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A B S T R A C T

In this paper, we propose a two-stage electricity market framework to explore the participation of distributed
energy resources (DERs) in a day-ahead (DA) market and a real-time (RT) market. The objective is to determine
the optimal bidding strategies of the aggregated DERs in the DA market and generate online incentive
signals for DER-owners to optimize the social-welfare taking into account network operational constraints.
Distributionally robust optimization is used to explicitly incorporate data-based statistical information of
renewable forecasts into the supply/demand decisions in the DA market. We evaluate the conservativeness
of bidding strategies distinguished by different risk aversion settings. In the RT market, a bi-level time-
varying optimization problem is proposed to design the online incentive signals to tradeoff the RT imbalance
penalty for distribution system operators (DSOs) and the costs of individual DER-owners. This enables tracking
their optimal dispatch to provide fast balancing services, in the presence of time-varying network states
while satisfying the voltage regulation requirement. Simulation results on both DA wholesale market and RT
balancing market demonstrate the necessity of this two-stage design, and its robustness to uncertainties, the
performance of convergence, the tracking ability and the feasibility of the resulting network operations.
1. Introduction

The continuing integration of distributed energy resources (DERs) in
distribution networks, enhanced by the deployment of smart technolo-
gies at the end-user level, complicates balancing economic efficiency
and system stability in distribution networks [1]. Such autonomous
and intelligent DERs introduce both opportunities and challenges to the
electricity market and electric power system operations. As the aggrega-
tions of DERs reach a substantial fraction of suppliers/consumers, they
cannot be neglected as market participants in day-ahead (DA) and real-
time (RT) markets any more. However, under current electricity market
rules, DERs face high deliverable risks due to the unpredictable nature
of renewable energy [2–4], which leads to security and reliability
issues for distribution network operations. This motivates us to design
a future electricity market mechanism that explicitly incorporates the
stochasticity of aggregated DERs to manage these risks. We lever-
age distributionally robust DA bidding strategies and propose a fast
incentive-based control for RT power balancing. These mechanisms ac-
count for the operational and economic objectives while also fulfilling
constraints on voltages.
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E-mail addresses: guo@eeh.ee.ethz.ch (Y. Guo), xuhan@eeh.ee.ethz.ch (X. Han), xinyang.zhou@nrel.gov (X. Zhou), hug@eeh.ee.ethz.ch (G. Hug).

DERs are in general small-sized units that are connected to the
distribution grid. Traditionally, end-consumers connected to the distri-
bution grid face flat tariffs or two-tier tariffs (i.e., peak and off-peak
tariffs). In this way, DER owners are exempt from additional costs
in distribution system operation and maintenance resulting from DER
injections or output forecast errors [5]. To promote better integration
of DERs, attempts have been made to design local energy markets
and new retail electricity tariff schemes. Local energy markets can
be categorized into P2P energy markets and community-based mar-
kets [6]. Current retail electricity tariffs include flat tariff, time-of-use
tariff and dynamic tariff, while the latter two time-based tariffs are
proven to show few signs of cross-subsidization and better economic
efficiency [7]. This work proposes a market framework for the optimal
RT tariff design, while considering the tight connection between the DA
wholesale market and local RT market with DERs. A detailed review
along this line is provided in [8].

Existing works mainly focus on designing retail tariffs or pricing
schemes for demand response programs. A review on price-driven
demand response programs is given in [9], which identifies that the
price-signal can be an efficient tool for uncertainty and reliability
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Nomenclature

Indices

𝑗 Index of bidding blocks in the DA market
𝑘 Index of time slots in the RT market
𝑚 Index of offering blocks in the DA market
𝑡 Index of time slots in the DA market

Parameters

𝛥𝑇 RT Length of time slot in the RT market
𝛥𝑇 DA Length of time slot in the DA market
�̃� Linearization coefficient of AC power flow
𝑣∕𝑣 Lower/upper bounds of voltage magnitude
𝐸RT
𝑘 RT balancing reference derived from the DA

dispatch results at time 𝑘
𝐸DA,Dmax Maximum bidding quantity of the consumers
𝐸DA,Omax Maximum DA offering quantity of the rival

producers
𝐺cap Generation capacity of DSO
𝐺𝑡 Aggregated DA generation forecast at time 𝑡 in the

DA market
𝑘0∼3, 𝑙0∼3 Coefficients in linear decision rules
𝐿𝑡 Aggregated DA demand forecast at time 𝑡 in the

DA market
𝑁 j Number of consumers’ demand bidding blocks
𝑁m Number of rival producers’ offering blocks in the

DA market
𝑝min
𝑖,𝑘 ∕𝑝max

𝑖,𝑘 Lower/upper bounds of active power set-points of
𝑖th DER at time 𝑘

𝑅∕𝑋 Sensitivity matrices for power flow linearization
𝑠max
𝑖,𝑘 Apparent power limit of 𝑖th DER at time 𝑘
𝑇 Number of time slots in the DA market
𝑇 𝑟max Transmission capacity between the distribution

and transmission grids

Sets

 Lines in the distribution network
 Buses in the distribution network except the

substation node
0 Buses in the distribution network including the

substation node
𝑖,𝑘 Feasible set of 𝑖th DER at time slot 𝑘

Variables

𝛼DAs
𝑡 ∕𝛼DAb

𝑡 Offering/bidding price–quantity at time 𝑡 in the
DA market

𝛼𝑖,𝑘, 𝛽𝑖,𝑘 Incentive signals for 𝑖th DER at time 𝑘
𝒙 Compact vector collecting first-stage decisions
𝒚 Compact vector collecting second-stage decisions
𝜆DA,D
𝑡,𝑚 Demand bidding price for block 𝑚 at time 𝑡

𝜆DA,O
𝑡,𝑗 Supply offering price for block 𝑗 at time 𝑡

𝜆DA
𝑡 DA market clearing price for time 𝑡

management. In [10], a coupon incentive-based demand response pro-
gram is proposed on top of the flat retail electricity tariff. The work
in [11] designed a cost-reflective network tariff focusing on aligning
the system’s production and customers’ demand peaks.

