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Two-Stage Deep Reinforcement Learning for 
Distribution System Voltage Regulation and Peak 

Demand Management 
Yansong Pei Student Member, IEEE, Yiyun Yao, Junbo Zhao, Senior Member, IEEE, Fei Ding, Jiyu Wang 

Abstract—The growing integration of distributed solar pho-
tovoltaic (PV) in distribution systems could result in adverse 
effects during grid operation. This paper develops a two-agent 
soft actor critic-based deep reinforcement learning (SAC-DRL) 
solution to simultaneously control PV inverters and battery 
energy storage systems for voltage regulation and peak demand 
reduction. The novel two-stage framework, featured with two 
different control agents, is applied for daytime and nighttime 
operations to enhance control performance. Comparison results 
with other control methods on a real feeder in Western Colorado 
demonstrate that the proposed method can provide advanced 
voltage regulation with modest active power curtailment and 
reduce peak load demand from feeder’s head. 

Index Terms—Deep reinforcement learning, distribution sys-
tem, voltage regulation, peak load management. 

I. INTRODUCTION 

Increasing penetrations of solar photovoltaic (PV) systems 
in the active distribution network (ADN) raise concerns about 
system voltage quality [1]. With the development of smart 
inverter technology, PV inverters can simultaneously regulate 
active and reactive power, which can be involved as a non-wire 
option of distributed volt-var control(VVC) [2]. In addition, a 
battery energy storage system (BESS) can be deployed along 
with PV to shift excess PV power for supplying system load 
during peak hours [3]. Consequently, it is of signifcance to 
develop a control solution to simultaneously regulate PV and 
BESS for grid operation enhancement. 

Various methods have been proposed to coordinate the 
control of PV and BESS. [4] proposes a battery energy 
management system to control the generator and BESS. 
Different modes of operation are listed for controlling the 
charge/discharge rate of the batteries. In [5], a demand-side 
management approach is proposed based on a fuzzy logic 
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method to incorporate PV, wind turbines, and BESS. These ap-
proaches mainly focus on peak demand shaving without con-
sidering the voltage violation problem. A rule-based control 
strategy proposed in [6] achieves peak shaving control using 
grid-connected PV systems with BESS. It also demonstrates 
that the voltage violation and peak shaving problem can be 
simultaneously solved through proper coordination; however, 
when faced with a system with a massive number of PV and 
BESS, it faces high complexity in rules setting. Furthermore, 
accurate model information is required to design the control 
policy, which is hard to acquire in practice. 

Recently, reinforcement learning as a model-free control 
method is being increasingly implemented, especially deep 
reinforcement learning (DRL)-based approaches, such as an 
attention-enabled multi-agent DRL (MADRL) [7], MADRL 
for a realistic distribution system [8], a multi-agent deep 
deterministic policy gradient algorithm-based algorithm [9]. 
Compared with local autonomous volt-var control [10] without 
communication between each inverter and optimal power fow 
methods [11], DRL-based approaches do not rely on voltage-
reactive power piecewise curve or accurate model information. 
These algorithms coordinate the PV inverters and reduce 
voltage violations. A certain amount of PV active power is 
curtailed without considering the use of BESS, which could 
have been stored and used during the peak load time. There are 
studies using DRL for energy management, such as capacity 
scheduling of PV-BESS using proximal policy optimization 
(PPO) [12], MADRL for home energy management [13], 
and a two-level scheduling algorithm using DRL [14]. These 
methods have successfully used the battery to solve some 
economic problems by charging the batteries at low electricity 
price times and discharging them during peak load periods to 
reduce the users’ cost. 

This paper proposes a novel SAC-DRL solution for the 
coordinated control of PV inverters and BESS. The objective 
is to minimize the voltage violation while maintaining low 
PV active power curtailment and achieving an effective peak 
demand reduction. The contributions of this paper are: 
• The proposed SAC-DRL is trained by a novel time variant 

reward, and the ADN can coordinate the control of a 
high number of PV inverters and BESS to simultaneously 
achieve voltage regulation and peak demand reduction. 

• The proposed method requires little or no prior knowl-
edge of ADN information. Comprehensive experiments 
on a real distribution feeder in western Colorado demon-
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strate that the proposed solution has better performance 
than rule-based and other DRL-based control methods. 

