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Abstract
We study multiagent reinforcement learning (MARL) with constraints. This setting is gaining
importance as MARL algorithms find new applications in real-world systems ranging from power
grids to drone swarms. Most constrained MARL (C-MARL) algorithms use a primal-dual approach
to enforce constraints through a penalty function added to the reward. In this paper, we study
the structural effects of the primal-dual approach on the constraints and value function. First,
we show that using the constraint evaluation as the penalty leads to a weak notion of safety, but
by making simple modifications to the penalty function, we can enforce meaningful probabilistic
safety constraints. Second, we show that the penalty term changes the value function in a way that
is easy to model, and demonstrate the consequences of not doing so. We conclude with simulations
in a simple constrained multiagent environment to back up the theoretical results.
Keywords: Multi-agent reinforcement learning, primal-dual methods, chance constraints, condi-
tional value-at-risk

1. Introduction

As reinforcement learning (RL) algorithms progress from virtual to cyber-physical applications, it 
will be necessary to address the challenges of safety especially when systems are controlled by 
multiple agents. Examples of multi-agent safety-critical systems include power grids Cui et al.
(2022), building energy management systems Biagioni et al. (2022), autonomous vehicle navigation 
Zhou et al. (2022), and drone swarms Chen et al. (2020). In each of these applications, agents 
must learn to operate in a complicated environment, while satisfying various local and system-wide 
constraints. Such constraints, derived from domain-specific k nowledge, a re d esigned t o prevent 
damage to equipment, humans, or infrastructure, or to preclude failure to complete some task or 
objective.

Constrained multiagent reinforcement learning (C-MARL) poses many challenges above and 
beyond the single-agent problem (C-RL) because the interaction between agents can influence both 
the satisfaction of constraints and the convergence to optimal policies. The potential scale of C-
MARL problems eliminates the possibility of directly using common model-based methods for 
C-RL such as e.g. Chen et al. (2018); Ma et al. (2021); Tabas and Zhang (2022). The main strategy 
for tackling C-MARL problems found in the literature is the Lagrangian or primal-dual approach 
Lu et al. (2021); Li et al. (2020); Lee et al. (2018); Parnika et al. (2021). In this paper, we seek to 
expose and to mitigate some of the flaws in this class of algorithms.
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INTERPRETING CONSTRAINED MARL

In the primal-dual approach to C-MARL, each agent receives a reward signal that is augmented
with a penalty term designed to incentivize constraint satisfaction. The magnitude of the penalty
term is tuned to steer policies towards constraint satisfaction while keeping the penalty term from
unnecessarily overshadowing the original reward. Although this approach has been shown to con-
verge to a safe joint policy under certain assumptions and a specific notion of safety Lu et al. (2021),
the primal-dual approach changes the structure of the learning task in a way that is not well under-
stood.

In this paper, we study two challenges encountered when using the basic primal-dual algorithm
for C-MARL. First, the primal-dual algorithm only enforces discounted sum constraints (DSCs)
derived from the original safety constraints of the system. We show that DSCs guarantee safety
only in expectation, providing bounds on neither the probability nor the severity of future con-
straint violations. We propose simple modifications to the penalty term that enable the enforcement
of meaningful probabilistic constraints, namely chance constraints Mesbah (2016) and conditional
value-at-risk constraints Rockafellar and Uryasev (2000). Although several single-agent RL al-
gorithms deal directly with risk sensitivity Garcı́a and Fernández (2015); Chow et al. (2018), the
multi-agent context is less well-studied, and our contribution is to provide a novel understanding of
the safety guarantees provided by existing C-MARL algorithms.

Building 1


Building 2
 Building 3


Building 4


Bulk power
system

Point of common

coupling (with

voltage constraint)

Agent 1

Agent 2 Agent 3

Agent 4

Figure 1: Building energy management
with a voltage constraint at the point of
common coupling.

The second challenge encountered in the basic
primal-dual algorithm is the fact that the reward function
is constantly changing as the dual variables are updated.
Every time the reward function changes, the accuracy of
any value estimate diminishes. We quantify this loss of
accuracy, and propose a new value estimation procedure
that avoids it. Our proposal builds on results in Tessler
et al. (2019) showing the linearity of the value function
in the dual variables. The implications of this observa-
tion have not been isolated and studied, especially in the
multi-agent setting. We develop a novel class of temporal
difference algorithms for value function estimation that
directly exploits this observation, giving rise to a value es-
timate that maintains an accurate derivative with respect
to the dual variables. This first-order accuracy makes the
estimate robust to dual variable updates.