While demand response programs are considered as flexibility
providers that help to balance the system, the impacts brought by
2

𝜇DA, Dmin
𝑡 ∕𝜇DA, Dmax

𝑡 Dual variable associated with lower/upper
limits for DA bidding quantity of the
consumers at time 𝑡

𝜇DA,Omin
𝑡 ∕𝜇DA, Omax

𝑡 Dual variable associated with lower/upper
limits for DA offering quantity of the rival
producers at time 𝑡

𝜇DAbmin
𝑡 ∕𝜇DAbmax

𝑡 Dual variable associated with lower/upper
limits for DA demand quantity at time 𝑡

𝜇DAsmin
𝑡 ∕𝜇DAsmax

𝑡 Dual variable associated with lower/upper
limits for DA dispatch supply quantity at
time 𝑡

𝜆
RT
𝑘 ∕𝜆RT

𝑘 Dual variable associated with the
upper/lower voltage limits at time 𝑘

�̃�(𝜹, 𝒖) Approximated resource decisions using lin-
ear decision rule

𝐸BM+
𝑡 ∕𝐸BM−

𝑡 Positive/negative imbalance quantities at
time 𝑡

𝐸DA,D
𝑡,𝑚 Demand bidding quantity for block 𝑚 at

time 𝑡
𝐸DA,O
𝑡,𝑗 Supply offering quantity for block 𝑗 at time

𝑡
𝐸DAs,max
𝑡 ∕𝐸DAs,max

𝑡 Bidding/offering quantities of DSO at time 𝑡
𝐸DAs
𝑡 ∕𝐸DAb

𝑡 Bidding/offering quantities of DSO at time 𝑡
𝑝𝑖,𝑘∕𝑞𝑖,𝑘 Active/reactive power set-point of 𝑖th DER

at time 𝑘
𝑝𝑟BM+

𝑡 ∕𝑝𝑟BM−
𝑡 Positive/negative imbalance prices at time 𝑡

𝑢1,2 Auxiliary variables using linear decision
rule.

𝑉𝑖,𝑘 Line-to-ground voltage at node 𝑖 at time 𝑘
𝑣𝑖,𝑘 Voltage magnitude at node 𝑖 at time 𝑘

increasing DER penetrations can be either negative or positive, thus
new pricing schemes that are based on a cost causation principle
are required. A review of network tariff design and incentives for
DER owners can be found in [5,12]. A local market mechanism for
a distribution network focusing on the external costs associated with
voltage and line flow violations is presented in [13]. In [14], an online
optimization framework that enables the P2P market is introduced.
A new business model for P2P energy sharing is proposed and com-
prehensively demonstrated in [15]. Nevertheless, the aforementioned
literature focuses on designing dynamic pricing schemes for the local
market and ignores the connection to the wholesale market. The
forecast errors of renewables will cause significant deviations of the
RT dispatch from the DA generation/consumption schedule. The lack
of the DA and RT markets’ connection can reduce the available level
of flexibility and lead to operations that violate network constraints.
For a better interaction between the DA wholesale market and the
RT local balancing market, we propose a two-stage electricity market
consisting of a DA distributionally robust bidding process and an online
distributed balancing algorithm. The two-stage market mechanisms
linking the DA market to the RT market for different types of DERs
have been studied in the literature [16–20]. Compared to the existing
works, the proposed electricity mechanism tackles the uncertainties
from DERs by formulating the two-stage electricity market framework
as a distributionally robust optimization problem for the slow time-
scale of the DA market and an online optimization algorithm to cope
with fast-changing DERs in the RT market. To the best of our knowl-
edge, this is the first two-stage market mechanism that while linking
the DA market with the RT market employs distinct and different
algorithms for the different time scales. In addition, the cost of voltage
regulation in the distribution network is also taken into account in the
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RT market decision, which is ignored in most of the literature. The
main contributions are as follows:

(1) We formulate a two-stage electricity market problem for distri-
bution networks with aggregated DERs. The framework is designed to
enable the participation of DERs in the DA market in an aggregated
way, and then uses a distributed incentive-based control strategy to
enforce power and voltage constraints during RT operations. In con-
trast to existing works, the proposed framework pursues the optimal
power set-points of DERs in an online fashion while satisfying the net-
work constraints and also accounts for the DA stochasticity realization
by incorporating finite forecast samplings of renewable generations.
The proposed overall market structure including the communication
exchanges is presented in Fig. 1.

(2) We formulate a stochastic DA bidding strategy using a bi-level
model considering different levels of uncertainties and utilizing com-
putationally tractable data-based stochastic optimization, i.e. distribu-
tionally robust optimization (DRO). Instead of assuming that the DERs’
output forecasts follow prescribed probability distributions (e.g., Gaus-
sian distribution), the proposed DRO market problem determines the
optimal electricity supply/demand of a DER aggregator based on a
forecast sampling dataset. These bidding strategies are robust to the
worst-case distribution within an ambiguity set, which consists of a
group of probability distributions. This allows us to achieve superior
out-of-sample performance of DA market results, efficiently avoiding
overfitting the bidding to an available finite dataset.

(3) A bi-level optimization is proposed to regulate local DERs for im-
balance compensation in the RT market, in the presence of time-varying
network conditions. The objective is to minimize the weighted sum of
the imbalance costs for the DSO and the operational costs of DERs. The
incentive-based signals for DER-owners are generated to adjust the local
active/reactive set-points to balance the overall dispatch, while avoid-
ing voltage constraint violations. An online implementation is proposed
using a primal–dual gradient algorithm to achieve optimality from both
the DSOs’ and the DER-owners’ perspectives. The effectiveness of the
proposed market design is demonstrated on a wholesale market and an
IEEE 37-node distribution network.

The rest of the paper is organized as follow: Section 2 introduces
the DA wholesale market formulation using a distributionally robust
optimization approach. Section 3 describes the online incentive-based
tariff design for a local RT balancing market. Section 4 provides the
numerical results and Section 5 concludes the paper.