II. PROBLEM FORMULATION 

A. Distribution System Model 

Consider a distribution system with n nodes denoted by the 
set N :=1, .., n and branches by the set M:=1, .., m. In the 
system, there are E nodes denoted by the set E ⊆ N that 
have a voltage magnitude meter installed. For node i ∈ E , 

tdefne v as the voltage magnitude at t moment. There are Hi 
nodes denoted by the set H ⊆ N that have PV with smart 
inverters deployed. For i ∈ H, defne the PV set points as 
txi := (P t, Qt), where t represents the time step. There are Bi i 

nodes denoted by the set B ⊆ N that have BESS deployed. 
For i ∈ B, defne BESS actions as bt := (P t ), wherei,c, P t i i,d 
represents power charge/discharge rate of batteries. There are 
L nodes denoted by the set L ⊆ N that have load demand 
PLt, QLi

t . Let PLt, QLt denote the real and reactive power i i i 
load on node i at time t. There are ev nodes denoted by the set 
EV ⊆ N that have electric vehicle (EV) deployed. For i ∈ EV , 

tdefne EV ev := (PLt ),where PLt ∈ PLi
t , representsi ev ev 

power demand from electric vehicles. In this paper, the EV is 
treated as a normal load, which only has an active power load. 
The power fow constraints are: 

Vi
t(Ii

t) ∗ = (P t − PLt
i) + j(Qi

t − QLi
t), ∀i ∈ H, (1)i 

Vi
t(Ii

t) ∗ = −PLi
t − jQLi

t , ∀i ∈ N /H, (2) 

where Vi and Ii are the node’s voltage magnitude and current 
injection. Throughout the operation of the distribution grid, the 
nodes equipped with voltage magnitude meters are required to 
remain within a predefned range. Any node voltage magnitude 
with greater than 1.05 p.u. or less than 0.95 p.u. will be 
counted as voltage violation nodes (VVNs). Nvvn stands for 
the total number of VVNs, yielding 

0.95 ⩽ |Vi
t| ⩽ 1.05, ∀i ∈ N /Nvvn, (3) 

Vn
t ⩽ 0.95 or Vn

t ⩾ 1.05, ∀n ∈ Nvvn, (4) 

B. PV Inverter Model 
tFor each PV inverter, the power set point x := (Pi

t, Qi
t)i 

tis constrained, i.e, x ∈ REt for ∀i ∈ H. The region REt isi i i 
determined by the apparent power capacity and time-vary solar 
irradiance, λt. As described in California Rule 21 [15], the full 
reactive power, Qt capability range is defned as 30% of thei 
nameplate apparent power rating. Then, the region, REti, can 
thus be defned as: 

REt = {0 ≤ P t ≤ P t i ≤ 0.3Si (5)i i i,max, −0.3Si ≤ Qt 

where P t = λt × Si; P t is the maximum real power i,max i,max 
of the ith PV inverter, and Si is the corresponding nameplate 
apparent power rating. 

C. BESS Model 
The dynamic model of the BESS can be modeled as the 

following discrete time equation: 

σt+1 P t = σi
t + (ηi,cP t 

1 
(6)i i,c − i,d),ηi,d 

where σ is the BESS state of charge (SOC); and ηi,c,ηi,d are 
the charging and discharging effciencies, which describe that 
the variation of the SOC change is proportional to the power 
of the charging and discharging, P t and P t i,d, for each BESS. i,c 
There is a limit on the charging/discharging action subject to: 

P t · P t = 0, (7)i,c i,d 

which means that the charging and discharging action cannot 
happen on the same BESS at each time step. The SOC of the 
BESS is subject to the upper and lower boundaries: 

σmin 
i ≤ σmax≤ σt . (8)i i 

For each BESS, there is the upper limit power of the charging 
and discharging constrained as: 

0 ≤ Pi,c
t ≤ P max , ∀i ∈ B, t (9)i,c 

0 ≤ Pi,d
t ≤ P max , ∀i ∈ B, t, (10)i,d 

where P max and P max are the rated charging and discharging i,c i,d 
power of the BESS. 

