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ABSTRACT: The discovery of new materials in unexplored
chemical spaces necessitates quick and accurate prediction of
thermodynamic stability, often assessed using density functional
theory (DFT), and efficient search strategies. Here, we develop a
new approach to finding stable inorganic functional materials. We
start by defining an upper bound to the fully relaxed energy
obtained via DFT as the energy resulting from a constrained
optimization over only cell volume. Because the fractional atomic
coordinates for these calculations are known a priori, this upper
bound energy can be quickly and accurately predicted with a scale-
invariant graph neural network (GNN). We generate new structures via ionic substitution of known prototypes, and train our GNN
on a new database of 128 000 DFT calculations comprising both fully relaxed and volume-only relaxed structures. By minimizing the
predicted upper-bound energy, we discover new stable structures with over 99% accuracy (versus DFT). We demonstrate the
method by finding promising new candidates for solid-state battery (SSB) electrolytes that not only possess the required stability,
but also additional functional properties such as large electrochemical stability windows and high conduction ion fraction. We expect
this proposed framework to be directly applicable to a wide range of design challenges in materials science.
KEYWORDS: materials discovery, structure prediction, graph neural networks, solid state batteries, reinforcement learning

1. INTRODUCTION
Overcoming critical barriers in materials science will require
the discovery of yet unknown structures with precisely tailored
properties. Computational searches driven by quantum
chemistry calculations have accelerated materials exploration
over large compositional and structural spaces, but are still
limited to few tens of thousands of materials.1−4 Often, such
searches are restricted to structures previously documented in
crystallographic databases such as the Inorganic Crystal
Structure Database (ICSD)5 and Cambridge Structural
Database (CSD),6 which predominantly comprise experimen-
tally synthesized inorganic materials. Their use in discovery
campaigns for novel materials is therefore limited. Solid-state
batteries (SSBs) are one such application, where the use of
solid electrolytes makes SSBs safer and more energy dense
than traditional Li-ion technology. SSBs require materials that
meet several performance metrics,7 and remain limited by the
thermodynamic instability of electrode−electrolyte interfa-
ces.8,9 For instance, well-known solid electrolytes such as
Li10GeP2S12, Li6PS5Cl (argyrodite), and Li7La3Zr2O12 decom-
pose at the interface with Li-metal anode forming solid-
electrolyte interphases that are difficult to control and cause
performance degradation.10,11 Therefore, further improve-
ments to SSB design require searching for new materials that
are stable at suitable reduction and oxidation potentials.

A central problem in using machine learning (ML) methods
to accelerate the search for novel crystal structures is finding
structures that are thermodynamically stable, i.e., stable against
decomposition into competing phases. Compositional models
are not sufficiently accurate to reliably predict thermodynamic
stability.12,13 Graph neural network (GNN) models have
achieved impressive results in predicting formation energy and
decomposition energy with mean absolute error (MAE) close
to chemical accuracy (0.03−0.05 eV/atom).14−17 However,
GNN models require the crystal structure as inputs, which are
available only after performing expensive density functional
theory (DFT) relaxations. A considerably harder problem is
predicting a priori whether a hypothetical crystal structure
input will be stable before performing DFT relaxation. Recent
studies have made some progress in this direction through the
use of scale-invariant approaches, where the volume of input
structures is normalized to make GNN models less sensitive to
volume changes that often occur during relaxation.18,19 It has
been previously shown that including high-energy structures as
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training data is critical to developing models intended to rank
the stability of potential crystal structures for a given
composition.13 Analogously, training GNN models only on
fully relaxed structures and their DFT total energies may bias
the models to under-predict the energies of high-energy
structures in unfavorable arrangements.

In this work, we develop a generalized approach for finding
new inorganic crystal structures that are likely to be stable. We
first demonstrate that the success of scale-invariant approaches
in predicting the DFT-relaxed total energy of a crystal structure
depends heavily on the degree to which the structure relaxes
away from the initial unrelaxed structure. In a wide search over
structures created by ionic substitution,21 DFT often alters the
initial structures drastically during relaxation to a local energy
minimum. Predictive models for energy trained with these
unrelaxed structures as inputs are therefore inaccurate and
unsuitable for screening potentially stable decorations.

We present an alternate approach to finding new stable
structures over a large decoration space that is compositionally
and structurally diverse. First, we construct a database of
constrained DFT relaxations over only the unit cell volume,
which by design yields an upper bound to the total energy of
the unconstrained (full) relaxation. This upper-bound energy
can be predicted to a high accuracy by scale-invariant ML
models (MAE ∼ 0.05 eV/atom), since fractional coordinates
in the unit cell are known precisely. By subsequently searching
for decorations that minimize this predicted upper-bound
energy, we find novel crystal structures that are highly likely to
be stable. Out of 14.3 million decorated structures, this
approach predicted a stable structure for 2003 compositions.
Validating these top candidates with DFT confirmed >99% of
them to be thermodynamically stable, i.e., having negative
decomposition energy. We find many of these stable
candidates also have suitable functional properties for SSBs,
with structural similarities to previously explored solid
electrolytes, electrodes, and coatings.

Expanding our search to an even larger number of
compositions and prototypes will exponentially increase the
search space, making it computationally intractable to
exhaustively assess the stability of every structure. To address
this future need, we demonstrate a reinforcement learning
(RL)-augmented search strategy that finds stable structures

using our surrogate stability function at a fraction of the
computational cost. Overall, this study shows that ML
strategies are able to drastically reduce the computational
cost and time to find promising inorganic functional materials.

2. RESULTS AND DISCUSSION

2.1. Challenges in Predicting Thermodynamic Stability

To be useful in screening candidate structures for stability, a
machine learning (ML) surrogate model must be able to
predict the total energy of a relaxed structure using only
information available before the relaxation is performed. To
provide our surrogate model with relevant training examples,
we first constructed a database of example hypothetical
structures through ionic substitution with compositions
suitable for SSBs. We selected 67 489 candidate structures
for full DFT relaxation by decorating prototype ICSD
structures with new compositions (Section 4.3.2). We refer
to this as the fully relaxed data set. The corresponding total
energies in this data set are denoted by Etot.

We first trained a scale-invariant GNN model (Section 4.1)
on the ICSD and fully relaxed data sets, where we paired the
unrelaxed structures with their corresponding total energy after
relaxation. We withheld ∼5% of structures in each data set for
the validation and test sets. While the model performed well on
ICSD structures (gray points in Figure 1c, MAE = 0.05 eV/
atom), we found that the error was much larger on the fully
relaxed data set (orange points in Figure 1c, MAE = 0.13 eV/
atom). The higher MAE for the fully relaxed data set is likely
due to many of the input structures starting in highly
unfavorable configurations, such that DFT relaxation signifi-
cantly alters their volume, cell shape geometry, and fractional
atomic coordinates in finding a local energy minimum.

To quantify the structural change during DFT relaxation, we
computed the cosine distance between the unrelaxed and
relaxed structure pairs using Matminer fingerprints (see
Section 4.4).22 Here, a cosine distance of zero indicates high
structural similarity, ignoring any volume changes. With our
wide range of prototypes and decorations, we found that over
86% of pairs had a cosine distance above 0.1, meaning the vast
majority of structures change quite dramatically after relaxation
(Figure 1b). This is in stark contrast to the distribution of

Figure 1. Initial surrogate model development. (a) Cosine distances between initial and DFT-relaxed structures in the Open Quantum Materials
Database (OQMD).18,20 (b) Cosine distances between initial and DFT-relaxed structures for the 53 000 hypothetical decorated structures used in
this study (Figure 2). (c) Predicted vs DFT total energy of a GNN trained on ICSD and unrelaxed hypothetical structures and evaluated on the
energy of the DFT-relaxed structures. The prediction accuracy for ICSD structures (gray) is high, but low for unrelaxed hypothetical structures
(orange).
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distances for structures in the Open Quantum Materials
Database (OQMD)20 (Figure 1a), where similar GNN models
are able to achieve high accuracy for unrelaxed structures, i.e.,
MAE < 0.05 eV/atom.18 This result implies that while scale-
invariant methods are robust to changes in the cell volume
during DFT relaxation, they cannot account for large changes
in fractional coordinates and cell shape geometry when DFT
relaxes a structure far away from a high-energy starting
configuration.
2.2. Volume-Only Structure Relaxations

Rather than attempt to directly predict the energy resulting
from a full DFT relaxation, we developed an alternate
approach. We noticed in our fully relaxed data set that when
a prototype decoration was favorable for a new composition,
the structure tends to relax with minimal changes in its
fractional coordinates. A surrogate model with the goal of
differentiating between favorable and unfavorable decorations
would need examples of each to perform well. We therefore
constructed a second database of DFT relaxed structures
where we fix the unit cell geometry and fractional atomic
coordinates and only relax their volumes. By design, the cosine
distances between the unrelaxed and volume relaxed pairs are
zero.