The multi-agent RL (MARL) literature includes a
wide array of problem formulations and solution tech-
niques depending upon the extent to which states, re-
wards, and information are shared among agents. In this
paper, we study a specific yet fairly general formula-
tion inspired by the problem of building energy manage-
ment (BEM) Biagioni et al. (2022); Molina-Solana et al.
(2017), illustrated in Figure 1. The main objective of
BEM is to control a building’s resources to minimize the
cost of energy consumption, while affording a degree of
comfort and convenience to the occupants. However, when BEMs are deployed in multiple build-
ings, it is critical to ensure that the power network connecting them is safely operated since unco-

2
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INTERPRETING CONSTRAINED MARL

ordinated control of buildings can cause network voltage constraints to be violated. This mandates
a level of coordination between agents in the learning stage. Thus, we adopt the commonly-studied
centralized training/decentralized execution (CTDE) framework Lowe et al. (2017); Foerster et al.
(2018) in which a simulator or coordinator provides global state information, constraint evaluations,
and Lagrange multipliers (dual variables) to each agent during training.

The rest of the paper is organized as follows. In Section 2, we formulate the problem under
consideration. In Section 3, we provide an overview of our main interpretive tool, the occupation
measure Borkar and Bhatt (1996). In Section 4, we use the occupation measure to reformulate DSCs
as probabilistic constraints. In Section 5, we study the value structure of the primal-dual problem
and use the results to propose a new value estimation algorithm. In Section 6, we provide some
simulation results affirming the theoretical observations and demonstrating the effectiveness of the
proposed changes to the basic primal-dual algorithm for C-MARL.

1.1. Notation

The natural numbers and the nonnegative reals are denoted N and R+, respectively. Given a mea-
surable set S, the set of all possible probability densities over S is denoted ∆S . For any dis-
count factor γ ∈ (0, 1) and any sequence {yt}Tt=0, the discounted sum operator is ΓT

t=0[yt | γ] =
(1− γ)

∑T
t=0 γ

tyt, and Γ∞
t=0[yt | γ] = limT→∞ΓT

t=0[yt | γ] if the limit exists. We will often drop
the second argument γ for brevity. The positive component operator is [y]+ = max{y, 0} and the
logical indicator function I[·] maps {True,False} to {1, 0}.

2. Problem formulation

2.1. Constrained MARL

We consider a noncooperative setting in which n agents pursue individual objectives, while being
subjected to global constraints (e.g. a limited shared resource constraint). We assume there is no
real-time communication and each agent’s action is based only on their local observations. However,
policy updates can use global information under the centralized training/decentralized execution
(CTDE) framework Lowe et al. (2017); Foerster et al. (2018). In this paper, we consider the case of
continuous state and action spaces.

The setting is described by the tuple ({Xi}i∈N , {Ui}i∈N , {Ri}i∈N , f, C, p0, γ) where N is the
index set of agents, Xi and Ui are the state and action spaces of agent i, and Ri : Xi×Ui → R is the
reward function of agent i. We assume the sets Xi and Ui are compact for all i. Let X =

∏
i∈N Xi

and U =
∏

i∈N Ui be the joint state and action spaces of the system, respectively. Then f : X×U →
∆X describes the state transition probabilities, i.e., f(· | x, u) ∈ ∆X for any x ∈ X and u ∈ U .
The function C : X → Rm is used to describe a set of safe states, S = {x ∈ X | C(x) ≤ 0}.

Let p0 ∈ ∆X denote the initial state probability density and γ ∈ (0, 1) be a discount factor.
At time t, the state, action, and reward of agent i are xit, u

i
t, and rit, respectively, and constraint j

evaluates to cjt . Using a quantity without a superscript to represent a stacked vector ranging over all
i ∈ N or all j ∈ {1, . . . ,m}, a system trajectory is denoted τ = {(xt, ut, rt, ct)}∞t=0.

In the noncooperative C-MARL framework, each agent seeks to learn a policy πi : Xi → ∆Ui

that maximizes the expected discounted accumulation of individual rewards. We let π : X → ∆U
denote the joint policy, and fπ : X → ∆X is the state transition probability induced by a joint policy
π, i.e. fπ( · | x) ∈ ∆X for any x ∈ X . The tuple (p0, f, π) induces a state visitation probability

3
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INTERPRETING CONSTRAINED MARL

density at each time step, pt(x) =
∫
X t p0(x0) ·

∏t
k=1 f

π(xk | xk−1) dx0 . . . dxk−1, and we say
p∞(x) = limt→∞ pt(x) for each x ∈ X if the limit exists. The collection of visitation probabilities
{pt}∞t=0 gives rise to a probability density of trajectories τ , denoted M ∈ ∆∏∞

t=0(X×A×Rn×Rm).
Thus, the objective of each agent can be stated precisely as maximizing Eτ∼M[Γ∞

t=0 r
i
t].

However, the agents must settle on a joint policy that keeps the system in the safe set S . Due
to the stochastic nature of the system, satisfying this constraint for all time is too difficult and in
some cases too conservative. A common relaxation procedure is to formulate an augmented reward
r̃it = rit − λT ct where λ ∈ Rm

+ , the Lagrange multiplier or dual variable, is adjusted in order to
incentivize constraint satisfaction. This leads to the primal-dual algorithm for C-MARL, discussed
in the next section. The following mild assumption facilitates the analysis.

Assumption 1 Ri, Cj , and pt are bounded on X for all i ∈ N , all j ∈ {1, . . . ,m}, and all t ∈ N.