2. Day-ahead wholesale market with distributionally robustness

Individual DER units are often small-sized and cannot participate
in the wholesale market directly due to market restrictions such as
minimum bidding quantity requirements. In this paper, we integrate
multiple DER units within a distribution network into a single en-
tity, i.e., aggregator, to bid in the wholesale market. Note that only
inverted-based distributed PV units are considered in this work, but it
is straightforward to incorporate other distributed technologies, such
as energy storage devices, demand response technologies or other
distributed generators.1 We assume that the aggregator is namely the
considered DSO and it bids into the DA wholesale market. The other
participants in the market, i.e. other aggregators, retailers, large scale
power producers, etc., are modeled as demand and/or production
bidders.

1 The proposed electricity market mechanism also allows to include DERs
hat lead to the bi-directional power flows as long as their models are linear,
he cost functions are convex, and their feasibility sets are convex, closed
nd bounded. Besides, introducing energy storage devices into the proposed
ramework needs to include additional time-coupling constraints, but it does
ot change the property of optimality and convergence of the proposed
3

lgorithm.
The objective of the DA optimization problem is to attain the DA
dispatch decisions of the considered DSO, which is assumed to bid
strategically into the market using a bi-level structure. All market
participants other than the strategic DSO are assumed to be fully com-
petitive and offer/bid their supplies/demands at their marginal prices.
The bids of the considered DSO are optimized based on its forecasts of
the aggregated market demand and supply curves. Solutions to this DA
problem serve as the reference values for the local DERs represented
by the DSO whose outputs are adjusted in the RT dispatch, which will
be elaborated in Section 3.

To this end, we first divide each day equally into 𝑇 time slots
indexed by 𝑡 ∈ T = {1, 2,… , 𝑇 }, where the length of each slot is
𝛥𝑇 DA. Given the aggregated DA generation and demand forecasts 𝐺𝑡 ∈
R+, 𝐿𝑡 ∈ R+,∀𝑡 ∈ T of DERs, the considered DSO optimizes its DA
bidding strategy by solving a bi-level optimization problem.

2.1. Bidding strategy based on bi-level optimization

Assuming that the DSO bids strategically into the wholesale market.
The interaction between the market and the DSO can be formulated
as a leader–follower game, i.e., Stackelberg game [21]. We detail the
problem formulation for the upper-level (UL) and lower-level (LL)
problem for the leader and the follower in Sections 2.1.1 and 2.1.2,
respectively.

2.1.1. Upper-level optimization problem
The upper-level (UL) optimization problem aims to minimize the

DSO’s cost by optimizing its dispatch in the DA and balancing markets:

min
𝐸DAs/b,max
𝑡 ,

𝐸BM+/−
𝑡

𝜆DA
𝑡 (𝐸DAb

𝑡 − 𝐸DAs
𝑡 ) − 𝑝𝑟BM+

𝑡 𝐸BM+
𝑡 + 𝑝𝑟BM−

𝑡 𝐸BM−
𝑡 , (1a)

s.t. 𝐸DAs
𝑡 − 𝐸DAb

𝑡 + 𝐸BM−
𝑡 − 𝐸BM+

𝑡 = 𝐺𝑡 − 𝐿𝑡, (1b)

0 ≤ 𝐸DAs,max
𝑡 ≤ 𝐺cap, (1c)

−𝑇 𝑟max ≤ 𝐸DAs,max
𝑡 − 𝐸DAb,max

𝑡 ≤ 𝑇 𝑟max, (1d)

𝐸BM+
𝑡 , 𝐸BM−

𝑡 ≥ 0. (1e)

The objective function (1a) comprises the costs from the DA and the
balancing markets, where 𝐸DAs

𝑡 (resp. 𝐸DAb
𝑡 ) represents the DA dis-

patched supply (resp. demand) quantity for time 𝑡, 𝐸BM+
𝑡 (resp. 𝐸BM−

𝑡 )
are the positive (resp. negative) imbalance quantities, and 𝑝𝑟BM+

𝑡 (resp.
𝑝𝑟BM−

𝑡 ) are the positive (resp. negative) imbalance prices. Constraint
(1b) ensures the energy balance of the DSO. The bidding or offering
quantities of the DSO, i.e., 𝐸DAs,max

𝑡 and 𝐸DAb,max
𝑡 , are limited by the

generation capacity 𝐺cap ∈ R+ and the transmission capacity 𝑇 𝑟max ∈
R+ between the distribution and transmission grids in (1c)–(1d).

2.1.2. Lower-level optimization problem
The DA market clearing price 𝜆DA

𝑡 in the UL objective function (1a)
is the dual variable of the power balance of the lower-level (LL) market
clearing problem that is solved by the market operator:

max
𝛼DAs/b
𝑡 ,𝐸DAs/b

𝑡 ,

𝐸DA,D
𝑡,𝑚 ,𝐸DA,O

𝑡,𝑗

𝛼DAb
𝑡 𝐸DAb

𝑡 +
𝑁m
∑

𝑚=1
𝜆DA,D
𝑡,𝑚 𝐸DA,D

𝑡,𝑚 − 𝛼DAs
𝑡 𝐸DAs

𝑡

−
𝑁 j
∑

𝑗=1
𝜆DA,O
𝑡,𝑗 𝐸DA,O

𝑡,𝑗 , (2a)

s.t.
𝑁m
∑

𝑚=1
𝐸DA,D
𝑡,𝑚 −

𝑁 j
∑

𝑗=1
𝐸DA,O
𝑡,𝑗 +𝐸DAb

𝑡 −𝐸DAs
𝑡 = 0 ∶ 𝜆DA

𝑡 , (2b)

