑐𝑐 = �v𝑡𝑡,𝑐𝑐 − v�+ + �v − v𝑡𝑡,𝑐𝑐�
+, ∀𝑐𝑐 ∈ 𝒞𝒞, (4) 

 𝑓𝑓(𝑝𝑝𝑡𝑡
𝒢𝒢, 𝑞𝑞𝑡𝑡

𝒢𝒢 , 𝑝𝑝𝑡𝑡ℒ, 𝑞𝑞𝑡𝑡ℒ ,𝑤𝑤𝑡𝑡𝒞𝒞 , 𝑝𝑝𝑡𝑡𝒞𝒞, 𝑞𝑞𝑡𝑡𝒞𝒞 , v𝑡𝑡,𝑐𝑐) = 0, (5) 
 𝑔𝑔�𝑤𝑤𝑡𝑡𝒞𝒞� = 0, (6) 
 𝑝𝑝𝑡𝑡

𝒢𝒢 ≤ 𝑝𝑝𝑡𝑡
𝒢𝒢 ≤ 𝑝𝑝𝑡𝑡

𝒢𝒢, 𝑞𝑞𝑡𝑡
𝒢𝒢 ≤ 𝑞𝑞𝑡𝑡

𝒢𝒢 ≤ 𝑞𝑞𝑡𝑡
𝒢𝒢 , (7) 

where 𝑟𝑟𝑡𝑡,𝑐𝑐
CLR and 𝓋𝓋𝑡𝑡,𝑐𝑐 represent the single-step load restoration 

(CLR) reward and voltage violation penalty in cell 𝑐𝑐. The 𝑐𝑐 in 
some variables’ subscript indicates they are subsets of the sys-
tem-level variables (e.g., 𝑧𝑧𝑐𝑐  vs. 𝑧𝑧). 𝑁𝑁𝑏𝑏,𝑐𝑐  indicates the number 
of buses in cell 𝑐𝑐. v𝑡𝑡,𝑐𝑐 denotes the voltage magnitude, and v and 
v are the lower and upper limits for the voltage magnitude, i.e., 
0.95 and 1.05, respectively. In (2), the first term encourages 
load restoration, and the second term penalizes shedding previ-
ously restored by factors of  𝜖𝜖𝑐𝑐. This penalty facilitates a reliable 
and monotonic restoration and thus minimizes the impact of in-
termittent renewable generation. The value of 𝜖𝜖 can be adjusted 
to manage the strictness of the monotonic load restoration re-
quirement. Specifically, the CLR controller should only restore 
load 𝑖𝑖 if it can be sustained for the next 𝜖𝜖𝑖𝑖 + 1 steps to obtain a 
positive reward. Eq (5)-(7) represents the power flow con-
straints, system topology requirements, and DER operational 
constraints [8, Section. II]. 

Two major concerns of the OPF (1)-(7) are discussed here: 
1) Nonconvex formulation. Because constraints (5) are non-

linear and constraints (6) will introduce integer variables, 
OPF (1)-(7) is a nonconvex, nonlinear, NP-hard program-
ming problem, which suffers from high computational 
complexity. 

2) Unavailable information. Constraints (5) also require an 
accurate system model and load request profile along the 
whole scheduling horizon. Whereas in practical, system 
model with secondary (where most DERs are connected) 
and precise load request profile might not even exist. 

III. AN MARL-BASED LOAD RESTORATION APPROACH 
A. Bi-Level MARL Approach 

To address these challenges, this paper proposes a novel bi-
level MARL-based solution, as shown in Fig.2. In the upper-
level design, the COR agent coordinates the cells for reconfig-
uration to be adapted to system changes and to achieve higher 

 
Figure. 1. Cell-based operational strategy for resilience enhancement. 

 

 
Figure. 2.  Scheme of the bi-level MARL-based approach. 
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service restoration at system level. Specifically, the COR agent 
will (1) manage each cell with its aggregated generation re-
sources and load requests, (2) decide the switch operation to 
connect cells by balancing total generation and load requests at 
the system level, (3) deploy mobile battery to cells based on the 
gap between generation resources and critical load request. 