The boundedness of Ri and Cj is a common assumption Lu et al. (2021); Tessler et al. (2019);
Paternain et al. (2019) that we will use in order to exchange the order of limits, sums and integrals
using the Dominated Convergence Theorem (DCT). The assumption of bounded pt is not strictly
necessary, but we use it throughout the paper in order to apply DCT with the standard Lebesgue
measure.

2.2. Primal-dual algorithms

The augmented reward function leads to the following min-max optimization problem for agent i:

min
λ≥0

max
πi

Eτ∼M
[ ∞

Γ
t=0

[rit − λT ct]
]

(1)

=min
λ≥0

max
πi

(
Eτ∼M

[ ∞

Γ
t=0

[rit]
]
− λTEτ∼M

[ ∞

Γ
t=0

[ct]
])

(2)

where (2) uses absolute convergence (stemming from Assumption 1) to rearrange the terms of the
infinite sum. Note that the minimization over λ is coupled across agents. Any fixed point of (2) will
satisfy Eτ∼M[Γ∞

t=0 ct] ≤ 0 because if Eτ∼M[Γ∞
t=0 c

j
t ] ̸= 0 then the objective value can be reduced

by increasing or decreasing λj , unless Eτ∼M[Γ∞
t=0 c

j
t ] < 0 and λj = 0. In other words, the primal-

dual method enforces a discounted sum constraint (DSC) derived from the safety set S. Although
DSCs are convenient, it is not obvious what satisfying a discounted sum constraint implies about
safety guarantees with respect to the original constraints. We begin our investigation of DSCs by
taking a closer look at a state visitation probability density known as the occupation measure.

3. Occupation measure

Definition 2 (Occupation measure Paternain et al. (2019)) The occupation measure µγ ∈ ∆X
induced by a joint policy π is defined for any x ∈ X as µγ(x) = Γ∞

t=0 pt(x).

Below, we provide some interpretations for the occupation measure itself before using it to
ascribe meaning to discounted sum constraints. The natural first question to ask is whether µγ is
itself a pdf. It is of course nonnegative, and the following proposition shows it integrates to unity
under mild conditions.

4
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INTERPRETING CONSTRAINED MARL

Proposition 3 Under Assumption 1,
∫
X µγ(x)dx = 1.

The proof for Proposition 3 is in Appendix A. What does µγ tell us about the behavior of a
system under a given policy? It describes the probability of visiting a certain state but with more
weight placed on states that are likely to be visited earlier in time. In fact, µγ describes the near-term
behavior in the following sense.

Proposition 4 Under Assumption 1, for any x ∈ X the following statements hold.

1. limγ→0+ µγ(x) = p0(x).

2. limγ→1− µγ(x) = limt→∞ pt if the latter limit exists.

The proof for Proposition 4 is in Appendix A. Figure 2 provides an illustration of the result in
Proposition 4 when when pt evolves as a normal distribution with mean αt and constant variance,
for some α ∈ (0, 1). The point at which µγ more closely resembles p∞ than p0 is exactly at γ = α.

0.25 0.00 0.25 0.50 0.75 1.00 1.25

x

0

2

4

6

8

10

12

p(
x)

p0
pt

, <

, =
, >

p

Figure 2: Example of the occupation
measure for various levels of γ.

According to Proposition 4 the occupation measure
describes a state distribution that lies between the initial
and long-term behavior of the system. Next, we qualify
this statement using a concept known as the effective hori-
zon. The effective horizon of a discounted planning prob-
lem is often set to T1(γ) = 1

1−γ , which is the expected
termination time if the probability of an episode terminat-
ing at any given time step is (1−γ) Paternain et al. (2022).
However, the concept of a random stopping time may not
be sensible in all applications. Another way to define the
effective horizon is to study the geometric distribution of
weights. In this case, the effective horizon can be mea-
sured as T2(γ, ε) = min{K ∈ N : Γ

K−1
t=0 [1] ≥ 1 − ε}

where ε ∈ (0, 1) is a tolerance. Using either of the two
definitions above, the occupation measure can be said to describe the behavior of the system up to
the effective horizon.

Depending on the application, either T1 or T2 can provide a more sensible connection between
discounted and finite-horizon problems. But are these two definitions related? The next proposition
answers this affirmatively, by showing that T1 is actually a special case of T2.

Proposition 5 T1(γ) = T2(γ, ε) when ε is set to γ
1

1−γ ≈ 1
e .

The proof for Proposition 5 is in Appendix A. Proposition 5 is illustrated in Figure 3, where the
effective horizon is plotted as a function of γ for three different values of ε. With an understand-
ing of the occupation measure, we can begin to derive meaningful risk-related interpretations of
DSCs. These interpretations lead directly to sensible recommendations for the design of C-MARL
algorithms.

4. Discounted risk metrics

5

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications.This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications.



INTERPRETING CONSTRAINED MARL

0.0 0.2 0.4 0.6 0.8 1.0

Discount factor 

10
0

10
1

10
2

H
or

iz
on

 le
ng

th T1( )
T2( , = 0.05)
T2( , = 1

e )

Figure 3: Effective horizon length as a
function of γ.