0 ≤ 𝐸DAs
𝑡 ≤ 𝐸DAs,max

𝑡 ∶ 𝜇DAsmin
𝑡 , 𝜇DAsmax

𝑡 , (2c)
DAb DAb,max DAbmin DAbmax
0 ≤ 𝐸𝑡 ≤ 𝐸𝑡 ∶ 𝜇𝑡 , 𝜇𝑡 , (2d)
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Fig. 1. The proposed two-stage market structure. In the DA market, the electricity supply and demand are scheduled based on the sampled forecast error dataset of renewable
outputs. Considering the DA bidding strategies, the real-time incentive signals from the DSO enables to adjust the outputs of DER-owners such as to balance the power exchanges
caused by the forecast errors. The DER pool on the left indicates that all DERs in the distribution network act as a single market participant to bid into the DA wholesale market.
The power exchanges between DERs are not considered at this stage. The connectivity between DERs on the right side of this diagram indicates that the DERs join the RT market
with their own operational and economic objectives while taking into account the constraints imposed by the network.
0 ≤ 𝐸DA,O
𝑡,𝑗 ≤ 𝐸DA,Omax

𝑡,𝑗 ∶ 𝜇DA,Omin
𝑡,𝑗 , 𝜇DA,Omax

𝑡,𝑗 , (2e)

0 ≤ 𝐸DA,D
𝑡,𝑚 ≤ 𝐸DA,Dmax

𝑡,𝑚 ∶ 𝜇DA,Dmin
𝑡,𝑚 , 𝜇DA,Dmax

𝑡,𝑚 . (2f)

For each time step, the aggregated offering and bidding curves consist
of multiple supply offering and demand bidding blocks, i.e., offering
and bidding price–quantity pairs on the step-wise offering and bidding
curves. The objective of the LL problem is to maximize the total
social welfare of the DA market, which is quantified by the demand
bidding price–quantity pair (𝜆DA,D

𝑡,𝑚 , 𝐸DA,D
𝑡,𝑚 ) ∈ R2

+ for bidding block 𝑚

and the supply offering price–quantity pair (𝜆DA,O
𝑡,𝑗 , 𝐸DA,O

𝑡,𝑗 ) ∈ R2
+ for

offering block 𝑗 of rival consumers and producers, respectively, and
the offering (resp. bidding) price–quantity pair (𝛼DAs

𝑡 , 𝐸DAs
𝑡 ) ∈ R2

+
(resp. (𝛼DAb

𝑡 , 𝐸DAb
𝑡 ) ∈ R2

+) of the DSO. Parameters 𝑁m and 𝑁 j denote
the number of consumers’ demand bidding blocks and the number of
rival producers’ offering blocks, respectively. Equality constraint (2b)
represents power balance constraint between the dispatched supply and
demand quantities. Inequality constraints (2c)–(2f) enforce the mini-
mum and the maximum limits of the offering and bidding quantities,
where 𝐸DA,Omax ∈ R𝑁 j

+ and 𝐸DA,Dmax ∈ R𝑁m
+ are denoted as the

maximum DA offering quantity of the rival producers and the maximum
bidding quantity of the consumers, respectively. Variables following
colons after the equality and inequality constraints (2b)–(2f) are the
corresponding dual variables.

2.1.3. Combining LL and UL problems
As the bi-level optimization problem cannot be solved directly,

reformulation is required. First of all, as the LL problem (2) is con-
vex, the bi-level model can be formulated as a mathematical program
with equilibrium constraints (MPEC) by replacing the LL problem the
following set of Karush–Kuhn–Tucker (KKT) conditions:

𝛼DAs
𝑡 − 𝜆DA

𝑡 + 𝜇DAsmax
𝑡 − 𝜇DAsmin

𝑡 = 0 ∀𝑡, (3a)

− 𝛼DAb
𝑡 + 𝜆DA

𝑡 + 𝜇DAbmax
𝑡 − 𝜇DAbmin

𝑡 = 0 ∀𝑡, (3b)

𝜆DA,O − 𝜆DA + 𝜇DA,Omax − 𝜇DA,Omin = 0 ∀𝑡, 𝑗, (3c)
4

𝑡,𝑗 𝑡 𝑡,𝑗 𝑡,𝑗
− 𝜆DA,D
𝑡𝑚 + 𝜆DA

𝑡 + 𝜇DA,Dmax
𝑡,𝑚 − 𝜇DA,Dmin

𝑡,𝑚 = 0 ∀𝑡, 𝑚, (3d)

0 ≤ 𝐸DAs
𝑡 ⟂ 𝜇DAsmin

𝑡 ≥ 0 ∀𝑡, (3e)

0 ≤ 𝐸DAb
𝑡 ⟂ 𝜇DAbmin

𝑡 ≥ 0 ∀𝑡, (3f)

0 ≤ 𝐸DA,O
𝑡,𝑗 ⟂ 𝜇DA,Omin

𝑡,𝑗 ≥ 0 ∀𝑡, 𝑗, (3g)

0 ≤ 𝐸DA,D
𝑡,𝑚 ⟂ 𝜇DA,Dmin

𝑡,𝑚 ≥ 0 ∀𝑡, 𝑚, (3h)

0 ≤ (𝐸DAs,max
𝑡 − 𝐸DAs

𝑡 ) ⟂ 𝜇DAsmax
𝑡 ≥ 0 ∀𝑡, (3i)

0 ≤ (𝐸DAb,max
𝑡 − 𝐸DAb

𝑡 ) ⟂ 𝜇DAbmax
𝑡 ≥ 0 ∀𝑡, (3j)

0 ≤ (𝐸DA,Omax
𝑡,𝑗 − 𝐸DA,O

𝑡,𝑗 ) ⟂ 𝜇DA,Omax
𝑡,𝑗 ≥ 0 ∀𝑡, 𝑗, (3k)

0 ≤ (𝐸DA,Dmax
𝑡,𝑚 − 𝐸DA,D

𝑡,𝑚 ) ⟂ 𝜇DA,Dmax
𝑡,𝑚 ≥ 0 ∀𝑡, 𝑚, (3l)

𝐸DAs
𝑡 − 𝐸DAb

𝑡 +
𝑁 j
∑

𝑗=1
𝐸DA,O
𝑡,𝑗 −

𝑁m
∑

𝑚=1
𝐸DA,D
𝑡,𝑚 = 0 ∀𝑡, 𝑗, 𝑚. (3m)

where (3a)–(3d) are stationary conditions. The resulting MPEC formu-
lation is:

min
𝐸DAs/b,max
𝑡 ,

𝐸BM+/−
𝑡

𝜆DA
𝑡 (𝐸DAb

𝑡 − 𝐸DAs
𝑡 ) − 𝑝𝑟BM+

𝑡 𝐸BM+
𝑡 + 𝑝𝑟BM−

𝑡 𝐸BM−
𝑡 , (4a)

s.t. UL constraints (1b)-(1e), (4b)
KKT conditions (3a)-(3m). (4c)