The success of scale-invariant GNNs in previous applica-
tions suggests that the optimal volume and energy for a given
structure can be predicted by its fractional coordinates and cell
shape geometry.18,19 By constraining these features during a
volume-only relaxation, we are able to augment our training set
with high-energy examples, and provide a better foundation to
distinguish favorable from unfavorable structure decorations.
The volume relaxation also provides us with an accurate upper
bound to the total energy calculated by the unconstrained
relaxation, since the energy must stay the same or decrease
when DFT is allowed to fully relax the structure. Note that this
upper bound is not a theoretical limit to the total energy of the
structure, but serves as a useful reference point. While
searching for stable structures in a large decoration space, if
a volume relaxed structure is not predicted to be stable w.r.t.
competing phases, the fully relaxed structure may or may not
be stable. However, if a volume relaxed structure is stable, the
fully relaxed structure will be stable as well. Assuming at least
some of the volume relaxed structures are stable, we can
efficiently screen for them in the unrelaxed decoration space
using an accurate surrogate model (Figure 2a).

We performed a volume-only relaxation on each of the
∼68 000 unrelaxed structures used as inputs to the fully relaxed
data set. We pruned ∼9000 that did not pass quality control

Figure 2. Overview of approach and data set generation. (a) Starting from an unrelaxed structure, we predict an upper bound for the total energy
i.e., energy after a constrained relaxation. We then evaluate the thermodynamic stability relative to competing phases and prioritize structures
predicted to be stable, meaning the upper bound of the decomposition energy is <0 eV/atom. If the decomposition energy upper bound is >0 eV/
atom, the structure could still be stable after full relaxation. (b) Our element library consists of conducting ions (C), framework cations (F), and
anions (A). We build valence-balanced compositions of the general form C F Ax y zi j

, where x, yi, and zj are the stoichiometries corresponding to C, F,
and A, respectively. Here, i and j are 1−2; i.e., we consider up to 2 framework cations and 2 anions. For a given composition, we decorate the
elements in prototype structures (from a prototype library) via ionic substitution. These structures are then relaxed with DFT in two ways: (i) full
relaxation and (ii) volume-only relaxation, where the cell shape and atom positions are held constant.
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filters (Section 4.3.4) and refer to these ∼58 700 structures as
the volume relaxed data set (Figure 2b). Figure 3a shows the
differences in total energy between the two data sets, which
confirms that the volume-only relaxations are indeed an upper
bound. These volume-only relaxations augment the original
fully relaxed data set, providing examples of high-energy
decorations that will serve to guide an ML model toward
choosing low-energy initial structures.

With the addition of the volume relaxed data set, we trained
a scale-invariant GNN on all three data sets (Figure 2b). The
model uses a scale-invariant approach, scaling the input
crystal’s volume to make the minimum edge length 1 Å
(section 4.1). In mixing the volume relaxed with the ICSD and
fully relaxed data sets, we use the relaxed geometry for the fully
relaxed structures instead of their input geometry. In this way,
the model is tasked with predicting the total energy of a
structure in its given, scale-invariant configuration, rather than
attempt to predict the energy to which an input geometry
might ultimately relax. The prediction accuracy for all
structures improved substantially (Figure 3b), as the GNN
had access to the correct fractional coordinates for all inputs.
Learning curves of the prediction error as a function of the data
set size show the model benefits from additional data up to the
full data set size (Figure 3c).
2.3. Surrogate Model Predictions

With the trained GNN surrogate model, we predicted the
upper bound energy of all 14.3 million possible decorations
(Section 4.2). Because predicting a candidate structure’s
upper-bound energy requires only a single forward pass
through our trained ML model, evaluation of all 14.3 million
took only 2 h using a single Tesla V100 GPU accelerator. We
estimated the thermodynamic phase stability of each of these
structures by computing their decomposition energy obtained
through a convex hull analysis. Here, the convex hull is
constructed by considering competing phases from the ICSD.
The total energy of ICSD structures is taken from the NREL
Materials Database,23 as explained in Section 4.3.3. The
decomposition energy (Edecomp) is a measure of the
thermodynamic stability of a structure against chemical
decomposition into competing phases.12Edecomp is the mini-
mum energy that the formation energy of an unstable material
has to be lowered (more negative) before it becomes stable.
Similarly, for a stable compound, Edecomp is the maximum
energy that the formation energy can be increased (less

negative) before it becomes unstable.12 For each composition,
we selected the structure with the lowest predicted energy.
About 1.7% of compositions (3719) had a structure with a
negative Edecomp < 0.001 eV/atom. To account for potential
errors in the model predictions, we applied a more stringent
cutoff of a negative Edecomp < −0.1 eV/atom, which resulted in
2003 compositions. Before analyzing these structures, we first
validate the predicted stable structures with DFT.
2.4. DFT Confirmation of Predicted Stable Structures

We performed both full DFT relaxation and volume-only
relaxation for the 2003 predicted stable structures. Each of
these 2003 structures has a unique composition because we
chose the lowest-energy structure for a given composition. Of
the 1707 structures where the DFT calculations successfully
converged, we find the model predicts the energy upper bound,
i.e., volume relaxed total energy, to a high accuracy (MAE =
0.045 eV/atom, Figure 4a). Nearly all predicted upper-bound
total energies are larger than the fully relaxed DFT energies
(Figure 4b), consistent with our hypothesis that the volume
relaxed energies are an upper bound. We confirm that 99%
(1700/1707) of the predicted structures are in fact stable, as
determined from a convex hull analysis (Figure 4c). The DFT
decomposition energies (calculated using fully relaxed DFT
total energy) are more negative i.e., more stable, than the
predicted values, demonstrating the success of our upper-
bound approach.
Edecomp in Figure 4c are calculated from a convex hull

construction by considering competing phases from the ICSD.
However, to be self-consistent, the newly predicted stable
structures should also be considered as competing phases.
Therefore, we supplemented the ICSD structures with the
1707 fully relaxed structures as well as the lowest predicted
energy for each of the ∼220 000 compositions in our
decoration space. Of these 1707 compositions, 31 are found
in the ICSD and therefore, are not considered further in our
analysis. We reconstructed the convex hulls with this combined
data set and calculated what we term “self-consistent (SC)
decomposition energy”. After this re-evaluation, 285 structures
had a SC Edecomp < 0 eV/atom. We provide the structures,
predicted, volume relaxed, and fully relaxed total energies, as
well as the SC decomposition energies (see Section 4.5).
2.5. Novel Stable Structures

Thermodynamic stability is a prerequisite in the search for
novel functional materials. Beyond stability, such materials

Figure 3. Effect of the volume relaxed data set on energy and surrogate model performance. (a) DFT energy differences between volume relaxed
and fully relaxed structures. (b) Predicted vs DFT total energy of the model trained and evaluated on the three data sets. (c) Learning curves of the
model’s prediction error by data set size.
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must also exhibit specific functional properties. Our motivation
for this study is to find new battery materials, which inspired
our choice of chemistries to build the training data set. We
evaluate the suitability of the 285 newly predicted
compositions/structures as solid-electrolytes in SSBs.10 For
application in metal-anode SSBs, the solid electrolyte should
have a low reduction potential, i.e., close to 0 V w.r.t. Li/Li+.
For compatibility with high-voltage cathode, the oxidation
potential should be large, ideally > 4.0 V. In addition, a large
electrochemical stability window (ESW) is desired. The
volume fraction of the structure available to the conduction
ions is a rough measure of the ionic conductivity, although
more refined descriptors have been proposed.24,25 In summary,
we sought structures with the following features: (F1) SC
decomposition energy < −0.1 eV/atom, (F2) low reduction
potential < 2.0 V w.r.t. Li/Li+, (F3) high oxidation potential >
4.0 V w.r.t. Li/Li+, (F4) large ESW > 2.0 V, and (F5) large
volume fraction available to conduction ion ≥ 30%. These
criteria (F1−F5) represent a set of choices that can be easily
adjusted for further analysis. Here, ESW is calculated as the
difference between the oxidation and reduction potentials,

which depend only on thermodynamic stability. While ESW
calculated in this manner provides a useful guide, recent
studies have highlighted the need to consider electronic band
alignment between the electrolyte and electrodes to rigorously
determine ESW.26 These band alignment calculations are
computationally intensive and beyond the scope of our study.

Figure 5b shows the number of structures that pass each
feature cutoff, as well as combinations of feature cutoffs.
Structures that pass all cutoffs would be of particular interest.
While we did not find any such structures that pass all feature
cutoffs, several structures passed 3−4 cutoffs, as shown in
Figure 5b. Some of these structures and family of structures are
labeled in Figure 5b and their DFT-relaxed crystal structures
are shown in Figure 6. As no structure simultaneously
possessed all the desired features, we examined the Pareto
surface of all five features. We identified 61 structures lying on
the Pareto frontier, which are included in the supplemental
data (see Data Availability Statement). The most interesting
Pareto front occurred between conducting ion volume and the
electronic stability window, which we have included as Figure
S1. Here, structures with a high conducting ion volume seem
to have a lower ESW and vice versa, possibly indicating a trade-
off between battery lifetime (i.e., stability) and performance
(charge transfer rates). Six structures lie on this Pareto curve,
four of which we discuss below.