The discounted sum constraint can naturally be reinter-
preted as a certain type of average constraint. In partic-
ular, Assumption 1 implies that Eτ∼M[Γ∞

t=0C(xt)] =
Ex∼µγ [C(x)] Paternain et al. (2019). These near-term av-
erages do not relate to any well-known risk metrics, and
hence, do not provide practical safety guarantees. In gen-
eral, information about the mean of a distribution cannot
be used to infer information about its tails. Controlling
the expected value of C(x) leaves open the possibility
of an infinite number of constraint violations of arbitrary
severity. However, a simple change to the penalty func-
tion can yield information about the probability of incur-
ring a constraint violation.

Proposition 6 (Near-term probability of constraint violations)
Suppose that Eτ∼M[Γ∞

t=0 I[C
j(xt) ≥ δj ]] ≤ βj for some βj ∈ [0, 1] and δj ∈ R. Then under

Assumption 1, Pr{Cj(x) ≥ δj | x ∼ µγ} ≤ βj .

Proof Eτ∼M[Γ∞
t=0 I[C

j(xt) ≥ δj ]] = Ex∼µγ [I[C
j(x) ≥ δj ]] = Pr{Cj(x) ≥ δj | x ∼ µγ}. The

first equality stems from Assumption 1 Paternain et al. (2019) and using DCT to exchange the order
of the integral E and sum Γ, while the second follows from the definition of expectation.

Proposition 6 makes it easy to enforce chance constraints using primal-dual methods. When
the penalty term Cj(x) is replaced by the quantity I[Cj(x) ≥ δj ] − βj , the primal-dual algorithm
enforces Eτ∼M[Γ∞

t=0 I[C
j(xt) ≥ δj ]]−βj ≤ 0. By Proposition 6, this guarantees that Pr{Cj(x) ≥

δj | x ∼ µγ} ≤ βj . Since the probability of constraint violations is defined with x varying over µγ ,
we call the resulting guarantee a near-term or discounted chance constraint. This can be repeated
for each j ∈ {1, . . . ,m}, providing a set of bounds on the probability of violating each constraint
by more than its tolerance δj . On the other hand, we can control the probability of violating any
constraint as follows. Define the statement C(x) ≥ δ to be true if Cj(x) ≥ δj ∀ j ∈ {1, . . . ,m},
and false otherwise. Then, applying Proposition 6 to the test condition C(x) ≥ δ will result in a
bound on Pr{C(x) ≥ δ | x ∼ µγ}.

While chance constraints enable one to control the probability of extreme events in the near
future, conditional value-at-risk (CVaR) constraints Rockafellar and Uryasev (2000) afford control
over the severity of such events.

Definition 7 (Rockafellar and Uryasev (2000)) Given a risk level β ∈ (0, 1), a cost h : X → R,
and a probability density µ on X , the value at risk (VaR) and conditional value-at-risk (CVaR) are
defined as

VaR(β, h, µ) = min{α ∈ R : Pr{h(x) ≤ α | x ∼ µ} ≥ β},

CVaR(β, h, µ) =
1

1− β

∫
h(x)≥VaR(β,h,µ)

h(x)µ(x)dx.

In other words, VaR(β, h, µ) is the least upper bound on h that can be satisfied with probability
β. On the other hand, the conditional value-at-risk (CVaR) describes the expected value in the

6
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INTERPRETING CONSTRAINED MARL

VaR-tail of the distribution of h, thus characterizing the expected severity of extreme events. Such
“extreme events” can be defined precisely as the (1−β) fraction of events x with the worst outcomes
as ranked by the cost incurred, h(x). The VaR and CVaR for h(x) = x, x ∼ N (0, 1) are illustrated
in Figure 4, where the shaded region has an area of (1 − β). For the rest of the paper, we assume
that the cdf of h(x) is continuous when x ∼ µ. For cases in which this assumption does not hold,
we refer the reader to Rockafellar and Uryasev (2002).

Proposition 8 (Near-term CVaR) For any αj ≥ 0, suppose that Eτ∼M[Γ∞
t=0[[C

j(xt)−αj ]+]] ≤
ηj . Then CVaR(β,Cj , µγ) ≤ αj + (1− β)−1ηj .

Proof Under Assumption 1, the identity Eτ∼M[Γ∞
t=0[C

j(xt)−αj ]+] = Ex∼µγ [C
j(x)−αj ]+ holds

Paternain et al. (2019). Next, we use the fact that the CVaR is the minimum value of the convex
function in αj given by F (αj | β,Cj , µγ) := αj +

1
1−βEx∼µγ [[C

j(x) − αj ]+] Rockafellar and
Uryasev (2000), thus F provides an upper bound on CVaR. Some rearranging leads to the result.

3 2 1 0 1 2 3

x

0.0

0.1

0.2

0.3

0.4

p(
x)

VaR
CVaR

Figure 4: Example of VaR and CVaR at
risk level β = 0.9.