In the lower-level design, a CLR agent is deployed in each 
cell to dispatch DERs and determine the restored load. CLR 
agents operate the assigned cells independently―no mutual 
communications are required. Each of the CLR agents only re-
ports the cell-level aggregated generation and load requests to 
COR. Based on the cells status (generation-consumption bal-
ance), COR agent will merge cells if the connection can in-
crease system-level total load restoration, then deploy switcher 
actions and send load pickup adjustment to CLR agents.  

To this end, we formulate this multi-cell load restoration 
problem as a cooperative multi-agent problem with 𝑁𝑁𝑐𝑐 + 1 
agents. Specifically, there are 𝑁𝑁𝑐𝑐  CLR agents (one for each 
cell) and one COR agents coordinates the power transfer 
among cells.For CLR and COR agents, two key elements of 
the Markov decision process (MDP) are: 
• State 𝒔𝒔𝑡𝑡,𝑐𝑐: In cell 𝑐𝑐, the state at step 𝑡𝑡 includes the observa-

tion of available PV power, load requests, supplied load 
value, the battery’s state of charge (SOC), the remaining 
fuel of the diesel generators, and a natural time index. 

• Action 𝒂𝒂𝑡𝑡,𝑐𝑐: The action at step 𝑡𝑡 includes active and reac-
tive power dispatch of PV inverters, diesel generators, bat-
teries, and load pickup decisions in the cell.  

For the COR agent, the MDP state and action are: 
• State 𝒔𝒔𝑡𝑡,𝑁𝑁𝑐𝑐+1: For the COR agent, the state set at step 𝑡𝑡 in-

cludes the observation of the total DERs generation deci-
sion made by each of CLR agents, the total critical load 
request of each cell, and the switcher decision made in the 
upper-level clustering process. 

• Action 𝒂𝒂𝑡𝑡,𝑁𝑁𝑐𝑐+1: The action at step 𝑡𝑡 is the adjustment of 
the total load pickup decision for each cell. 

As the problem is formulated as purely cooperative, a single 
reward 𝑟𝑟𝑡𝑡 signal is provided to all agents to evaluate the current 
step of cooperative control. At each step 𝑡𝑡 ∈ 𝒯𝒯, the reward re-
ceived by each agent is given: 

 𝑟𝑟𝑡𝑡 = ∑ (𝑟𝑟𝑡𝑡,𝑐𝑐CLR + 𝓋𝓋𝑡𝑡,𝑐𝑐)𝑐𝑐∈𝒞𝒞 (𝑁𝑁𝑐𝑐 + 1)⁄ .  (8) 
By formulating the problem into MDP, the constraints (5) are 

enforced by OpenDSS simulator, which is a part of OpenAI 
Gym environment. Constraints (6) are enforced by COR agent. 
Constraints (7) are handled by the design of CLR action space.  

The violations will be reflected as penalty during the (MA)RL 
training [1]. 
B. Multi-agent Reinforcement Learning Algorithm 

Compared with single-agent RL, one key challenge in 
multi-agent RL is the non-stationarity, as illustrated in Fig. 3. 
Specifically, for single-agent learning, the agent collects expe-
rience by interacting with the environment, and then using the 
experience to improve its policy. During training, the environ-
ment stays the same. In contrast, in the MARL case, from the 
perspective of any single agent, the environment is no longer 
stationary since other agents impact the environment and their 
policies evolve at the same time, leading to a non-stationary 
“new environment” as shown in Fig 3(b). Such non-station-
arity will result in performance being not solely explainable by 
changes in a single agent’s policy. Therefore, directly using al-
gorithms from the single agent RL realm can lead to unstable 
learning. As a result, this paper utilizes a MARL specialized 
algorithm called multi-agent deep deterministic policy gradi-
ent (MADDPG) method [9]. The MADDPG method addresses 
the non-stationarity issue by conducting a coordinated training, 
making agents aware of other agents’ behavior during the 
training. Specifically, an implementation framework called 
“centralized training and decentralized execution” (CTDE) is 
proposed. The decentralized execution aspect ensures the 
trained policy can still make decision in a distributed manner 
using only local data as inputs, i.e., follows 𝒂𝒂𝑡𝑡,𝑐𝑐 = 𝜋𝜋𝑐𝑐(𝒔𝒔𝑡𝑡,𝑐𝑐). The 
centralized training aspect aims at coordinating the training 
and is achieved by learning a centralized action-value approx-
imator, i.e., the Q-function. Specifically, for agent 𝑐𝑐, instead of 
learning 𝑄𝑄𝑐𝑐(𝒔𝒔𝑡𝑡,𝑐𝑐 ,𝒂𝒂𝑡𝑡,𝑐𝑐) as done in the single agent RL algorithm, 
the Q-func takes 𝑄𝑄𝑐𝑐(𝒔𝒔𝑡𝑡,1,𝒂𝒂𝑡𝑡,1, … , 𝒔𝒔𝑡𝑡,𝑐𝑐 ,𝒂𝒂𝑡𝑡,𝑐𝑐 , … , 𝒔𝒔𝑡𝑡,𝑁𝑁𝑐𝑐+1,𝒂𝒂𝑡𝑡,𝑁𝑁𝑐𝑐+1). 