D. Power Demand at Feeder Head 

The power balance of the system is constrained according 
to the following equation: 

EV L H B BX X X X X 
P t = P t P t P t P tPLt PLt 
head loss+ i+ i− i − i,d+ i,c, 

i=1 i=1 i=1 i=1 i=1 
(11) 

where P t is the active power loss in the system; P t isloss head 
the power demand from the power feeder to compensate for 
the insuffcient active power. Assume that the power demand 
from the feeder head is divided into two time periods: peak 

t,peakload time demand, P when T ∈ (18, 24) and normalhead 
t,normal time demand, P when T ∈ (1, 17). T represents thehead 

time in the real world (e.g., 17 indicates 17:00 p.m.). 
In summary, the coordinated control of PV inverter and 

BESS can be formulated as the following optimal power fow 
(OPF) problem: 

|H|X 
t,peakmax : fi

t(Pi
t) − Nvvn − P , (12a)head 

i=1 

subject to : P t ∈ REti, ∀i ∈ H, (12b)i 

(1) − (9). (12c) 

As (12) is a nonconvex problem that has multiple objectives, 
the proposed method should provide the PV inverters’ set 
points and BESS actions to achieve a sub-optimal operation 
condition with a fast response. Further, the high PV penetration 
means a high number of control targets, which is hard to solve 
by traditional centralized or distributed approaches. This paper 
proposes the SAC-DRL approach to address them. 
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III. PROPOSED TWO-STAGE SAC-DRL CONTROL 
SOLUTION 

A. Formulation of Markov Decision Process 

The coordinated control of the PVs’ active and reactive 
power set points and the BESS actions to regulate the volt-
age and reduce the peak load demand is formulated as a 
Markov decision process (MDP). The MDP comprises the 
environment, agents, observation, action, and reward, which 
are described as follows: 
• Environment: An ADN, including the time-varying load 

profle. The PV real and reactive power set points and 
BESS charging/discharging power will be the input, and 
the output is the voltage of each node and power demand 
from the feeder head, which can be formulated as the 
following equation: 

g(Pi
t, Qi

t, PLt
i, QLi

t, P t , P t bess,d, Pbess,c
t ) → Vm

t 
head,m ∈ E 

(13) 
In this paper, the load shape, battery action, and PV 
set points will be fed into the simulation software as 
OpenDSS and the power demand and voltage are obtained 
after the simulation. 

• Agent: The central controller of the system. The agent is 
responsible for controlling the PV inverter set points and 
battery actions. In the MDP, the agent makes the decision, 
At, based on the observation, St, at the tth time step. 

• Observation: The information observed by the agent. 
In this MDP, the agent will observe the time, T , PV 
maximum generation, P t the maximum reactive i,max, 
power capacity, Qt 

i,max, the load and EV information, 
PLt, QLt and the SOC for the BESS. The set, St,i i, 
including this information will be used for an agent to 
make decision At 

• Action: The action set, At, includes all PV inverter 
set points and the BESS charging/discharging actions. 
For each PV inverter, i ∈ H, the action is defned 
as (αP V,P (i, t), αP V,Q(i, t)), where αP V,P (i, t) ∈ (0, 1) 
and αP V,Q(i, t) ∈ (−1, 1). The PV set points in Eq.(5) 
can be calculated by the following equation: P t = i 
αP V,P (i, t) × P t , Qi

t = i . For i,max αP V,Q(i, t) × 0.3St 

each BESS, i ∈ B, the action given by the agent is 
βt ∈ (−1, 1). The BESS charging/discharging power isi 
calculated by the following equation: 

· P maxP t = βt , P t = 0, ifβt ≥ 0 (14a)i,c i i,c i,d i 

· P maxP t = βt , P t = 0, ifβt ≤ 0 (14b)i,d i i,d i,c i 

• Reward: Rt obtained after action At executed under the 
condition of St. Considering the different control strate-
gies required for different time periods, two innovative 
reward functions were designed for training in this paper, 
as follows: 

n BX X 
= γ + ρ P t (15a)Rday vi,violation + εP ct i,c, 

i=1 i=1 

n BX X 
P tRnight = γ vi,violation + µ i,d, (15b) 

i=1 i=1 

t vi,violation = (1 − min(δ − |1 − vi |, 0))2 − 1, (15c) P 
P t i∈H iPct = P 

P t 
, (15d) 

i∈H i,max 

where γ is the penalty coeffcient of the voltage violation 
calculated by (15a); ε is the penalty coeffcient of the PV 
active power curtailment according to the PV set points; 
ρ is the reward coeffcient for the battery charging during 
the daytime, which encourages the BESS charging to 
reduce the curtailment and store the energy for peak time 
use; µ is the reward coeffcient for the battery discharging 
during the nighttime, where µ has two different values 
depending on different T values to encourage a large 
amount of discharge during the peak period and a small 
amount of discharge during late nighttime; δ is the 
threshold used to optimize the voltage barrier function 
and Pct is the PV active power generation rate used to 
punish the curtailment. 