Similar to the chance constrained case, Proposition 8
makes it easy to enforce CVaR constraints in the primal-
dual algorithm. Here, the penalty term used is [Cj(x) −
αj ]+ − ηj . Using this penalty, the primal-dual algorithm
enforces Eτ∼M[Γ∞

t=0[[C
j(xt) − αj ]+]] − ηj ≤ 0 which

by Proposition 8 implies CVaR(β,Cj , µγ) ≤ αj + (1 −
β)−1ηj . By repeating for each j ∈ {1, . . . ,m}, we can
bound the expected severity of constraint violations for
each of the m constraints. Since the CVaR constraint is
defined with x varying over µγ , the resulting guarantee is
called a near-term or discounted CVaR constraint.

In order to obtain a tight bound on the CVaR, αj must
be set to VaR(β,Cj , µγ) which minimizes the function
F introduced in the proof of Proposition 8 Rockafellar
and Uryasev (2000). Unfortunately, the VaR is not known
ahead of time. Chow et al. (2018) includes αj as an optimization variable in the learning procedure,
but extending their technique to the multiagent setting is not straightforward. Our approach is to
include it as a tunable hyperparameter. Simulation results in Section 6 show that it is easy to choose
αj to give a nearly tight bound.

5. Primal-dual value functions

In this section, we investigate challenges with value estimation in the primal-dual regime. The fact
that the reward to each agent is constantly changing (due to dual variable updates) makes it difficult
to estimate state values accurately. In order to quantify this decrease in accuracy, we introduce the
value functions induced by the joint policy π, {V i

π : X×R → R}i∈N , {V i
R,π : X → R}i∈N , VC,π :

X → Rm where

V i
π(x, λ) = Eτ∼M[

∞

Γ
t=0

rit − λT ct | x0 = x], (3)

V i
R,π(x) = Eτ∼M[

∞

Γ
t=0

rit | x0 = x], VC,π(x) = Eτ∼M[
∞

Γ
t=0

λT ct | x0 = x]. (4)

7
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Note that ct could be modified as indicated in Section 4 and the results below would hold for the
modified penalty function.

Obviously, it is impossible to learn an accurate value function when λ is unknown and chang-
ing. However, simply making λ available to a value function approximator does not guarantee
good generalization beyond previously seen values of λ. Having a good estimate of the deriva-
tive of the value function with respect to λ will ensure accuracy under small perturbations to the
dual variables. Fortunately, this derivative is easy to obtain. Under Assumption 1 we can write
V i
π(x, λ) = V i

R,π(x) − λTVC,π(x) Tessler et al. (2019). By learning V i
R,π and VC,π as separate

functions and then combining them using the true value of λ, we can construct a value estimate
whose derivative with respect to the dual variables is as accurate as VC,π itself. This estimate will
be more robust to small changes in λ. We will refer to this type of value estimate as a structured
value function or a structured critic.

Proposition 9 Let c̄ = Ex∼µγ [C(x)] and Σ2
C = Ex∼µγ [(c̄ − C(x))(c̄ − C(x))T ]. Suppose λ is

randomly varying with mean λ̄ and variance Σ2
λ. Using a structured value function approximator

can reduce the mean square temporal difference error by up to Tr[Σ2
λ · (Σ2

C + c̄c̄T )].
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Figure 5: TD error training trajectories
in a simple policy evaluation task.

The proof of Proposition 9 is in Appendix A. Fig-
ure 5 illustrates Proposition 9 in a simple value estima-
tion task with quadratic rewards, linear dynamics and
policies, linear state constraints, and randomly varying
λ. The generic critic (GC) is a value function mod-
eled as a quadratic function of the state only. The input-
augmented critic (IAC) is a value function modeled as
an unknown quadratic function of the state and dual vari-
ables, while the structured critic (SC) is modeled using
V̂ i
π = V̂ i

R,π−λT V̂C,π with quadratic V̂ i
R,π and linear V̂C,π.

The dashed line in Figure 5 is at the value Tr[Σ2
λ ·

(Σ2
C + c̄c̄T )] predicted in Proposition 9. In this sim-

ple value estimation task, high accuracy can be achieved
when conditioning on the randomly varying λ. However,
having an accurate estimate of ∇λV

i
π by using a struc-

tured critic is also shown to help. Although the assumptions of Proposition 9 do not hold in general,
the results in Section 6 show that using the structured value function still yields improved results.

The loss function for value function approximation is therefore given by

TDE(x, x′) = [Ri(xi) + γV i
R,π((x

i)′)− V i
R,π(x

i)]2 +

m∑
j=1

[Cj(x) + γVC,π(x
′)− VC,π(x)]

2 (5)

where x ∈ X and x′ ∼ fπ(x). Equation (5) is simply a sum of squared temporal difference errors
over the set of m+ 1 value functions.