A family of compounds with the general formulas CM2X7 (C
= Li, Na; M = Sc, Y; X = halogens) are identified as stable
structures that exhibit features F1 through F4, but are C-poor
compositions, which contributes to their low conducting ion
volume fraction. LiSc2F7 (Figure 6a, space group P2) and
LiY2Br7 (Figure 6b, space group Pnma) are two examples from
the CM2X7 family of compounds. These structures are derived
from the K and In rare-earth phyllochlorides,27 which feature
unique 7-fold coordinated trivalent rare-earths. In the DFT-
relaxed structures of LiSc2F7 and LiY2Br7, shown in Figure 6,
Sc and Y form edge- and corner-shared [ScF7] and [YBr7]
polyhedra.

Li2HfBr6 (Figure 6c) and Li2ZrBr6 also pass the feature F1−
F4 cutoffs. The predicted stable structures (space group R3̅)
contain isolated [HfBr6] and [ZrBr6] octahedra with
interspersed Li. LiW2Zn4N7 (Figure 6d, space group C2)
forms a tetrahedrally bonded structure consisting of edge-
connected [ZnN4] and [WN4] tetrahedra. The structure is
derived from Cu4NiSi2S7, which crystallizes in monoclinic
distorted sphalerite superlattice.28 NaLaP4N8 is yet another
structure that fulfills F1−F4 cutoffs. The initial structure of
NaLaP4N8 is created by decorating the BaSrFe4O8 trigonal
(space group P3̅1m) structure,29 with P occupying the
tetrahedrally bonded Fe sites and La on the octahedrally
coordinated Sr sites.

LiHfSc2Br11 (Figure 6f) satisfies feature cutoffs F1, F2, and
F4 and is derived from the NaZnZr2F11 structure (space group
C2m). NaZnZr2F11 is a known stable compound that has been
experimentally realized and contains octahedrally coordinated
Zn, which is uncommon. [ScBr4] octahedra are highly
distorted while [HfBr4] octahedra are less so. Li2HfN2 has a
layered structure consisting of face-sharing [HfN6] octahedra
interspersed with Li (Figure 6g). Interestingly, Li2HfN2 is
predicted to be stable at the interface with Li-metal anode
(reduction potential 0.0 V), but stable only up to an oxidation
potential of 1.2 V. It also has a high conducting ion volume
fraction (0.41). Together, these features make Li2HfN2 a
promising candidate for Li-anode coatings. In fact, Li2HfN2 is a

Figure 4. DFT confirmation of predicted stable structures. (a)
Predicted vs volume-only DFT relaxation total energy. (b) Predicted
vs full DFT relaxation total energy. (c) Predicted vs full DFT
relaxation decomposition energy. Points in blue indicate structures
that remain stable after evaluation of the self-consistent decom-
position energy (Section 2.4).
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hypothetical structure that is predicted to be stable in the
Materials Project database30 and has been previously proposed
as a candidate material for Li-anode coatings.31

KScS2 (Figure 6h) and KAlS2 pass feature cutoffs F1 and
F3−F5 and adopt the α-NaFeO2 structure (space group R3̅m).
KScS2 is thermodynamically stable with K-metal anode
(reduction potential 0.0 V) and has an oxidation potential of
2.7 V. The layered structure of KScS2 lends itself to a high K
ion volume fraction of 0.31 and possibly facile K+ ion diffusion.
The layered Na2ZrO3 (Figure 6i) and Na2HfO3 also fulfill F1
and F3−F5 and possess the Li2SnO3-type structure (space
group C2/c). Due to its layered structure, Li2SnO3 has been
studied as a promising cathode material.32 In fact, Na2ZrO3 is
predicted to be a stable structure in the Materials Project
database30 and Y-doped Na2ZrO3 has been theoretically
investigated as a Na-rich cathode material.33 We predict that
Na2ZrO3 should be stable against Na-metal anode, which is
also confirmed by a phase stability analysis of the ternary Na−
Zr−O chemical space on Materials Project.

Overall, we find that many of the 285 structures that are
predicted to be stable contain group-3 (Sc, Y, La) and group-4
(Zr, Hf) elements. Most of the structures are halides, but we
also find some oxides, chalcogenides, nitrides, and mixed-anion
chemistries among the stable structures. The dominance of
halides can be attributed to the ionic nature of the compounds
containing alkali elements (Li, Na, K) and halogens�a direct
consequence of the large electronegativity differences between
them. Valence-balanced ionic compounds tend to have high
formation enthalpies and therefore, are generally stable.
Furthermore, we observe that the cations in the predicted
structures adopt their preferred coordination with anions, e.g.,
Sc, Y, La in 6-fold coordination and 4-fold coordinated Zn in
tetrahedral geometry.
2.6. Reinforcement Learning Optimization of Structures

Although in this study we were able to predict the stability of
all 14.3 million decorated structures, other structure searches
where a brute-force computation would be intractable require a

more efficient approach. Examples include (i) cases where the
prototype and composition libraries are much larger, leading to
an explosion of potential decorated structures, (ii) a costlier
evaluation function, and (iii) allowing decorated structures to
go “off-prototype,” meaning structure parameters (e.g., cell
shape, atomic positions) are allowed to change, leading to a
potentially infinite search space. Here we demonstrate the use
of reinforcement learning (RL) to improve the search
efficiency in such applications.

RL, particularly methods based on a directed tree search
such as Monte Carlo Tree Search (MCTS), enable precise
control over the search space and function(s) to optimize.
MCTS has previously been demonstrated to solve complex
optimization problems on both organic34,35 and inorganic
materials.36 We developed an action space for the crystal
structure design problem based on the steps for generating a
decorated structure through ionic substitution (see the
Supporting Information). We then implemented an MCTS
optimization framework to find structures with desired
properties, similar to the implementation by Sowndarya et al.
for designing organic molecules.35,37 Following the approach of
AlphaZero, this MCTS framework is augmented with a policy
model that replaces the simulation phase (using a random
policy) of MCTS with a predicted value score.

As AlphaZero was originally designed for competitive games,
we used a ranked reward strategy to enable tabula rasa self-play
for the single-player combinatorial optimization problem.38 In
this strategy, the final reward of a rollout is rescaled to 0 or 1
depending on whether the reward is greater than the 90th
percentile of the last 500 results. Thus, starting from an initially
random walk over structure search space, the rollouts are
guided by the policy to higher-reward structures.

To search for optimal candidate structures, we also
implemented a weighted reward function based on the desired
features discussed in Section 2.5 (see the Supporting
Information). We employed 90 rollout workers split across 5
CPU nodes for 4 h, with a single node equipped with dual
Tesla V100 GPUs handling the continual training of the policy

Figure 5. Functional features of the predicted stable structures relevant for battery applications. (a) Histogram showing the distribution of self-
consistent decomposition energies for the 2003 structures originally predicted to be stable. (b) UpSet plot of the 285 candidate structures.
Combinations of feature cutoffs with less than five members are not visualized. Example compositions are listed for several sets.
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model. To improve the efficiency of the search, we
continuously restricted the action space to structures not yet
evaluated by any of the rollout workers. This resulted in 38 000
rollouts and ∼4.2 million structures evaluated (see Figure 7a
and b for the rollout rewards and policy training losses).

We examined the improvement in efficiency for finding top
candidate structures (i.e., predicted decomposition energy <
−0.1) relative to the number of structures explored during the
search. The largest improvement in efficiency was achieved
during the beginning of the search; 34% of top-candidates were
found after exploring 8% of decorations�a 4× increase
relative to a brute-force search (Figure 7c). The reason the RL
agent is unable to continually improve the reward and search
efficiency may be because it exhausts branches of the search
tree that are more densely populated with high-reward
structures and is forced into continual exploration through
generally low-reward spaces.