B. SAC-Based DRL Agent 

DRL is the process of trial and error to obtain a higher 
reward. During this process, the neural network of the agent 
constantly updates itself by iteratively adjusting the coeffcient 
and weights along gradients of higher rewards. Actor-critic-
based reinforcement learning, as an advanced algorithm, has 
one actor-network and one critic network. The actor takes the 
observation as the input and outputs the action accordingly, 
and the critic takes the environment observation with the 
actor’s action as input and makes an assessment of the action 
along with the direction of how much to adjust. As the iteration 
progresses, the actions made by the actor will gain increasingly 
higher rewards, and the critic’s state value estimation will be 
more accurate; hence, compared with other DRL methods, 
the actor-critic-based method has the characteristics of fast 
convergence and good performance. In this paper, the agent is 
trained and updated by using the off-policy SAC algorithm 
[16]. The actor-network in the SAC outputs the action by 
following the policy whose purpose is to maximize the sum 
of the reward, R(St, At), and the entropy of the policy, 
H(π(· | st)). There are three networks in the proposed SAC-
based approach: two soft Q-function networks parameterized 
by θ, and a policy function network, π, parameterized by ϕ. 
The actor-network is a policy equation shown as follows: 

∞X 
J (π) = argmax E[ ωt(R(st, at)+α×H(π(· | st))], (16) 

t=0 

where ω is the future discount coeffcient; α is a temperature 
parameter that indicates the entropy’s contribution to the re-
ward. The α will initially be designed as a large value to obtain 
higher entropy rewards by increasing the exploration space of 
action. As the training proceeds, α will gradually decrease 
and shrink the exploration breadth, eventually approaching the 
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optimal policy. The critic network estimates the state value as 
the Q-function as: 

y(St, Rt, St+1) = r+ω(Q(St+1, At+1−αlogπθ(At+1 | St+1)), 
(17) 

The SAC algorithm relies on an experience replay buffer to 
update with enhancing sample effciency. After the reward is 
obtained by the executed action, the replay buffer stores the 
observation, action, reward, and next step observation as a 
transition. A batch of transitions, B = {(St, At, St+1, Rt)}, 
will be randomly selected to update the neural network. The 
actor-network updates the coeffcient using a gradient ascent 
by the following: 

X1 ∇θi ( min (st, π(· | st))− 
|B| i=1,2 

Qθi 

((st))∈B 

α log πθ(π(· | st) | st)), (18) 

the critic network updates the Q-function using gradient de-
scent by the following: 

∇θi 
1 X 

(Qθi (st, at) − y(st, rt, st+1))
2 ,

|B| 
((st,at,st+1 ,rt ))∈B 

(19) 
where the clipped double-Q method is used to obtain the 
smaller Q-value between the two Q approximators. 

C. Two-Agent Control Solution 

A single-agent SAC has enough capability to control a good 
number of PVs and BESSs during the daytime. During the 
training process, the agent constantly adjusts the PV active 
power set points in the neural network; however, setting the 
PV active power production at nighttime is meaningless since 
there is no solar. The update on the weight and bias during 
the nighttime will not refect any reward change, which could 
mislead the update of the SAC agent. In addition, the agent 
seeks a balance among the active power curtailment, battery 
changing, and voltage violation during the daytime. When 
nighttime comes, the reward requires the agent to concentrate 
on solving the peak load demand reduction problem. The 
single-agent approach will be disturbed by the time-variance 
reward, resulting in performance degradation. Considering the 
generalization ability of the proposed solution to achieve 24-
hour control, agents at two-stage are used to control different 
operating scenarios during the daytime and nighttime with 
different dimensions of actions. The agent applied in the 
daytime stage will be trained by following (15a) while that 
for the nighttime stage will be trained by following the (15b). 
The coordinated PV-BESS control based on the proposed two-
agent layout is shown in Fig. 1. 

IV. RESULTS ON A REALISTIC DISTRIBUTION SYSTEM 

The proposed two-stage DRL-SAC solution is tested on a 
real feeder in Western Colorado. There are 759 nodes, 159 
loads, 65 EVs, 95 BESS, and 112 PV units in the original 
model. The training process uses 28 days of historical data 

Fig. 1: Flowchart of the proposed method. 

with a 1-hour time resolution. The DRL agents are trained 
using PyTorch 1.8.1. The test process using 7 days of hourly 
data is taken in OpenDSSDirect under Python 3.8. 