 
IV. NUMERICAL TESTS 

To demonstrate how the proposed load restoration approach 
improves the distribution grid resilience by leveraging DERs, 
we implement tests on the model of a real feeder located in 

 
Figure. 4. A real feeder located in Western Colorodo 

TABLE I. 
CELL-WISE GENERATION AND LOAD INFORMATION 

cell gen. cap. (kW)  ld. cap. (kW) cri-ld. cap. (kW) ld. # 

1 196 211 77 16 
2 416 418 187 42 
3 1110 838 411 98 
4 534 534 250 64 
5 120 120 2 4 

 
 

 
Figure. 3. Comparison between single agent RL and multi-agent RL. 
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Western Colorado. The feeder consists of 759 nodes, including 
both the primary and secondary nodes, and it has a peak load 
of 2,121 kW, with 40% of this (927kW) as critical load. 

To evaluate the impacts of DERs, load nodes are randomly 
picked to deploy PVs, batteries, or diesel generators. The total 
DERs generation capacity is 2,376 kW, which includes 112 
PVs, 10 diesel generators, 95 batteries and 1 mobile battery. 
Batteries are fully charged and can support discharging at rated 
power for 2.7 hours. 

For network partition, the feeder is divided into 5 cells, as 
shown in Fig.4. Cells 1 and 5 are three-phase cells along the 
backbone. Cell 2 is a single-phase (C-phase) cell. Cells 3 and 
4 are single-phase (B-phase) cells with the most customer load. 
Table I reports the DERs and load information in each cell.   

A 3-day load restoration was performed by using the data 
from November 28th – 30th, 2019. This is a 72-hour timeframe 
with 15-min time resolution, which collects 288 steps. For up-
per level clustering, the dispatch on switchers and deployment 
of mobile battery are executed every 6 hours (i.e., at 00:00, 
6:00, 12:00, and 18:00). For load categorization, all critical 
loads are given the importance factor as 1, while all noncritical 
loads have importance factor of 0.1. 
A. Benefits of Implementing CLR Agents at Cell Level 

To validate the effectiveness and superiority of the proposed 
solutions, two comparative cases are also simulated:  

Case 0: Baseline case where no control will be imple-
mented. DER (if exists) can only supply power to local loads. 

Case 1: CLR agents are deployed to operate each of cells 
independently. There is no coordination among cells. 

Fig. 5 reports the supply of critical load, noncritical load, 
and system total load during the 3-day restoration for case 1. 
The top figure reports the restoration of critical load for all five 
cells. For example, the dark yellow curve is the critical load 
requests during the 3-day in cell 3, while the light-yellow-col-
ored area is the restored critical load in cell 3. Similarly, the 
middle figure shows restoration of noncritical load. The bot-
tom figure depicts the system-wise load restoration. The dark 
blue curve represents the system’s total load request, the blue 
curve represents the system’s total critical load request, and the 
light-green-colored area represents the system’s total restored 
load. It can be observed that the CLR agents can dispatch 
DERs within each cell to supply 100% critical load during the 
3-day restoration, as shown in Fig. 5 (top). Besides, the partial 
noncritical load can also be restored, shown in Fig. 5 (middle). 