3. CONCLUSIONS
In this study, we have demonstrated an approach to finding
stable, functional inorganic crystal structures by combining a
GNN surrogate model with RL-based structural search. These
results confirm the success of our upper-bound minimization
strategy, where starting from a low-energy but unrelaxed
starting point yields even lower energy stable crystal structures.
We therefore rely on upper-bound optimization to find low-
energy structure inputs, sidestepping the difficult problem of
mapping unrelaxed structures to their corresponding fully
relaxed energies. We demonstrate the method by searching for
candidates for solid electrolytes, a demanding application that
requires materials to simultaneously satisfy several competing
criteria. Our method reveals 285 novel structures, many of
which appear reasonable when compared with structures
currently being explored for this application. In an independent
but related effort, Chen and Ong predicted the stability of 31
million hypothetical structures using the M3gnet framework.39

Of our 285 DFT-confirmed compositions, 102 appear in the

Figure 6. Example crystal structures predicted to be stable and exhibit certain features (Figure 5) suitable for application as solid electrolytes. (a)
LiSc2F7. (b) LiY2Br7. (c) Li2HfBr6. (d) LiW2Zn4N7. (e) NaLaP4N8. (f) LiSc2HfBr11. (g) Li2HfN2. (h) KScS2. (i) Na2ZrO3.
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matterverse.ai web platform, with 47 of these predicted to have
a negative decomposition energy. This agreement between
methods with separate training data and computational
approaches lends further evidence to the potential stability of
these materials.

While the method presented here was demonstrated by
searching over a discrete space defined by the available
structural prototypes, combining our upper-bound optimiza-
tion with more flexible generative methods40,41 is likely to
result in even more stable candidate structures. Even with our
current element substitution approach, by continuing to feed
fully relaxed structures back to the RL agent as possible new
prototypes to be decorated, we continually expand the search
space considered by the optimization. Future work will also
expand the number of variables optimized by the RL
algorithm, targeting the search toward functional battery
materials.

4. COMPUTATIONAL METHODS
We start with an overview of the approach, then provide specific
details. To find stable, functional structures, we first generate a pool of
candidate structures from a set of prototype structures and a set of
suitable compositions, second, train a GNN model to predict the total
energy of each of these structures, and third, calculate their
thermodynamic stability w.r.t. competing phases. An implicit
assumption is that some of the structures in the pool are in a stable
configuration already, and our approach is simply to identify them.
For our SSB application, we calculate additional features and filter the
stable structures identified by the model to those with features of
interest.

4.1. GNN Architecture
We utilized a similar GNN architecture as was developed by Pandey
et al.13 To input crystal structures to the model, each structure is
converted into a graph where each atom site is a node and the 12
nearest sites of each atom in terms of raw distances (taking periodicity
into consideration) constitute the edges. For node features, we use
only the identity of the elements at each site, and for edges, we use the
distance (in Å) between the two sites. We use six message passing
layers in the GNN. One important difference from the GNN used by
Pandey et al. is that we scale each structure such that the minimum
distance between atoms is 1 Å, as was done in Pal et al.18 Thus, the
model learns a scale-invariant version of the structures.

4.2. Data Sets
Here we describe the prototype structures, the battery compositions,
and how we decorated the prototype structures.
4.2.1. Prototype Structures from ICSD. Inspired by prior

studies on ionic substitution,21,42,43 we constructed a library of
prototype structures from the ICSD by first classifying them into
composition types. Here, composition type is defined as the sorted
stoichiometry that is agnostic of the element type. For example,
structures with compositions A3B1C2, A1B2C3, and A1B3C2 are
categorized into the composition type “1−2−3”. The prototypes are
limited to ordered (fully occupied lattice sites) and stoichiometric
ICSD structures. At this stage, we also filtered out erroneous ICSD
structures with multiple atoms occupying the same lattice site in a way
that the total site occupation is larger than 1. The structures within
each composition type were then deduplicated by comparing their
space groups and sorted list of Wyckoff site labels. With this
procedure, we constructed a prototype library containing 4000
composition types spanning > 13 000 structures.
4.2.2. Battery Compositions. Most well-known solid-state

battery materials, including solid electrolytes and electrodes, are
ternary and multinary compounds with a distinct conducting ion (C),
and a structural framework composed of cations (F) and anions (A).
For example, the solid-electrolyte Li3ScCl6 structure contains Li+ ions
interspersed within a framework composed of [ScCl6] octahedra.
Therefore, we chose compositions of the general form CxFyAz, where
x, y, z are the number of C, F, and A per formula unit. For
computational tractability, we limit the search to ternary, quaternary,
and quinary compositions such that x + y + z ≤ 15. To summarize,
each composition is composed of 3−5 elements: (1) one conducting
ion, C, (2) 1−2 framework cations, F, and (3) 1−2 anions, A.
Informed by common battery chemistries, the following elements and
their oxidation states are chosen: (1) C = Li+, Na+, K+, (2) F = Sc3+,
Y3+, La3+, Ti4+, Zr4+, Hf4+, W6+, Zn2+, Cd2+, Hg2+, B3+, Al3+, Si4+, Ge4+,
Sn4+, P5+, Sb5+, and (3) A = F−, Cl−, Br−, I−, O2−, S2−, N3−, P3−. We
only consider valence-balanced compositions in our search. In total,
there are 220 824 valence-balanced compositions spanning 174
composition types.
4.2.3. Decorated Structures. For each composition, we

generated decorated structures by considering all prototypes for the
corresponding composition type (Section 4.2.1). For each prototype,
we perform all possible decorations using ionic substitution where the
elements in the prototype structure are replaced with the elements
from the battery compositions (Section 4.2.2). A typical approach to
generate new structures from prototypes is to establish a set of

Figure 7. Reinforcement learning (RL) structure optimization. (a)
Crystal building rollout rewards and (b) losses for the policy model vs
time as the optimization proceeds. In (a), the r90 line in orange
represents the cutoff at which the result was considered a win or loss.
(c) Improvement in efficiency of RL compared to a brute-force
search. Top candidates are structures with a decomposition energy <
−0.1 eV/atom.
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substitution rules where elements in the prototype are replaced with
similar elements. In our application, we sought to remove potential
human biases in the substitution process and instead constrained our
substitutions solely based on valence-balanced stoichiometries. While
this approach generates some structures that are very unstable and
high in energy, these structures help the trained GNN to differentiate
between high-energy and low-energy decorations during high-
throughput screening.

For example, if the battery composition is Mg2ZrO4 and the chosen
prototype is BaAl2S4 (ICSD # 35136, space group Pa3̅), we substitute
Al with Mg, Ba with Zr, and S with O in the structure. To keep the
decoration space tractable, we do not perform decorations by Wyckoff
sites and simply decorate all Wyckoff sites associated with an element
with the substituting element. We also consider all possible
stoichiometric combinations when performing the decorations. For
example, the “1−2−4” composition type allows only one unique
decoration while the “1−1−1−1−1” composition type accommodates
120 unique stoichiometric decorations on the same prototype
structure. We also limit the search to prototypes with less than 50
atoms in the unit cell. We note that although CxFyAz compositions are
inspired by the structure of well-known battery materials, we do not
explicitly impose any bonding constraints (e.g., F bonded to A) in
constructing the decorated structures. In total, the 220 824 valence-
balanced compositions result in 14.3 million hypothetical decorated
structures.

4.3. Training Data Set
We train a GNN model to predict the total energy of a given
structure, which acts as a surrogate model for DFT volume-only
relaxations. To train the GNN model, we selected a subset of
hypothetical decorated structures for DFT relaxation to build a
training data set. Here, we describe the training data sets comprising
ICSD and hypothetical structures, and the two types of DFT
relaxations performed on the hypothetical structures.
4.3.1. ICSD Structures. We used the same data set of ICSD

structures and their total energies as was used by Pandey et al.,13

which consists of ∼14 000 structures available in the NREL Materials
Database (NRELMatDB)23,44 as well as ∼2500 structures for which
additional DFT calculations were performed.
4.3.2. Decorated Structures for DFT Relaxation. We sampled

a subset of the decorated structures (Section 4.2.3) to perform DFT
calculations. For computational tractability, we sampled ternary,
quaternary, and quinary compositions such that x + y + z ≤ 10. With
these constraints, there are 914 valence-balanced battery composi-
tions spanning 72 composition types and 150 345 decorated
structures. For each composition type, we randomly selected up to
10 compositions in way that every element accommodated by that
composition type (condition of valence balance) are sampled. For
each composition, we then consider all prototype structures (Section
4.2.3) in the corresponding composition type. We selected ∼68 000
structures for full DFT relaxation and volume-only relaxation (Section
4.3.3).
4.3.3. DFT Relaxations. DFT relaxations for the hypothetical

structures were performed with VASP.45 Details of the calculations are
previously published in refs 13 and 44. The constrained volume
relaxation was also performed with VASP,45 using the Atomic
Simulation Environment Python package.46 The optimization of the
scalar volume was performed in a gradient-free fashion through
repeated one-shot, self-consistent DFT calculations, using the Brent
method implemented in scipy. Volumes were bounded between 10 Å3

(to prevent negative volumes) and two times a volume predicted with
the data-mined lattice scheme (DLS) as implemented in Pymatgen.47

A rough initial volume guess (prior to DLS volume prediction) was
generated with a linear model on composition trained on ICSD
structures. Structures that ran into the upper bound volume during
the bounded optimization tended to be unstable, i.e., the energy
continues to decrease as the volume increases, and were pruned from
the database. Finally, we ensured the volume-energy curve was
sufficiently smooth and removed structures where the minimum

energy was more than 10 meV/atom lower than the second-lowest
energy on the volume-energy curve.
4.3.4. Data Quality Control. A number of data quality control

checks were performed to remove problematic structures and
relaxations from the DFT database prior to fitting the GNN model.
First, we removed calculations derived from different ICSD
prototypes that relax to the same final structure upon full DFT
relaxation. We observed that despite being given different initial
prototypes, multiple relaxations for the same composition would
occasionally converge to the same fully relaxed structure. As this
complicates the accurate splitting of train and validation structures, we
removed duplicated results by comparing their fingerprints after
relaxation (Section 4.4). We used scikit-learn to recursively cluster all
fully relaxed structures, using a cosine distance of 0.01 as the distance
threshold and the maximum distance between clusters as the merging
criterion. For each composition, only a single fully relaxed structure
per cluster was kept (one with the lowest energy), resulting in 13 133
fewer DFT data points. Next, we removed 1391 unconstrained DFT
relaxations where a lower energy was obtained from the constrained
relaxation. These calculations indicated that the full DFT relaxation
reached a local energy minimum.