Several existing methods are used to compare the pro-
posed method to highlight the advantages, including 1) No-
control: The PV inverter will produce the maximum active 
power according to solar irradiation. There are no reactive 
power set points of the PV or BESS actions. 2) VVC-volt 
priority+ruled-based control (VVCV+RBC): The VVCV 
controls the PV reactive power value requested by the volt-
VAR curve to be limited until the desired voltage is achieved, 
which will curtail the active power. The BESS is controlled 
by following a rule of charging at 25% of maximum charging 
power during the daytime and discharging at 30% of maximum 
discharging power during the peak load period. The BESS 
discharges at 5% of maximum discharging power during the 
night. 3) Single deep deterministic policy (DDPG) [17]: 
The single DDPG agent will be trained by the same set of 
two reward functions and controls the PV inverter with the 
BESS. 4) Single-SAC: The single SAC agent trained by the 
same settings of the two reward functions is implemented to 
simultaneously control the PV inverter and BESS. 

TABLE I: 7-Day simulation with different control scenarios 

Agent Nvvn Peak(kW) Max Volt Min Volt Curt 
No-control 86 2.61×105 1.059 0.931 -

VVCW+RBC 26 2.26×105 1.053 0.953 4.6% 
DDPG 42 2.61×105 1.052 0.928 2.3% 
SAC 2 1.88×105 1.051 0.953 1.6% 

Proposed 0 1.82×105 1.049 0.952 0.6% 

The test results are summarized in Table I and Fig. 2. It 
suggests that both the SAC-based and proposed approaches 
have better performance than other control solutions. The No-
control has the most voltage violations with 86 VVNs during 
the 7-day test without any curtailment. Because of using the 
BESS, the number of VVN controlled by VVCW+RBC is 
reduced to 26. Since there is no cooperation between the PV 
and BESS, the VVCW+RBC approaches will make the control 
decisions earlier than BESS starts causing the active power 
curtailment to be 4.6%. The result of the DDPG suggests 
that it cannot handle the coordinated control between PVs 
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Fig. 2: Load demand from feeder’s head for different approaches during 7-day testing. 

and BESS well; the DDPG ignores the control of the active 
power and BESS, and focuses only on the reactive power set 
points causing the lowest minimum voltage in all approaches. 
The SAC as an advanced algorithm successfully achieves the 
coordinated control of PV and BESS, regulates voltage and 
reduces the number of VVN to 2 while maintaining active 
power curtailment at 1.6%. The proposed approach has the 
best performance with no voltage violation and the curtailment 
is only 0.6%. 

Fig. 2 shows the 7-day load demand from the feeder head, 
where the regions between two adjacent red lines are the peak 
load period. The no-control method as the baseline shows that 
during the daytime, especially between 10 am and 2 pm when 
the solar irradiance is the strongest, the PV can generate a 
large amount of real power. At the noon on days 3, 5, and 6, 
it can even generate excess real power needed by the system. 
The DDPG agent has a similar load demand curve with No-
control. Regular charging and discharging using the ruled-
based control method relieves the pressure on the feeder head 
of the peak load period and reduces the load demand by 13%. 
By contrast, the SAC and proposed approaches reduce the load 
demand by 27.9% and 30.2%, respectively. Because a two-
stage agent design for handling the daytime and nighttime is 
developed, the agents can perform stably than using a single 
agent, and it can be observed that there is another peak demand 
caused by the unstable BESS action on the 6th day morning. 
These results confrm that the proposed two-stage SAC-DRL-
based method has better performance on voltage regulation 
and peak load reduction. 

V. CONCLUSION 

This paper proposes a two-stage SAC-DRL approach to 
achieve the coordinated control of the PV inverter and BESS 
to regulate the system voltage and reduce the load during the 
peak time. Comparative tests on a real feeder with several 
existing approaches demonstrate that the proposed method 
can address the voltage violations by curtailing modest real 
power and charging the BESS to store the energy for load 
compensation during peak hours. The new two-stage frame-
work, featured by two different agents, is applied to deal with 

two different reward functions for daytime and nighttime to 
improve performance without system knowledge. 
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