The resulting MPEC is non-linear due to (1) the complementarity
conditions (3e)–(3l) and (2) the term 𝜆DA

𝑡 (𝐸DAb
𝑡 −𝐸DAs

𝑡 ) in the objective
function. To convert the MPEC problem into a solvable MILP formu-
lation, we first linearize the equations including the perpendicularity
operator ‘‘⟂’’ using binary variables [22]:

0 ≤ 𝐸DAs
𝑡 ≤ 𝑀1𝑢

DAsmin
𝑡 ∀𝑡, (5a)

0 ≤ 𝐸DAb
𝑡 ≤ 𝑀1𝑢

DAbmin
𝑡 ∀𝑡, (5b)

0 ≤ 𝐸DA,O ≤ 𝑀 𝑢DA,Omin ∀𝑡, 𝑗, (5c)
𝑡,𝑗 2 𝑡,𝑗
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0 ≤ 𝐸DA,D
𝑡,𝑚 ≤ 𝑀3𝑢

DA,Dmin
𝑡,𝑚 ∀𝑡, 𝑚, (5d)

0 ≤ 𝜇DAsmin
𝑡 ≤ 𝑀4(1 − 𝑢DAsmin

𝑡 ) ∀𝑡, (5e)

0 ≤ 𝜇DAbmin
𝑡 ≤ 𝑀4(1 − 𝑢DAbmin

𝑡 ) ∀𝑡, (5f)

0 ≤ 𝜇DA,Omin
𝑡,𝑗 ≤ 𝑀5(1 − 𝑢DA,Omin

𝑡,𝑗 ) ∀𝑡, 𝑗, (5g)

≤ 𝜇DA,Dmin
𝑡,𝑚 ≤ 𝑀6(1 − 𝑢DA,Dmin

𝑡,𝑚 ) ∀𝑡, 𝑚, (5h)

≤ 𝐸DAs,max
𝑡 − 𝐸DAs

𝑡 ≤ 𝑀7𝑢
DAs,max
𝑡 ∀𝑡, (5i)

≤ 𝐸DAb,max
𝑡 − 𝐸DAb

𝑡 ≤ 𝑀7𝑢
DAb,max
𝑡 ∀𝑡, (5j)

≤ 𝐸DA,Omax
𝑡,𝑗 − 𝐸DA,O

𝑡,𝑗 ≤ 𝑀8𝑢
DA,Omax
𝑡,𝑗 ∀𝑡, 𝑗, (5k)

≤ 𝐸DA,Dmax
𝑡,𝑚 − 𝐸DA,D

𝑡,𝑚 ≤ 𝑀9𝑢
DA,Dmax
𝑡,𝑚 ∀𝑡, 𝑚, (5l)

≤ 𝜇DAsmax
𝑡 ≤ 𝑀10(1 − 𝑢DAsmax

𝑡 ) ∀𝑡, (5m)

≤ 𝜇DAbmax
𝑡 ≤ 𝑀10(1 − 𝑢DAbmax

𝑡 ) ∀𝑡, (5n)

≤ 𝜇DA,Omax
𝑡,𝑗 ≤ 𝑀11(1 − 𝑢DA,Omax

𝑡,𝑗 ) ∀𝑡, 𝑗, (5o)

≤ 𝜇Dmax
𝑡,𝑚 ≤ 𝑀12(1 − 𝑢DA,Dmax

𝑡,𝑚 ) ∀𝑡, 𝑚, (5p)
DAsmin
𝑡 , 𝑢DAbmin

𝑡 , 𝑢DA,Omin
𝑡,𝑗 , 𝑢DA,Dmin

𝑡,𝑚 ,

𝑢DAsmax
𝑡 , 𝑢DAbmax

𝑡 , 𝑢DA,Omax
𝑡,𝑗 , 𝑢DA,Dmax

𝑡,𝑚 ∈ {0, 1}. (5q)

here 𝑀1,2,…,12 are large enough constants. Second, the non-linear term
DA
𝑡 (𝐸DAb

𝑡 −𝐸DAs
𝑡 ) in the objective function is linearized by applying the

trong duality theorem to the LL problem:

𝛼DAb
𝑡 𝐸DAb

𝑡 +
𝑁m
∑

𝑚=1
𝜆DA,D
𝑡,𝑚 𝐸DA,D

𝑡,𝑚 − 𝛼DAs
𝑡 𝐸DAs

𝑡 −
𝑁 j
∑

𝑗=1
𝜆DA,O
𝑡,𝑗 𝐸DA,O

𝑡,𝑗

= 𝜇DAsmax
𝑡 𝐸DAs,max

𝑡 + 𝜇DAbmax
𝑡 𝐸DAb,max

𝑡

+
𝑁 j
∑

𝑗=1
𝜇DA,Omax
𝑡,𝑗 𝐸DA,Omax

𝑡,𝑗 +
𝑁m
∑

𝑚=1
𝜇DA,Dmax
𝑡,𝑚 𝐸DA,Dmax

𝑡,𝑚

(6)

By reformulating (3a)–(3b), (3e)–(3f) and (3i)–(3j), we obtain

𝛼DAs
𝑡 𝐸DAs

𝑡 = 𝐸DAs
𝑡 (𝜆DA

𝑡 − 𝜇DAsmax
𝑡 + 𝜇DAsmin

𝑡 ), (7a)

𝛼DAb
𝑡 𝐸DAb

𝑡 = 𝐸DAb
𝑡 (𝜆DA

𝑡 + 𝜇DAbmax
𝑡 − 𝜇DAbmin

𝑡 ), (7b)

𝐸DAs
𝑡 𝜇DAsmin

𝑡 = 0, (7c)