We next removed crystals with energies and volumes well outside
the expected range. We fit a robust linear model to predict total
energy as a function of crystal composition using scikit-learn, and
removed 1551 calculations (10 full-relaxed, 1,541 volume-relaxed)
with either a residual energy less than −2 eV/atom or greater than 5
eV/atom, or a residual volume less than −20 Å3/atom or greater than
50 Å3/atom. The final data set sizes are as follows: 16 409 ICSD,
52 949 fully relaxed, and 58 669 volume-relaxed structures.

4.4. Structure Fingerprints and Distances
Similarity between structures was calculated using the Matminer
Python package.22 Fingerprints for each site were calculated using a
local order parameter fingerprint, and converted to a crystal-level
fingerprint by taking the mean and standard deviation over each site.
Notably, the fingerprint method did not consider the overall volume
of the unit cell, nor the chemical identity of the element at each site.
Distances between crystal structures were then calculated using the
cosine distance method as implemented in scikit-learn.

4.5. Surrogate Model Training
Of the ∼128 000 training structures, we used stratified random
sampling to hold out 1500 structures for validation and 1500 for
testing. We also selected 100 compositions uniformly at random and
held out their structures (1492). We trained the model with a batch
size of 64 structures for 100 epochs over the training data. To
optimize training, we used the AdamW algorithm with an initial
learning rate of 10−4, decayed by ∼10−5 each update step. We set the
weight decay to an initial value of 10−5, also decayed by ∼10−5 each
update step.

Here we also provide details of the learning curve evaluation. For
each of five repeats, we first held out 1500 structures using stratified
sampling for testing. Then, for each of the 10 training set sizes, we
subsampled the training data to that size using stratified sampling, and
held out 5% of that data for validation when training the model.
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github.com/jlaw9/upper-bound-energy-gnn (see also doi.org/
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Rostgaard, C.; Schiøtz, J.; Schütt, O.; Strange, M.; Thygesen, K. S.;
Vegge, T.; Vilhelmsen, L.; Walter, M.; Zeng, Z.; Jacobsen, K. W. The
atomic simulation environment�a python library for working with
atoms. J. Phys.: Condens. Matter 2017, 29 (27), 273002.

(47) Chu, I.-H.; Roychowdhury, S.; Han, D.; Jain, A.; Ong, S. P.
Predicting the volumes of crystals. Comput. Mater. Sci. 2018, 146,
184−192.

JACS Au pubs.acs.org/jacsau Article

https://doi.org/10.1021/jacsau.2c00540
JACS Au 2023, 3, 113−123

123

 Recommended by ACS

Machine-Learning-Assisted Discovery of High-Efficient
Oxygen Evolution Electrocatalysts
Xinnan Mao, Youyong Li, et al.
DECEMBER 29, 2022
THE JOURNAL OF PHYSICAL CHEMISTRY LETTERS READ 

Strain-Negligible Eu2+ Doping Enabled Color-Tunable Harsh
Condition-Resistant Perovskite Nanocrystals for Superior
Light-Emitting Diodes
Mengdie Jin, Yaping Du, et al.
DECEMBER 21, 2022
JACS AU READ 

Cu-Doped ZnIn2S4/NixP Composites with Enhanced Carrier
Dynamics and Photocatalytic Hydrogen Production
Performance
Tongyang Zhang, Xianhui Zhao, et al.
JANUARY 19, 2023
ACS APPLIED ENERGY MATERIALS READ 

Estimation of Adsorbed Amounts in Organoclay by Machine
Learning
Hayato Shobuke, Hiromitsu Takaba, et al.
DECEMBER 27, 2022
ACS OMEGA READ 