Table II compares the load restoration results between case 
0 and 1. For case 0, since there is no control/coordination, all 
the load with local battery can be supplied till around 5:00 on 
day 1. Besides, all the load with local PV can be supplied dur-
ing solar hours. Across the 3-day restoration, there are 2,823 
kWh of critical load, 3,937 kWh of noncritical load, and 6,750 
kWh of total load get restored. While for case 1, there are 
13,051 kWh of critical load, 7,890 kWh of noncritical load, 
and 20,941 kWh of total load get restored. 

The results shows that cells are formed by balancing the 
load and generation capability. CLR agents can effectively re-
store all the critical load by dispatching local DERs at cell level.  
B. Benefits of Implementing Bi-Level Strategy 

Since the COR agent is developed to enhance load restora-
tion at the system level and provide the responding capability 
to prolonged events, further tests with event propagation, 

TABLE II. 
COMPARISON OF LOAD RESTORATION UNDER CASE 0 AND 1 

 critical load 
pickup (kWh)  

noncritical load 
pickup (kWh) 

total load pickup 
(kWh) 

 case0 case1 case0 case1 case0 case1 

cell 1 242 841 840 1,268 1,082 2,109 
cell 2 305 2,238 683 628 988 2,866 
cell 3 1,445 5,880 1,593 3,020 3,038 8,900 
cell 4 827 4,081 3,038 2,744 1,596 6,825 
cell 5 4 11 42 230 46 241 
system 2,823 13,051 3,937 7,890 6,750 20,941 

 
 

 
Figure. 5. Implement CLR at cell level only (case 1) 

TABLE III. 
COMPARISON OF LOAD RESTORATION UNDER CASE 1 AND 2 

 critical load 
pickup (kWh)  

noncritical load 
pickup (kWh) 

total load pickup 
(kWh) 

 case2 case3 case2 case3 case2 case3 

cell 1 841 840 1,268 1,040 2,109 1,880 
cell 2 2,238 2,238 628 970 2,866 3,208 
cell 3 5,880 5,878 3,020 2,592 8,900 8,470 
cell 4 2,980 4,024 1,616 1,615 4,596 5,638 
cell 5 11 11 230 150 241 161 
system 11,950 12,990 6,762 6,367 18,712 19,357 

 
 

 
Figure. 6. Implement CLR at cell level with further event (case 2) 
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which cause unbalance between generation and load, is re-
quired to justify the benefits of bi-level CLR and COR design. 
In this case, we simulate an interruption event that will cause 
80% generation DERs (PV, battery, diesel generators) in cell 4 
to be offline from 16:00, day 2 to the end of day 3; the disaster 
that causes the interruption can vary from the winter storms, 
tropical cyclones, etc. However, the request of the load re-
mains during the 3-day period, which causes the generation-
consumption unbalance in cell 4. To validate the effectiveness 
and benefits of the proposed bi-level CLR and COR strategy, 
two more comparative cases are simulated: 

Case 2: A simulated event interruptus DERs in cell 4. CLR 
agents are operating independently (no COR agent). 

Case 3: A simulated event interruptus DER in cell 4. CLR 
agents are deployed to operate each of cells. COR agent is de-
ployed to coordinate the reconfiguration among cells. 

Fig. 6 depicts the 3-day critical load restoration under case 
2. It can be observed that the interruption starting at 16:00 
causes all noncritical load and more than 60% of the critical 
load to be curtailed in cell 4, while all the other cells are oper-
ating without any interruptions. 

Fig. 7 depicts the 3-day load restoration after introducing 
COR agent as case 3. After the interruption at 16:00 in cell 4, 
the upper level COR agent closes the switcher to connect cell 
3 and 4 and deploys the 150 kWh mobile battery to cell 4 at 
18:00. Since then, all the noncritical load in cell 3 get curtailed, 
and the corresponding generation capability is transferred to 
cell 4 to supply the critical load, which can be observed as the 
recovering cliff in Fig. 7 (upper). However, not all the critical 
load in cells 3 and 4 are 100% satisfied; the upper level further 
closes switchers to connect cell 3 and 1 at 0:00 day 3, and con-
nect cells 1, 2, and 5 at 6:00 day 3. From Fig. 7 (lower), It can 
be observed that from 0:00 to 6:00 on day 3, most of the non-
critical load in cells 1, 3, and 4 are curtailed, and the corre-
sponding power is transferred to cell 4 to maintain the critical 
load supper within it. The cells reconfiguration and deploy-
ment of mobile battery are reported in Fig. 8. The same color 
indicates that cells are merged to one larger cell by COR agent. 
Table III compares the load restoration between cases 2 and 3. 
After introducing COR agent, case 3 restored 1,040 kWh more 
in critical load than case 2 did at system level, but only restored 
395 kWh less in noncritical load. Consequently, case 3 restored 