𝐸DAb
𝑡 𝜇DAbmin

𝑡 = 0, (7d)

𝐸DAs
𝑡 𝜇DAsmax

𝑡 = 𝐸DAs,max
𝑡 𝜇DAsmax

𝑡 , (7e)

𝐸DAs
𝑡 𝜇DAbmax

𝑡 = 𝐸DAb,max
𝑡 𝜇DAbmax

𝑡 . (7f)

Substituting (7c)–(7f) into (7a) and (7b) yields

𝛼DAs
𝑡 𝐸DAs

𝑡 = 𝜆DA
𝑡 𝐸DAs

𝑡 − 𝜇DAsmax
𝑡 𝐸DAs,max

𝑡 ,

𝛼DAb
𝑡 𝐸DAb

𝑡 = 𝜆DA
𝑡 𝐸DAb

𝑡 + 𝜇DAbmax
𝑡 𝐸DAb,max

𝑡

(8)

and with (6), we have

𝜆DA
𝑡 (𝐸DAb

𝑡 − 𝐸DAs
𝑡 ) =

𝑁 j
∑

𝑗=1
𝜆DA,O
𝑗 𝐸DA,O

𝑗 +
𝑁 j
∑

𝑗=1
𝜇DA,Omax
𝑗 𝐸DA,Omax

𝑗

−
𝑁m
∑

𝑚=1
𝜆DA,D
𝑚 𝐸DA,D

𝑚 +
𝑁m
∑

𝑚=1
𝜇DA,Dmax
𝑚 𝐸DA,Dmax

𝑚

(9)

Following the linearization and reformulation process presented above,
the bi-level problems (1)–(2) can be reformulated as an MILP problem
as follows:

min
𝛼DAs/b
𝑡 ,𝐸DAs/b

𝑡 ,𝐸DAs,max
𝑡 ,

𝐸DA,O
𝑡,𝑗 ,𝐸DA,D

𝑡,𝑚

𝑁 j
∑

𝑗=1

(

𝜆DA,O
𝑡,𝑗 𝐸DA,O

𝑡,𝑗 + 𝜇DA,Omax
𝑡,𝑗 𝐸DA,Omax

𝑡,𝑗
)

−
𝑁m
∑

𝑚=1

(

𝜆DA,D
𝑡,𝑚 𝐸DA,D

𝑡,𝑚 − 𝜇DA,Dmax
𝑡,𝑚 𝐸DA,Dmax

𝑡,𝑚
)

BM+ BM+ BM− BM−
5

−𝑝𝑟𝑡 𝐸𝑡 + 𝑝𝑟𝑡 𝐸𝑡 , (10a) 𝐸
s.t. UL constraints (1b)–(1e), (10b)
Linearized reformulations of problem (2). (10c)

This combined equivalence of the bi-level problem can be directly
solved using off-the-shelf commercial optimization solvers.

2.2. Uncertainty modeling

In reality, the DA load and generation forecasts 𝐿𝑡 and 𝐺𝑡 in (1b)
are random variables. Stochastic optimization (SO) [23] and robust
optimization (RO) [24,25] are among the most popular uncertainty
modeling methods applied to optimize bidding strategies. In this paper
we however use DRO to handle the uncertainty. This is because SO
requires the knowledge of the specific uncertainty distribution and
its computational complexity increases with the number of scenarios;
although RO is often computationally tractable as it optimizes the
decision considering the worst-case scenario, performance of robust
optimization is restricted by its conservativeness.

DRO was first developed for solving a single-product newsvendor
problem considering a demand distribution characterized by its mean
and variance in 1958 [26]. The method became popular again in recent
years as it acts as an intermediary between SO and RO and achieves
an acceptable trade-off between the optimality and the computational
effort. The distributionally robust DA bidding optimization presented
here ensures that the bidding strategy is subject to the worst-case distri-
bution of generation/load forecast uncertainties within the ambiguity
set . The ambiguity set collects a group of probability distributions of
load and generation forecast errors 𝛿𝑡 ∈ R and can be described by the
following constraints

∶  =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐇 ∶

E𝐇[𝛿𝑡] = 0

E𝐇[|𝛿𝑡|] ≤ 𝜁1𝑡
E𝐇[(𝛿𝑡)2] ≤ 𝜁2𝑡
𝑃𝑟(𝛿𝑡 ∈ {𝛿min

𝑡 ≤ 𝛿𝑡 ≤ 𝛿max
𝑡 }) = 1

⎫

⎪

⎪

⎬

⎪

⎪

⎭

, (11)

where the first line ensures that the expectation of 𝛿𝑡 is zero. The second
and third lines guarantee that the expected absolute deviation and the
variance of 𝛿𝑡 are capped by 𝜁1𝑡 and 𝜁2𝑡 , respectively. The last line limits
all realizations of 𝛿𝑡 using the lower bound 𝛿min

𝑡 and the upper bound
𝛿max
𝑡 .

Following the principle of DRO [26], we reformulate (10) into a DA
distributionally robust stochastic market problem:

inf
𝒙

sup
𝐇∈

E𝐇
𝜹 [ 𝛩(𝒙) + 𝜙(𝒙, 𝜹) ], (12a)

s.t. 𝑨𝒙 + 𝑩𝒚(𝜹) ≤ 𝑫(𝜹), (12b)

𝜹 ∼ 𝐇 ∈ , (12c)

where terms 𝛩(𝒙) and 𝜙(𝒙, 𝜹) correspond to the first-stage related part
∑𝑁 j

𝑗=1(𝜆
DA,O
𝑡,𝑗 𝐸DA,O

𝑡,𝑗 + 𝜇DA,Omax
𝑡,𝑗 𝐸DA,Omax

𝑡,𝑗 ) −
∑𝑁m

𝑚=1(𝜆
DA,D
𝑡,𝑚 𝐸DA,D

𝑡,𝑚 − 𝜇DA,Dmax
𝑡,𝑚

𝐸DA,Dmax
𝑡,𝑚 ) and the second-stage related part 𝑝𝑟BM−

𝑡 𝐸BM−
𝑡 − 𝑝𝑟BM+

𝑡 𝐸BM+
𝑡

in the objective function (10a), respectively. Constraint (12b) is equiv-
alent to (10b)–(10c). The compact vectors 𝒙 and 𝒚 represent the first-
stage and second-stage decisions (i.e., recourse decisions) defined by