Get More Suggestions >

https://doi.org/10.1021/ic102031h?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ic102031h?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.commatsci.2018.05.018
http://materials.nrel.gov
https://doi.org/10.1088/2516-1083/ab73dd
https://doi.org/10.1088/2516-1083/ab73dd
https://doi.org/10.1039/C6EE02697D
https://doi.org/10.1039/C6EE02697D
https://doi.org/10.1039/C8EE01286E
https://doi.org/10.1039/C8EE01286E
https://doi.org/10.1016/0022-5088(84)90306-0
https://doi.org/10.1016/0022-5088(84)90306-0
https://doi.org/10.1016/0022-5088(84)90306-0
https://doi.org/10.1016/0025-5408(80)90218-4
https://doi.org/10.1016/0025-5408(80)90218-4
https://doi.org/10.1107/S0567740875003585
https://doi.org/10.1107/S0567740875003585
https://doi.org/10.1063/1.4812323
https://doi.org/10.1063/1.4812323
https://doi.org/10.1002/advs.201600517
https://doi.org/10.1002/advs.201600517
https://doi.org/10.1021/acs.inorgchem.0c01923?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.inorgchem.0c01923?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1039/D2CP02219B
https://doi.org/10.1039/D2CP02219B
https://doi.org/10.1039/D2CP02219B
https://doi.org/10.1038/s41598-019-47148-x
https://doi.org/10.1038/s41598-019-47148-x
https://doi.org/10.1038/s42256-022-00506-3
https://doi.org/10.1038/s42256-022-00506-3
https://doi.org/10.1038/s42256-022-00506-3
https://doi.org/10.1557/mrc.2019.40
https://doi.org/10.1557/mrc.2019.40
https://doi.org/10.21105/joss.04621
https://doi.org/10.21105/joss.04621
https://doi.org/10.48550/arXiv.1807.01672
https://doi.org/10.48550/arXiv.1807.01672
https://doi.org/10.48550/arXiv.1807.01672?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/s43588-022-00349-3
https://doi.org/10.1038/s43588-022-00349-3
https://doi.org/10.1038/s41524-020-00352-0
https://doi.org/10.1038/s41524-020-00352-0
https://doi.org/10.1038/s41524-020-00352-0
https://doi.org/10.1002/advs.202100566
https://doi.org/10.1002/advs.202100566
https://doi.org/10.1039/D0MH00197J
https://doi.org/10.1039/D0MH00197J
https://doi.org/10.1039/D0TA08238D
https://doi.org/10.1039/D0TA08238D
https://doi.org/10.1103/PhysRevB.85.115104
https://doi.org/10.1103/PhysRevB.85.115104
https://doi.org/10.1103/PhysRevB.85.115104
https://doi.org/10.1103/PhysRevB.54.11169
https://doi.org/10.1103/PhysRevB.54.11169
https://doi.org/10.1088/1361-648X/aa680e
https://doi.org/10.1088/1361-648X/aa680e
https://doi.org/10.1088/1361-648X/aa680e
https://doi.org/10.1016/j.commatsci.2018.01.040
pubs.acs.org/jacsau?ref=pdf
https://doi.org/10.1021/jacsau.2c00540?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
http://pubs.acs.org/doi/10.1021/acs.jpclett.2c02873?utm_campaign=RRCC_jaaucr&utm_source=RRCC&utm_medium=pdf_stamp&originated=1674749192&referrer_DOI=10.1021%2Fjacsau.2c00540
http://pubs.acs.org/doi/10.1021/acs.jpclett.2c02873?utm_campaign=RRCC_jaaucr&utm_source=RRCC&utm_medium=pdf_stamp&originated=1674749192&referrer_DOI=10.1021%2Fjacsau.2c00540
http://pubs.acs.org/doi/10.1021/acs.jpclett.2c02873?utm_campaign=RRCC_jaaucr&utm_source=RRCC&utm_medium=pdf_stamp&originated=1674749192&referrer_DOI=10.1021%2Fjacsau.2c00540
http://pubs.acs.org/doi/10.1021/acs.jpclett.2c02873?utm_campaign=RRCC_jaaucr&utm_source=RRCC&utm_medium=pdf_stamp&originated=1674749192&referrer_DOI=10.1021%2Fjacsau.2c00540
http://pubs.acs.org/doi/10.1021/acs.jpclett.2c02873?utm_campaign=RRCC_jaaucr&utm_source=RRCC&utm_medium=pdf_stamp&originated=1674749192&referrer_DOI=10.1021%2Fjacsau.2c00540
http://pubs.acs.org/doi/10.1021/acs.jpclett.2c02873?utm_campaign=RRCC_jaaucr&utm_source=RRCC&utm_medium=pdf_stamp&originated=1674749192&referrer_DOI=10.1021%2Fjacsau.2c00540
http://pubs.acs.org/doi/10.1021/acs.jpclett.2c02873?utm_campaign=RRCC_jaaucr&utm_source=RRCC&utm_medium=pdf_stamp&originated=1674749192&referrer_DOI=10.1021%2Fjacsau.2c00540
http://pubs.acs.org/doi/10.1021/acs.jpclett.2c02873?utm_campaign=RRCC_jaaucr&utm_source=RRCC&utm_medium=pdf_stamp&originated=1674749192&referrer_DOI=10.1021%2Fjacsau.2c00540
http://pubs.acs.org/doi/10.1021/acs.jpclett.2c02873?utm_campaign=RRCC_jaaucr&utm_source=RRCC&utm_medium=pdf_stamp&originated=1674749192&referrer_DOI=10.1021%2Fjacsau.2c00540
http://pubs.acs.org/doi/10.1021/acs.jpclett.2c02873?utm_campaign=RRCC_jaaucr&utm_source=RRCC&utm_medium=pdf_stamp&originated=1674749192&referrer_DOI=10.1021%2Fjacsau.2c00540
http://pubs.acs.org/doi/10.1021/acs.jpclett.2c02873?utm_campaign=RRCC_jaaucr&utm_source=RRCC&utm_medium=pdf_stamp&originated=1674749192&referrer_DOI=10.1021%2Fjacsau.2c00540
http://pubs.acs.org/doi/10.1021/acs.jpclett.2c02873?utm_campaign=RRCC_jaaucr&utm_source=RRCC&utm_medium=pdf_stamp&originated=1674749192&referrer_DOI=10.1021%2Fjacsau.2c00540
http://pubs.acs.org/doi/10.1021/acs.jpclett.2c02873?utm_campaign=RRCC_jaaucr&utm_source=RRCC&utm_medium=pdf_stamp&originated=1674749192&referrer_DOI=10.1021%2Fjacsau.2c00540
http://pubs.acs.org/doi/10.1021/acs.jpclett.2c02873?utm_campaign=RRCC_jaaucr&utm_source=RRCC&utm_medium=pdf_stamp&originated=1674749192&referrer_DOI=10.1021%2Fjacsau.2c00540
http://pubs.acs.org/doi/10.1021/acs.jpclett.2c02873?utm_campaign=RRCC_jaaucr&utm_source=RRCC&utm_medium=pdf_stamp&originated=1674749192&referrer_DOI=10.1021%2Fjacsau.2c00540
http://pubs.acs.org/doi/10.1021/acs.jpclett.2c02873?utm_campaign=RRCC_jaaucr&utm_source=RRCC&utm_medium=pdf_stamp&originated=1674749192&referrer_DOI=10.1021%2Fjacsau.2c00540
http://pubs.acs.org/doi/10.1021/acs.jpclett.2c02873?utm_campaign=RRCC_jaaucr&utm_source=RRCC&utm_medium=pdf_stamp&originated=1674749192&referrer_DOI=10.1021%2Fjacsau.2c00540
http://pubs.acs.org/doi/10.1021/acs.jpclett.2c02873?utm_campaign=RRCC_jaaucr&utm_source=RRCC&utm_medium=pdf_stamp&originated=1674749192&referrer_DOI=10.1021%2Fjacsau.2c00540
http://pubs.acs.org/doi/10.1021/acs.jpclett.2c02873?utm_campaign=RRCC_jaaucr&utm_source=RRCC&utm_medium=pdf_stamp&originated=1674749192&referrer_DOI=10.1021%2Fjacsau.2c00540
http://pubs.acs.org/doi/10.1021/acs.jpclett.2c02873?utm_campaign=RRCC_jaaucr&utm_source=RRCC&utm_medium=pdf_stamp&originated=1674749192&referrer_DOI=10.1021%2Fjacsau.2c00540
http://pubs.acs.org/doi/10.1021/jacsau.2c00593?utm_campaign=RRCC_jaaucr&utm_source=RRCC&utm_medium=pdf_stamp&originated=1674749192&referrer_DOI=10.1021%2Fjacsau.2c00540
http://pubs.acs.org/doi/10.1021/jacsau.2c00593?utm_campaign=RRCC_jaaucr&utm_source=RRCC&utm_medium=pdf_stamp&originated=1674749192&referrer_DOI=10.1021%2Fjacsau.2c00540
http://pubs.acs.org/doi/10.1021/jacsau.2c00593?utm_campaign=RRCC_jaaucr&utm_source=RRCC&utm_medium=pdf_stamp&originated=1674749192&referrer_DOI=10.1021%2Fjacsau.2c00540
http://pubs.acs.org/doi/10.1021/jacsau.2c00593?utm_campaign=RRCC_jaaucr&utm_source=RRCC&utm_medium=pdf_stamp&originated=1674749192&referrer_DOI=10.1021%2Fjacsau.2c00540