19,357 kWh during the 3-day restoration, 645 kWh more than 
case 2 restored, which is 18,712 kWh. 

Different to CLR, COR agent aims to balance the DERs gen-
eration and load request at system level. Whenever there is un-
balance between generation and critical load (which could be 
caused by event propagation), the COR agent can connect the 
cells to transfer the power of supplying noncritical load in other 
cells to the unbalanced cell for supplying critical load, and thus 
achieve an advanced load restoration at the system level. 

V. CONCLUSIONS 
This paper proposes a novel MARL-based solution to solve 

load restoration in distribution grids. Numerical results show 
that the proposed CLR agents can effectively restore all the 
critical load by dispatching local DERs at cell level. Further 
more, the COR agent can connect the cells to transfer the 
power of supplying noncritical load in other cells to the unbal-
anced cell for the supply of critical load, and thus achieve an 
advanced load restoration at the system level. 

REFERENCES 
[1]. X. Zhang, A. T. Eseye, B. Knueven, W. Liu, M. Reynolds, and W. Jones, 
“Curriculum-based Reinforcement Learning for Distribution System Critical 
Load Restoration,” IEEE Transactions on Power Systems, pp. 1–13, Sep. 
2022. 
[2]. N. C. Koutsoukis, P. Georgilakis, and N. D. Hatziargyriou, “Service res-
toration of active distribution systems with increasing penetration of renewa-
ble distribution generation,” IET Gener. Transm. Distrib, vol. 13, no. 14, pp. 
3177–3187, 2019. 
[3]. W. Li et al., “A Full Decentralized Multi-Agent Service Restoration for 
Distribution Network with DGs,” IEEE Trans Smart Grid, vol. 11, no. 2, pp. 
1100–1111, 2020. 
[4]. G. Huang, J. Wang, C. Chen, J. Qi, and C. Guo, “Integration of Preventive 
and Emergency Responses for Power Grid Resilience Enhancement,” IEEE 
Transactions on Power Systems, vol. 32, no. 6, pp. 4451–4463, 2017. 
[5]. J. C. Bedoya, Y. Wang, and C. C. Liu, “Distribution System Resilience 
under Asynchronous Information Using Deep Reinforcement Learning,” IEEE 
Transactions on Power Systems, vol. 36, no. 5, pp. 4235–4245, Sep. 2021. 
[6]. J.-P. Watson, et al., “Conceptual framework for developing resilience met-
rics for the electricity, oil, and gas sectors in the United States,” Sandia Na-
tional Lab. (SNL-NM), Albuquerque, NM, SAND-2014-18019, 2014. 
[7]. A. Sahu, K. Utkarsh, and F. Ding, “A Fast and Scalable Genetic Algo-
rithm-Based Approach for Planning of Microgrids in Distribution Networks,” 
in 2022 IEEE Power & Energy Society General Meeting (PESGM), Jul. 2022, 
pp. 1–5. 
[8]. W. Liu and F. Ding, “Hierarchical Distribution System Adaptive Restora-
tion With Diverse Distributed Energy Resources,” in IEEE Trans. on Sustain-
able Energy, vol. 12, no. 2, pp. 1347-1359, April 2021. 
[9]. Lowe, Ryan, et al., “Multi-agent actor-critic for mixed cooperative-compet-
itive environments.” in Advances in Neural Information Processing Systems 
(NIPS), 2017, pp. 1–12. 

 
Figure. 7. Implement bilevel scheme with further event (case 3) 

 

 
Figure. 8. MARL cell reconfiguration. Once two cells are connected, only 
one color is used to illustrate the larger merged cell. 