𝑥 ∶= [𝐸DAs
𝑡 , 𝐸DAb

𝑡 , 𝐸DAs,max
𝑡 , 𝐸DAb,max

𝑡 , 𝛼DAs
𝑡 , 𝛼DAb

𝑡 ,

𝜆DA
𝑡 , 𝐸DA,O

𝑡,𝑗 , 𝐸DA,D
𝑡,𝑚 ],

∶= [𝐸BM−
𝑡 , 𝐸BM+

𝑡 ].

ote that the ‘‘min–max’’ problem given in (12) can be reformulated as
minimization problem by taking the duality of the inner maximization
roblem [27], however, the problem in general is still intractable as it
equires solving recourse problems over all possible realizations of the
ncertainty parameter 𝜹 [28]. Thus, the concept of linear decision rule
LDR) [29] is applied to approximate the recourse decisions using an
ffine function of 𝜹, i.e.,

̃BM+ 0 1 2 1 3 2

𝑡 = 𝑘𝑡 + 𝑘𝑡 𝛿𝑡 + 𝑘𝑡 𝑢𝑡 + 𝑘𝑡 𝑢𝑡 , (13a)
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�̃�BM−
𝑡 = 𝑙0𝑡 + 𝑙1𝑡 𝛿𝑡 + 𝑙2𝑡 𝑢

1
𝑡 + 𝑙3𝑡 𝑢

2
𝑡 , (13b)

where 𝑘0∼3𝑡 ∈ R and 𝑙0∼3𝑡 ∈ R are coefficients to be optimized. The aux-
iliary variables 𝑢1,2𝑡 ∈ R are introduced to enhance the flexibility of the
linear decision rule and guarantee the tractability of the problem [30],
which are subject to the following additional constraints:

|𝛿𝑡| ≤ 𝑢1𝑡 ≤ 𝑢1,max
𝑡 = max{𝛿max

𝑡 ,−𝛿min
𝑡 }, (14a)

(𝛿𝑡)2 ≤ 𝑢2𝑡 ≤ 𝑢2,max
𝑡 = max{(𝛿max

𝑡 )2, (𝛿min
𝑡 )2}. (14b)

Substituting (13) into (12), we have:

inf
𝑘0∼3𝑡 ,𝑙0∼3𝑡

sup
𝐇∈

E𝐇
𝜹 𝛩(𝒙) + 𝜙(𝒙, 𝜹), (15a)

s.t. 𝒙 ∈ 𝑿𝒇 , (15b)

𝑨𝒙 + 𝑩�̃�(𝜹, 𝒖) ≤ 𝑫(𝜹), (15c)

𝜹 ∼ 𝐇 ∈ , (15d)

where �̃�(𝜹, 𝒖) denotes the approximated resource decisions using LDR.
Eventually, problem (15) is tractable and it minimizes the DSOs’ cost
by optimizing the coefficients 𝑘0∼3𝑡 and 𝑙0∼3𝑡 . As 𝜹 and 𝒖 are subject to
constraints in the ambiguity set  as defined in (11) as well as (14),
problem (15) including the DRO constraints can be solved using the
duality theory afterwards.

The outputs of the DA market, i.e., the dispatched DA bidding quan-
tities of the DSO {𝐸DAs

𝑡 , 𝐸DAb
𝑡 }, serve as inputs for the incentive-based

RT balancing market. Details of the RT balancing market mechanism
will be described in the following section. Note that the DA decisions
are usually for an hourly resolution whereas actions taken based on the
RT market outcomes are in the seconds to minutes time range to enable
a timely tracking of time-varying loads and renewables. To resolve this
inconsistency in temporal resolutions, we equally divide the DA bidding
quantities of the DSO {𝐸DAs

𝑡 , 𝐸DAb
𝑡 } into small portions to fit the fast

balancing tasks, i.e. the power reference is assumed constant across all
time slots in the RT problem that fall within one DA time slot. To avoid
confusion with the notation, we use 𝑘 instead of 𝑡 as the time index
when formulating the RT problem.

3. Incentive-based real-time balancing market

In this section, we investigate a RT balancing market in distribution
networks wherein both the DSO and DERs pursue their own operational
and economic objectives. Again, the DSO corresponds to the entity
that bids into the DA market as a representative of the local DERs. In
the RT market, the DSO determines the optimal reward/payment of
local DERs to encourage/discourage their network injection, such that
the RT imbalance between the DA bidding quantity of the DSO and
the RT output is minimized. A bi-level time-varying Stackelberg game-
based optimization problem [21] is formulated to design the optimal
incentive signals as well as the optimal set-points of the DERs. The
controllability of the DERs are the operational set-points of the active
and the reactive power. An online distributed algorithm is proposed to
enable a computationally-efficient implementation.

3.1. System model

Consider a distribution network operated by a DSO, denoted by a
directed and connected graph (0, ), where 0 ∶=  ∪{0} is the set
of all ‘‘buses’’ or ‘‘nodes’’ with substation node 0 and  ∶= {1,… , 𝑁}.
The set  ⊂  ×  includes ‘‘links’’ or ‘‘lines’’ for all (𝑖, 𝑗) ∈  . Let
𝑉𝑖,𝑘 ∈ C denote the line-to-ground voltage at node 𝑖 ∈  at time
𝑘, where the voltage magnitude is given by 𝑣𝑖,𝑘 ∶= |𝑉𝑖,𝑘|. The set 𝛺
includes all local DERs in a distribution network. Denote 𝑝𝑖,𝑘 ∈ R and
𝑞𝑖,𝑘 ∈ R as active and reactive power injections of DER at node 𝑖,
respectively, for all 𝑖 ∈ 𝛺 at time 𝑘 > 0. We denote 𝑖,𝑘 as the feasible
6

set of active and reactive power 𝑝𝑖,𝑘 and 𝑞𝑖,𝑘 at node 𝑖 ∈ 𝛺 for all 𝑘 > 0.
The set of operating set-points of DERs at node 𝑖 ∈ 𝛺 represents a
convex envelop defined by