http://pubs.acs.org/doi/10.1021/jacsau.2c00593?utm_campaign=RRCC_jaaucr&utm_source=RRCC&utm_medium=pdf_stamp&originated=1674749192&referrer_DOI=10.1021%2Fjacsau.2c00540
http://pubs.acs.org/doi/10.1021/jacsau.2c00593?utm_campaign=RRCC_jaaucr&utm_source=RRCC&utm_medium=pdf_stamp&originated=1674749192&referrer_DOI=10.1021%2Fjacsau.2c00540
http://pubs.acs.org/doi/10.1021/jacsau.2c00593?utm_campaign=RRCC_jaaucr&utm_source=RRCC&utm_medium=pdf_stamp&originated=1674749192&referrer_DOI=10.1021%2Fjacsau.2c00540
http://pubs.acs.org/doi/10.1021/jacsau.2c00593?utm_campaign=RRCC_jaaucr&utm_source=RRCC&utm_medium=pdf_stamp&originated=1674749192&referrer_DOI=10.1021%2Fjacsau.2c00540
http://pubs.acs.org/doi/10.1021/jacsau.2c00593?utm_campaign=RRCC_jaaucr&utm_source=RRCC&utm_medium=pdf_stamp&originated=1674749192&referrer_DOI=10.1021%2Fjacsau.2c00540
http://pubs.acs.org/doi/10.1021/jacsau.2c00593?utm_campaign=RRCC_jaaucr&utm_source=RRCC&utm_medium=pdf_stamp&originated=1674749192&referrer_DOI=10.1021%2Fjacsau.2c00540
http://pubs.acs.org/doi/10.1021/jacsau.2c00593?utm_campaign=RRCC_jaaucr&utm_source=RRCC&utm_medium=pdf_stamp&originated=1674749192&referrer_DOI=10.1021%2Fjacsau.2c00540
http://pubs.acs.org/doi/10.1021/jacsau.2c00593?utm_campaign=RRCC_jaaucr&utm_source=RRCC&utm_medium=pdf_stamp&originated=1674749192&referrer_DOI=10.1021%2Fjacsau.2c00540
http://pubs.acs.org/doi/10.1021/jacsau.2c00593?utm_campaign=RRCC_jaaucr&utm_source=RRCC&utm_medium=pdf_stamp&originated=1674749192&referrer_DOI=10.1021%2Fjacsau.2c00540
http://pubs.acs.org/doi/10.1021/jacsau.2c00593?utm_campaign=RRCC_jaaucr&utm_source=RRCC&utm_medium=pdf_stamp&originated=1674749192&referrer_DOI=10.1021%2Fjacsau.2c00540
http://pubs.acs.org/doi/10.1021/jacsau.2c00593?utm_campaign=RRCC_jaaucr&utm_source=RRCC&utm_medium=pdf_stamp&originated=1674749192&referrer_DOI=10.1021%2Fjacsau.2c00540
http://pubs.acs.org/doi/10.1021/jacsau.2c00593?utm_campaign=RRCC_jaaucr&utm_source=RRCC&utm_medium=pdf_stamp&originated=1674749192&referrer_DOI=10.1021%2Fjacsau.2c00540
http://pubs.acs.org/doi/10.1021/jacsau.2c00593?utm_campaign=RRCC_jaaucr&utm_source=RRCC&utm_medium=pdf_stamp&originated=1674749192&referrer_DOI=10.1021%2Fjacsau.2c00540
http://pubs.acs.org/doi/10.1021/jacsau.2c00593?utm_campaign=RRCC_jaaucr&utm_source=RRCC&utm_medium=pdf_stamp&originated=1674749192&referrer_DOI=10.1021%2Fjacsau.2c00540
http://pubs.acs.org/doi/10.1021/jacsau.2c00593?utm_campaign=RRCC_jaaucr&utm_source=RRCC&utm_medium=pdf_stamp&originated=1674749192&referrer_DOI=10.1021%2Fjacsau.2c00540
http://pubs.acs.org/doi/10.1021/jacsau.2c00593?utm_campaign=RRCC_jaaucr&utm_source=RRCC&utm_medium=pdf_stamp&originated=1674749192&referrer_DOI=10.1021%2Fjacsau.2c00540
http://pubs.acs.org/doi/10.1021/jacsau.2c00593?utm_campaign=RRCC_jaaucr&utm_source=RRCC&utm_medium=pdf_stamp&originated=1674749192&referrer_DOI=10.1021%2Fjacsau.2c00540
http://pubs.acs.org/doi/10.1021/jacsau.2c00593?utm_campaign=RRCC_jaaucr&utm_source=RRCC&utm_medium=pdf_stamp&originated=1674749192&referrer_DOI=10.1021%2Fjacsau.2c00540
http://pubs.acs.org/doi/10.1021/jacsau.2c00593?utm_campaign=RRCC_jaaucr&utm_source=RRCC&utm_medium=pdf_stamp&originated=1674749192&referrer_DOI=10.1021%2Fjacsau.2c00540
http://pubs.acs.org/doi/10.1021/jacsau.2c00593?utm_campaign=RRCC_jaaucr&utm_source=RRCC&utm_medium=pdf_stamp&originated=1674749192&referrer_DOI=10.1021%2Fjacsau.2c00540
http://pubs.acs.org/doi/10.1021/jacsau.2c00593?utm_campaign=RRCC_jaaucr&utm_source=RRCC&utm_medium=pdf_stamp&originated=1674749192&referrer_DOI=10.1021%2Fjacsau.2c00540
http://pubs.acs.org/doi/10.1021/jacsau.2c00593?utm_campaign=RRCC_jaaucr&utm_source=RRCC&utm_medium=pdf_stamp&originated=1674749192&referrer_DOI=10.1021%2Fjacsau.2c00540
http://pubs.acs.org/doi/10.1021/jacsau.2c00593?utm_campaign=RRCC_jaaucr&utm_source=RRCC&utm_medium=pdf_stamp&originated=1674749192&referrer_DOI=10.1021%2Fjacsau.2c00540
http://pubs.acs.org/doi/10.1021/jacsau.2c00593?utm_campaign=RRCC_jaaucr&utm_source=RRCC&utm_medium=pdf_stamp&originated=1674749192&referrer_DOI=10.1021%2Fjacsau.2c00540
http://pubs.acs.org/doi/10.1021/jacsau.2c00593?utm_campaign=RRCC_jaaucr&utm_source=RRCC&utm_medium=pdf_stamp&originated=1674749192&referrer_DOI=10.1021%2Fjacsau.2c00540
http://pubs.acs.org/doi/10.1021/jacsau.2c00593?utm_campaign=RRCC_jaaucr&utm_source=RRCC&utm_medium=pdf_stamp&originated=1674749192&referrer_DOI=10.1021%2Fjacsau.2c00540
http://pubs.acs.org/doi/10.1021/jacsau.2c00593?utm_campaign=RRCC_jaaucr&utm_source=RRCC&utm_medium=pdf_stamp&originated=1674749192&referrer_DOI=10.1021%2Fjacsau.2c00540
http://pubs.acs.org/doi/10.1021/jacsau.2c00593?utm_campaign=RRCC_jaaucr&utm_source=RRCC&utm_medium=pdf_stamp&originated=1674749192&referrer_DOI=10.1021%2Fjacsau.2c00540
http://pubs.acs.org/doi/10.1021/jacsau.2c00593?utm_campaign=RRCC_jaaucr&utm_source=RRCC&utm_medium=pdf_stamp&originated=1674749192&referrer_DOI=10.1021%2Fjacsau.2c00540
http://pubs.acs.org/doi/10.1021/jacsau.2c00593?utm_campaign=RRCC_jaaucr&utm_source=RRCC&utm_medium=pdf_stamp&originated=1674749192&referrer_DOI=10.1021%2Fjacsau.2c00540
http://pubs.acs.org/doi/10.1021/jacsau.2c00593?utm_campaign=RRCC_jaaucr&utm_source=RRCC&utm_medium=pdf_stamp&originated=1674749192&referrer_DOI=10.1021%2Fjacsau.2c00540
http://pubs.acs.org/doi/10.1021/acsaem.2c03548?utm_campaign=RRCC_jaaucr&utm_source=RRCC&utm_medium=pdf_stamp&originated=1674749192&referrer_DOI=10.1021%2Fjacsau.2c00540
http://pubs.acs.org/doi/10.1021/acsaem.2c03548?utm_campaign=RRCC_jaaucr&utm_source=RRCC&utm_medium=pdf_stamp&originated=1674749192&referrer_DOI=10.1021%2Fjacsau.2c00540
http://pubs.acs.org/doi/10.1021/acsaem.2c03548?utm_campaign=RRCC_jaaucr&utm_source=RRCC&utm_medium=pdf_stamp&originated=1674749192&referrer_DOI=10.1021%2Fjacsau.2c00540
http://pubs.acs.org/doi/10.1021/acsaem.2c03548?utm_campaign=RRCC_jaaucr&utm_source=RRCC&utm_medium=pdf_stamp&originated=1674749192&referrer_DOI=10.1021%2Fjacsau.2c00540
http://pubs.acs.org/doi/10.1021/acsaem.2c03548?utm_campaign=RRCC_jaaucr&utm_source=RRCC&utm_medium=pdf_stamp&originated=1674749192&referrer_DOI=10.1021%2Fjacsau.2c00540
http://pubs.acs.org/doi/10.1021/acsaem.2c03548?utm_campaign=RRCC_jaaucr&utm_source=RRCC&utm_medium=pdf_stamp&originated=1674749192&referrer_DOI=10.1021%2Fjacsau.2c00540
http://pubs.acs.org/doi/10.1021/acsaem.2c03548?utm_campaign=RRCC_jaaucr&utm_source=RRCC&utm_medium=pdf_stamp&originated=1674749192&referrer_DOI=10.1021%2Fjacsau.2c00540
http://pubs.acs.org/doi/10.1021/acsaem.2c03548?utm_campaign=RRCC_jaaucr&utm_source=RRCC&utm_medium=pdf_stamp&originated=1674749192&referrer_DOI=10.1021%2Fjacsau.2c00540
http://pubs.acs.org/doi/10.1021/acsaem.2c03548?utm_campaign=RRCC_jaaucr&utm_source=RRCC&utm_medium=pdf_stamp&originated=1674749192&referrer_DOI=10.1021%2Fjacsau.2c00540
http://pubs.acs.org/doi/10.1021/acsaem.2c03548?utm_campaign=RRCC_jaaucr&utm_source=RRCC&utm_medium=pdf_stamp&originated=1674749192&referrer_DOI=10.1021%2Fjacsau.2c00540