6. Simulations

In our simulations, we sought to demonstrate the effectiveness of the changes proposed in Sections 4
and 5. We tested our findings in a modified Multiagent Particle Environment Lowe et al. (2017) with
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two agents pursuing individual objectives subject to a constraint on the joint state. The objective of
each agent i is to steer its state xi ∈ R2 towards a target xi∗ ∈ R2, while making sure that the agent
ensemble satisfies the safety constraint. The reward and constraint functions are given by

R1(x1) = −∥x1 − x1∗∥, R2(x2) = −2∥x2 − x2∗∥, C(x) =

2∑
i=1

1Txi. (6)

The agents occupy a state space given by X = {x ∈ R4 | ∥x1∥∞ ≤ 1, ∥x2∥∞ ≤ 1}. The target
x∗ =

[
x1∗T x2∗T

]T is stationed outside of the safe region S = {x ∈ X | C(x) ≤ 0}. Thus, the
agents cannot both reach their goals while satisfying C(x) ≤ 0. To train the agents to interact in
this environment, we used a modified version of the EPyMARL codebase Papoudakis et al. (2020).
All code for the algorithms is available at github.com/dtabas/epymarl, and the code for
the environments is at github.com/dtabas/multiagent-particle-envs. We tested
several MARL algorithms including MADDPG Lowe et al. (2017), COMA Foerster et al. (2018),
and MAA2C Papoudakis et al. (2020). We chose to focus on using the MAA2C algorithm because
it consistently produced the best results and because as a value function-based algorithm it provided
the most straightforward route to implementing the changes proposed in Section 5.
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Figure 6: Pr{C(x) ≥ 0.1 | x ∼ µγ}
measured throughout training. Key:
SC = structured critic, MP = modified
penalty (Prop. 6). Both modifications
speed convergence to a safe policy.

For each risk metric described in Section 4, we tested
the convergence of the agents to a safe policy with and
without modifications to the penalty and value functions.
Figure 6 shows the results when we make the substitu-
tion C(x) → I[C(x) ≥ δ] − β in the penalty function
in order to enforce a chance constraint, Pr{C(x) ≥ δ |
x ∼ µγ} ≤ β with δ and β each set to 0.1. The modified
penalty function serves as a superior chance constraint-
enforcing signal. The structured critic architecture further
improves the time it takes to converge to a policy satisfy-
ing the chance constraint.

Figure 7 shows the results when we make the substi-
tution C(x) → [C(x)−α]+−η in the penalty function in
order to enforce the chance constraint CVaR(β,C, µγ) ≤
α + (1 − β)−1η. Using the modified penalty drives the
CVaR upper bound (drawn in dashed lines) directly to the
target, and due to choice of α, this bound is nearly tight.
On the other hand, using the original penalty results in
an overly conservative policy that achieves low risk at the
expense of rewards (right panel).

We chose α using the following heuristic, in order
to make the bound on CVaR nearly tight. The “correct”
value of α that would achieve a tight bound is VaR(β,C, µγ). Moreover, the upper bound that we
used is convex and continuously differentiable in α Rockafellar and Uryasev (2000). Therefore,
small errors in α will lead to small errors in the upper bound on CVaR, and any approximation of
VaR will suffice. We obtained an approximation simply by running the simulation once with α set
to zero and computing VaR(β,C, µγ) over some test trajectories. If necessary, the process could be
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Figure 7: CVaR(β = 0.9, C, µγ) measured throughout training. Key: SC = structured critic, MP
= modified penalty (Prop. 8). The dashed lines represent the CVaR upper bound used
in Prop. 8. The unmodified penalty function enforces safety at the expense of rewards,
whereas the modified penalty function affords precise control over the tail of the distribu-
tion of C(x). The panel on the right shows progress towards the original objective through
the total original returns,

∑2
i=1Γ

T
t=0 r

i
t, without any penalty terms.

repeated additional times. Alternatively, α could be tuned adaptively by computing VaR online, but
the stability of this procedure needs further investigation.

7. Conclusion

In this paper, we studied the effect of primal-dual algorithms on the structure of constrained multia-
gent reinforcement learning problems. First, we used the occupation measure to study the effect of
the penalty term on safety. We showed that the constraint evaluation itself enforces safety only in
expectation. However, by making simple modifications to the penalty term we were able to enforce
meaningful probabilistic safety guarantees, namely chance constraints and CVaR constraints. These
risk metrics are defined over the occupation measure, leading to notions of safety in the near term.
We used the concept of effective horizon to make the concept of “near term” concrete. Next, we
studied the effect of the penalty term on the value function. We showed that when the dual vari-
able and constraint evaluation signals are available, it is easy to model the relationship between the
penalty term and the value function. By exploiting this structure, the accuracy of the value func-
tion can be improved. We demonstrated the usefulness of both of these insights in a constrained
multiagent particle environment, showing that convergence to a low-risk policy is accelerated.

After studying the effect of primal-dual methods on the constraints and value functions, the next
step is to study their effect on game outcomes. In general, some agents may pay a higher price than
others for modifying their policies to satisfy the system-wide constraints. This phenomenon, and
possible remediation, will be the focus of future work.
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Multi-Agent Deep Reinforcement Learning Algorithms in Cooperative Tasks. In 35th Conference
on Neural Information Processing Systems, 2020. URL http://arxiv.org/abs/2006.
07869.