http://pubs.acs.org/doi/10.1021/acsaem.2c03548?utm_campaign=RRCC_jaaucr&utm_source=RRCC&utm_medium=pdf_stamp&originated=1674749192&referrer_DOI=10.1021%2Fjacsau.2c00540
http://pubs.acs.org/doi/10.1021/acsaem.2c03548?utm_campaign=RRCC_jaaucr&utm_source=RRCC&utm_medium=pdf_stamp&originated=1674749192&referrer_DOI=10.1021%2Fjacsau.2c00540
http://pubs.acs.org/doi/10.1021/acsaem.2c03548?utm_campaign=RRCC_jaaucr&utm_source=RRCC&utm_medium=pdf_stamp&originated=1674749192&referrer_DOI=10.1021%2Fjacsau.2c00540
http://pubs.acs.org/doi/10.1021/acsaem.2c03548?utm_campaign=RRCC_jaaucr&utm_source=RRCC&utm_medium=pdf_stamp&originated=1674749192&referrer_DOI=10.1021%2Fjacsau.2c00540
http://pubs.acs.org/doi/10.1021/acsaem.2c03548?utm_campaign=RRCC_jaaucr&utm_source=RRCC&utm_medium=pdf_stamp&originated=1674749192&referrer_DOI=10.1021%2Fjacsau.2c00540
http://pubs.acs.org/doi/10.1021/acsaem.2c03548?utm_campaign=RRCC_jaaucr&utm_source=RRCC&utm_medium=pdf_stamp&originated=1674749192&referrer_DOI=10.1021%2Fjacsau.2c00540
http://pubs.acs.org/doi/10.1021/acsaem.2c03548?utm_campaign=RRCC_jaaucr&utm_source=RRCC&utm_medium=pdf_stamp&originated=1674749192&referrer_DOI=10.1021%2Fjacsau.2c00540
http://pubs.acs.org/doi/10.1021/acsaem.2c03548?utm_campaign=RRCC_jaaucr&utm_source=RRCC&utm_medium=pdf_stamp&originated=1674749192&referrer_DOI=10.1021%2Fjacsau.2c00540
http://pubs.acs.org/doi/10.1021/acsaem.2c03548?utm_campaign=RRCC_jaaucr&utm_source=RRCC&utm_medium=pdf_stamp&originated=1674749192&referrer_DOI=10.1021%2Fjacsau.2c00540
http://pubs.acs.org/doi/10.1021/acsaem.2c03548?utm_campaign=RRCC_jaaucr&utm_source=RRCC&utm_medium=pdf_stamp&originated=1674749192&referrer_DOI=10.1021%2Fjacsau.2c00540
http://pubs.acs.org/doi/10.1021/acsaem.2c03548?utm_campaign=RRCC_jaaucr&utm_source=RRCC&utm_medium=pdf_stamp&originated=1674749192&referrer_DOI=10.1021%2Fjacsau.2c00540
http://pubs.acs.org/doi/10.1021/acsaem.2c03548?utm_campaign=RRCC_jaaucr&utm_source=RRCC&utm_medium=pdf_stamp&originated=1674749192&referrer_DOI=10.1021%2Fjacsau.2c00540
http://pubs.acs.org/doi/10.1021/acsaem.2c03548?utm_campaign=RRCC_jaaucr&utm_source=RRCC&utm_medium=pdf_stamp&originated=1674749192&referrer_DOI=10.1021%2Fjacsau.2c00540
http://pubs.acs.org/doi/10.1021/acsaem.2c03548?utm_campaign=RRCC_jaaucr&utm_source=RRCC&utm_medium=pdf_stamp&originated=1674749192&referrer_DOI=10.1021%2Fjacsau.2c00540
http://pubs.acs.org/doi/10.1021/acsaem.2c03548?utm_campaign=RRCC_jaaucr&utm_source=RRCC&utm_medium=pdf_stamp&originated=1674749192&referrer_DOI=10.1021%2Fjacsau.2c00540
http://pubs.acs.org/doi/10.1021/acsaem.2c03548?utm_campaign=RRCC_jaaucr&utm_source=RRCC&utm_medium=pdf_stamp&originated=1674749192&referrer_DOI=10.1021%2Fjacsau.2c00540
http://pubs.acs.org/doi/10.1021/acsaem.2c03548?utm_campaign=RRCC_jaaucr&utm_source=RRCC&utm_medium=pdf_stamp&originated=1674749192&referrer_DOI=10.1021%2Fjacsau.2c00540
http://pubs.acs.org/doi/10.1021/acsaem.2c03548?utm_campaign=RRCC_jaaucr&utm_source=RRCC&utm_medium=pdf_stamp&originated=1674749192&referrer_DOI=10.1021%2Fjacsau.2c00540
http://pubs.acs.org/doi/10.1021/acsaem.2c03548?utm_campaign=RRCC_jaaucr&utm_source=RRCC&utm_medium=pdf_stamp&originated=1674749192&referrer_DOI=10.1021%2Fjacsau.2c00540
http://pubs.acs.org/doi/10.1021/acsaem.2c03548?utm_campaign=RRCC_jaaucr&utm_source=RRCC&utm_medium=pdf_stamp&originated=1674749192&referrer_DOI=10.1021%2Fjacsau.2c00540
http://pubs.acs.org/doi/10.1021/acsaem.2c03548?utm_campaign=RRCC_jaaucr&utm_source=RRCC&utm_medium=pdf_stamp&originated=1674749192&referrer_DOI=10.1021%2Fjacsau.2c00540
http://pubs.acs.org/doi/10.1021/acsaem.2c03548?utm_campaign=RRCC_jaaucr&utm_source=RRCC&utm_medium=pdf_stamp&originated=1674749192&referrer_DOI=10.1021%2Fjacsau.2c00540
http://pubs.acs.org/doi/10.1021/acsomega.2c06602?utm_campaign=RRCC_jaaucr&utm_source=RRCC&utm_medium=pdf_stamp&originated=1674749192&referrer_DOI=10.1021%2Fjacsau.2c00540
http://pubs.acs.org/doi/10.1021/acsomega.2c06602?utm_campaign=RRCC_jaaucr&utm_source=RRCC&utm_medium=pdf_stamp&originated=1674749192&referrer_DOI=10.1021%2Fjacsau.2c00540
http://pubs.acs.org/doi/10.1021/acsomega.2c06602?utm_campaign=RRCC_jaaucr&utm_source=RRCC&utm_medium=pdf_stamp&originated=1674749192&referrer_DOI=10.1021%2Fjacsau.2c00540
http://pubs.acs.org/doi/10.1021/acsomega.2c06602?utm_campaign=RRCC_jaaucr&utm_source=RRCC&utm_medium=pdf_stamp&originated=1674749192&referrer_DOI=10.1021%2Fjacsau.2c00540
http://pubs.acs.org/doi/10.1021/acsomega.2c06602?utm_campaign=RRCC_jaaucr&utm_source=RRCC&utm_medium=pdf_stamp&originated=1674749192&referrer_DOI=10.1021%2Fjacsau.2c00540
http://pubs.acs.org/doi/10.1021/acsomega.2c06602?utm_campaign=RRCC_jaaucr&utm_source=RRCC&utm_medium=pdf_stamp&originated=1674749192&referrer_DOI=10.1021%2Fjacsau.2c00540
http://pubs.acs.org/doi/10.1021/acsomega.2c06602?utm_campaign=RRCC_jaaucr&utm_source=RRCC&utm_medium=pdf_stamp&originated=1674749192&referrer_DOI=10.1021%2Fjacsau.2c00540
http://pubs.acs.org/doi/10.1021/acsomega.2c06602?utm_campaign=RRCC_jaaucr&utm_source=RRCC&utm_medium=pdf_stamp&originated=1674749192&referrer_DOI=10.1021%2Fjacsau.2c00540
http://pubs.acs.org/doi/10.1021/acsomega.2c06602?utm_campaign=RRCC_jaaucr&utm_source=RRCC&utm_medium=pdf_stamp&originated=1674749192&referrer_DOI=10.1021%2Fjacsau.2c00540
http://pubs.acs.org/doi/10.1021/acsomega.2c06602?utm_campaign=RRCC_jaaucr&utm_source=RRCC&utm_medium=pdf_stamp&originated=1674749192&referrer_DOI=10.1021%2Fjacsau.2c00540
http://pubs.acs.org/doi/10.1021/acsomega.2c06602?utm_campaign=RRCC_jaaucr&utm_source=RRCC&utm_medium=pdf_stamp&originated=1674749192&referrer_DOI=10.1021%2Fjacsau.2c00540
http://pubs.acs.org/doi/10.1021/acsomega.2c06602?utm_campaign=RRCC_jaaucr&utm_source=RRCC&utm_medium=pdf_stamp&originated=1674749192&referrer_DOI=10.1021%2Fjacsau.2c00540
http://pubs.acs.org/doi/10.1021/acsomega.2c06602?utm_campaign=RRCC_jaaucr&utm_source=RRCC&utm_medium=pdf_stamp&originated=1674749192&referrer_DOI=10.1021%2Fjacsau.2c00540
http://pubs.acs.org/doi/10.1021/acsomega.2c06602?utm_campaign=RRCC_jaaucr&utm_source=RRCC&utm_medium=pdf_stamp&originated=1674749192&referrer_DOI=10.1021%2Fjacsau.2c00540
http://pubs.acs.org/doi/10.1021/acsomega.2c06602?utm_campaign=RRCC_jaaucr&utm_source=RRCC&utm_medium=pdf_stamp&originated=1674749192&referrer_DOI=10.1021%2Fjacsau.2c00540
http://pubs.acs.org/doi/10.1021/acsomega.2c06602?utm_campaign=RRCC_jaaucr&utm_source=RRCC&utm_medium=pdf_stamp&originated=1674749192&referrer_DOI=10.1021%2Fjacsau.2c00540
http://pubs.acs.org/doi/10.1021/acsomega.2c06602?utm_campaign=RRCC_jaaucr&utm_source=RRCC&utm_medium=pdf_stamp&originated=1674749192&referrer_DOI=10.1021%2Fjacsau.2c00540
http://pubs.acs.org/doi/10.1021/acsomega.2c06602?utm_campaign=RRCC_jaaucr&utm_source=RRCC&utm_medium=pdf_stamp&originated=1674749192&referrer_DOI=10.1021%2Fjacsau.2c00540
https://preferences.acs.org/ai_alert?follow=1