P. Parnika, Raghuram Bharadwaj Diddigi, Sai Koti Reddy Danda, and Shalabh Bhatnagar. Atten-
tion actor-critic algorithm for multi-agent constrained co-operative reinforcement learning. Pro-
ceedings of the International Joint Conference on Autonomous Agents and Multiagent Systems,
AAMAS, 3(Aamas 2021):1604–1606, 2021. ISSN 15582914.

Santiago Paternain, Luiz F.O. Chamon, Miguel Calvo-Fullana, and Alejandro Ribeiro. Constrained
reinforcement learning has zero duality gap. In Advances in Neural Information Processing
Systems, volume 32, 2019.

Santiago Paternain, Miguel Calvo-Fullana, Luiz F.O. Chamon, and Alejandro Ribeiro. Safe Policies
for Reinforcement Learning via Primal-Dual Methods. IEEE Transactions on Automatic Control,
9286(c):1–16, 2022. ISSN 15582523. doi: 10.1109/TAC.2022.3152724.

R. Tyrrell Rockafellar and Stanislav Uryasev. Optimization of Conditional Value-at-Risk. Journal
of Risk, 2:21–42, 2000. doi: 10.2307/1165345.

R. Tyrrell Rockafellar and Stanislav Uryasev. Conditional value-at-risk for general loss distri-
butions. Journal of Banking and Finance, 26(7):1443–1471, 2002. ISSN 03784266. doi:
10.1016/S0378-4266(02)00271-6.

Daniel Tabas and Baosen Zhang. Computationally Efficient Safe Reinforcement Learning for Power
Systems. In Proceedings of the American Control Conference, pages 3303–3310. American Auto-
matic Control Council, 2022. ISBN 9781665451963. doi: 10.23919/ACC53348.2022.9867652.

12

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications.

http://dx.doi.org/10.1016/j.rser.2016.11.132
http://arxiv.org/abs/2006.07869
http://arxiv.org/abs/2006.07869


INTERPRETING CONSTRAINED MARL

Chen Tessler, Daniel J. Mankowitz, and Shie Mannor. Reward constrained policy optimization. In
7th International Conference on Learning Representations, ICLR 2019, 5 2019. URL http:
//arxiv.org/abs/1805.11074.

Wei Zhou, Dong Chen, Jun Yan, Zhaojian Li, Huilin Yin, and Wanchen Ge. Multi-agent reinforce-
ment learning for cooperative lane changing of connected and autonomous vehicles in mixed
traffic. Autonomous Intelligent Systems, 2(1), 2022. doi: 10.1007/s43684-022-00023-5. URL
http://dx.doi.org/10.1007/s43684-022-00023-5.

13

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications.

http://arxiv.org/abs/1805.11074
http://arxiv.org/abs/1805.11074
http://dx.doi.org/10.1007/s43684-022-00023-5


INTERPRETING CONSTRAINED MARL

Appendix A. Theoretical results

A.1. Proof of Proposition 3

Applying the definition of µγ , we have
∫
X µγ(x)dx =

∫
X Γ∞

t=0 pt(x)dx. Using the Dominated
Convergence Theorem, we can exchange the order of the sum and integral. Each individual pt
integrates to 1. The geometric sum property ensures that the resulting expression evaluates to 1.

A.2. Proof of Proposition 4

1. By definition, we have limγ→0+ µγ(x) = limγ→0+ Γ∞
t=0 pt(x). Using Tannery’s theorem, we

can exchange the order of the limit and the infinite sum. The zeroth term in the sum evaluates
to p0(x) and all other terms evaluate to 0.

2. Assume limt→∞ pt exists, and denote it p∞. Using the triangle inequality, we have

|µγ(x)− p∞(x)| ≤
∞

Γ
t=0

|pθt (x)− pθ∞(x)| (7)

=
N

Γ
t=0

|pθt (x)− pθ∞(x)|+
∞

Γ
t=N+1

|pθt (x)− pθ∞(x)| (8)

for some N ∈ N. Since pt(x) → p∞(x), we can choose N large enough to make the second
term in (8) arbitrarily small. Then, using boundedness of pt for all t, we can take γ → 1− to
make the first term arbitrarily small.

A.3. Proof of Proposition 5

By the geometric sum property, we have Twd(γ, ε) = min{K ∈ N : Γ
K−1
t=0 [1] ≥ 1 − ε} =

min{K ∈ N : 1 − γK ≥ 1 − ε} = min{K ∈ N : K ≥ log ε
log γ } =

⌈ log ε
log γ

⌉
. The termination time

follows a geometric distribution with parameter (1 − γ), and thus has expected value 1
1−γ . Setting

Twd(γ, ε) = Ttt(γ) and solving for ε (ignoring the integer constraint) yields ε = γ
1

1−γ . Finally,
taking limγ→1 γ

1
1−γ yields 1

e .

A.4. Proof of Proposition 9

Let x ∼ µγ , x′ ∼ fπ(x), c̄ = E[C(x)], and Σ2
C = E[(c̄ − C(x))(c̄ − C(x))T ]. Suppose λ

is randomly distributed with mean λ̄ and variance Σ2
λ. For any value function approximator V̂ i

π ,
assume λ and V̂ i

π are independent. Let η =
[
1 λT

]T , d =
[
Ri(x) C(x)T

]T , V̂ i
π : X →

R, V̂ i
R,π : X → R, and V̂C,π : X → Rm. Let D be a dataset of trajectories sampled from M that

is used to train V̂ i
π , V̂

i
R,π, and V̂C,π. The mean square temporal difference error achieved by using a

generic value function is

MSTDE1 = Ex,x′,λ,D[(η
Td+ γV̂ i

π(x
′)− V̂ i

π(x))
2] (9)

while the error achieved using the structured value function is

MSTDE2 = Ex,x′,D[(η
Td+ γ[V̂ i

R,π(x
′)− λT V̂C,π(x

′)]− [V̂ i
R,π(x)− λT V̂C,π(x)])

2]. (10)
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Note that in (10) we do not take the expectation over λ since the dual variables are available to this
function approximator.

Begin with the states and dual variables fixed at (x̄, x̄′, λ̄). Let ĝ(x̄, x̄′) =
[
V̂ i
R,π(x̄) V̂C,π(x̄)

T
]T

−

γ
[
V̂ i
R,π(x̄

′) V̂C,π(x̄
′)T

]T
and ĥ(x̄, x̄′) = V̂ i

π(x̄) − γV̂ i
π(x̄

′). Then, suppressing the arguments

(x̄, x̄′) and setting η̄ =
[
1 λ̄T

]T , we can write the squared temporal difference error at (x̄, x̄′, λ̄)
as

STDE1(η̄) = ED[(η̄
Td− ĥ)2], (11)

STDE2(η̄) = ED[(η̄
Td− η̄T ĝ)2]. (12)

The loss function used to train V̂ i
R,π and V̂C,π is

ED[∥d− ĝ∥2]. (13)

Since d is a deterministic function of x, (13) can be decomposed into bias and variance terms:

ED[∥d− ĝ∥2] = ED[

m∑
k=0

(dk − ĝk)
2] (14)

=

m∑
k=0

ED[(dk − ĝk)
2] (15)

=

m∑
k=0

[(dk − EDĝk)
2 + ED[(ĝ − EDĝ)

2]] (16)

:=
m∑
k=0

[b2k + σ2
k] (17)

:= Tr[bbT +Σ2] (18)

where k = 0 corresponds to the reward signal and k = 1, . . . ,m corresponds to the cost signals.
Following a similar line of reasoning, we can use (18) to rewrite (12) as

STDE2(η̄) = Tr[(bbT +Σ2)(η̄η̄T )]. (19)

For the sake of argument, we assume that ĝ and ĥ achieve the same performance at (x, x′, λ),
that is,

STDE1(η̄) = STDE2(η̄) = Tr[(bbT +Σ2)(η̄η̄T )] (20)

where Tr[(bbT )(η̄η̄T )] and Tr[Σ2η̄η̄T ] reflect the bias squared and variance terms, respectively. How
do STDE1 and STDE2 change when λ is allowed to vary? Using the generic estimator, the noise
in λ will introduce some amount of irreducible error into STDE1. On the other hand, using
λ = λ̄ + ∆λ in our proposed estimator will change the bias and variance terms in STDE2 while
the irreducible error remains at zero (since there is no uncertainty when ∆λ is known). Setting
∆η =

[
0 ∆λT

]T
, the temporal difference errors at (x̄, x̄′, λ̄+∆λ) are

STDE1(η̄ +∆η) = Tr[(bbT +Σ2)(η̄η̄T )] + (∆ηTd)2, (21)

STDE2(η̄ +∆η) = Tr[(bbT +Σ2)((η̄ +∆η)(η̄ +∆η)T )]. (22)
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Taking the expectation over ∆λ which has a mean of zero and a variance of Σ2
λ, and setting

Σ2
η =

[
0 0
0 Σ2

λ

]
, yields

E∆λ[STDE1(η̄ +∆η)− STDE2(η̄ +∆η)] = Tr[Σ2
η(dd

T − bbT − Σ2)] (23)

= Tr[Σ2
λ(cc

T − b̃b̃T − Σ̃2)] (24)

where b̃ = (c − EDĝC), Σ̃2 = ED[(ĝC − EDĝC)
2], and ĝC = V̂C,π(x) − γV̂C,π(x

′). Note that
ED[∥c − ĝC∥2] = Tr[b̃b̃T + Σ̃2]. Taking b̃, Σ̃2 → 0 as the accuracy of ĝC improves, (24) can be
estimated as

Tr[Σ2
λcc

T ]. (25)

Taking the expectation over c ∼ C(x), x ∼ µγ yields the final result.

Appendix B. Simulation details
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