𝑖,𝑘 ∶=
{

(𝑝𝑖,𝑘, 𝑞𝑖,𝑘) ∶ 𝑝min
𝑖,𝑘 ≤ 𝑝𝑖,𝑘 ≤ 𝑝max

𝑖,𝑘 , 𝑝2𝑖,𝑘 + 𝑞2𝑖,𝑘 ≤ (𝑠max
𝑖,𝑘 )2

}

,

where 𝑠max
𝑖,𝑘 is the apparent power limit of the DER at node 𝑖 ∈ 𝛺 at

time 𝑘. Let 𝑝min
𝑖,𝑘 and 𝑝max

𝑖,𝑘 denote the lower and upper bounds of active

power set-points of DER at node 𝑖 ∈ 𝛺 at time 𝑘. For PV inverter-based
DERs, the feasible set 𝑖,𝑘 is constructed by the solar energy availability.
For other devices, such as energy storage systems, small-scale diesel
generators and variable frequency drives, the constraints can be altered
to include their physical capacity limits in 𝑖,𝑘. We assume that the
sets 𝑖,𝑘 are convex, closed and bounded for all 𝑖 ∈ 𝛺 for times 𝑘 ≥ 0.
For future development, we define 𝑘 ∶= 1,𝑘 ×⋯ × 𝑁𝛺 ,𝑘, where 𝑁𝛺
denotes the cardinality of set 𝛺.

To ensure that the optimal dispatch decisions of DERs are always
feasible with respect to voltage constraints, we include the funda-
mental power flow equations in the RT balancing market design for
distribution networks. The AC power flow equations render the RT
market problem nonconvex and NP-hard; in addition, they hinder the
development of a computationally-affordable implementation. Here we
instead use a linearization of the nonlinear AC power flow, which is
given by

𝑣𝑘 = 𝑅𝑝𝑘 +𝑋𝑞𝑘 + �̃�, (16)

where 𝑝𝑘 ∶= [𝑝1,𝑘,… , 𝑝𝑁,𝑘]⊺ ∈ R𝑁 and 𝑞𝑘 ∶= [𝑞1,𝑘,… , 𝑞𝑁,𝑘]⊺ ∈ R𝑁 .
The linearization parameters 𝑅 ∈ R𝑁×𝑁 , 𝑋 ∈ R𝑁×𝑁 and �̄� ∈ R𝑁

can be attained from various linearization methods, e.g., [31–36] and
correspond to sensitivity matrices.

3.2. Real-time incentive-based market problem

The goals of our proposed incentive-based balancing market are
(1) to explicitly take into account the inherent trade-offs between the
renewable energy forecast errors in the DA dispatch results and the RT
tariffs design for local DERs; (2) to coordinate DERs such as to fulfill
the operational constraints (i.e., balancing and voltage regulations).
Accordingly, two objectives are considered here to account for the
different objectives for DERs and system operators.

3.2.1. Costs for DERs
The objective function for DERs at node 𝑖 ∈ 𝛺 comprises of the

operational cost and the incentive cost, 𝐽𝑖,𝑘(𝑝𝑖,𝑘, 𝑞𝑖,𝑘) = 𝐽Cost
𝑖,𝑘 (𝑝𝑖,𝑘, 𝑞𝑖,𝑘) +

𝐽 Inct
𝑖,𝑘 (𝑝𝑖,𝑘, 𝑞𝑖,𝑘). The operational cost function 𝐽Cost

𝑖,𝑘 ∈ R+ is assumed to
be quadratic and therefore convex, and can capture several objectives
including ramping costs, small-scale thermal generation costs, active
power losses and curtailment penalties. The incentive cost 𝐽 Inct

𝑖,𝑘 ∈ R is a
function of the incentive signals from the DSO to quantify the payment
𝐽 Inct
𝑖,𝑘 > 0 or reward 𝐽 Inct

𝑖,𝑘 ≤ 0 for aggregated power injections of local
DERs. We define the incentive costs for all DERs to be a linear affine
function of the power dispatches, i.e., 𝐽 Inct

𝑖,𝑘 ∶= 𝛼𝑖,𝑘𝑝𝑖,𝑘 + 𝛽𝑖,𝑘𝑞𝑖,𝑘. Both
RT tariffs (incentives) 𝛼𝑖,𝑘 ∈ R and 𝛽𝑖,𝑘 ∈ R and set-points of DERs
𝑝𝑖,𝑘, 𝑞𝑖,𝑘} are decision variables in the following bi-level optimization
roblem. By this design, the incentives can be optimally adjusted by
he DSO over time to continuously guide the power injections of DERs.
ntuitively, the RT tariffs impact how much DERs should contribute to
he overall RT dispatch of the DSO given the current network states
nd supply/demand conditions. For each time step 𝑘, the time-varying

optimization problem for the DER at node 𝑖 ∈ 𝛺 can be expressed by

min
(𝑝𝑖,𝑘 ,𝑞𝑖,𝑘)∈𝑖,𝑘

𝐽Cost
𝑖,𝑘 (𝑝𝑖,𝑘, 𝑞𝑖,𝑘) + 𝛼𝑖,𝑘𝑝𝑖,𝑘 + 𝛽𝑖,𝑘𝑞𝑖,𝑘. (17)

Note that the above optimization is a convex quadratic program that
determines the optimal set-points of DERs with given incentive signals

{𝛼𝑖,𝑘, 𝛽𝑖,𝑘}.
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3.2.2. Costs of imbalance
As the objective function for the DSO to be minimized, we define

the discrepancy between the DA bidding results and the RT aggregated
dispatch at the 𝑘th time slot, i.e.,

𝐷𝑘(𝑝𝑘|𝐸RT
𝑘 ) =

‖

‖

‖

‖

∑

𝑖∈
𝑝𝑖𝑘𝛥𝑇

RT − 𝐸RT
𝑘

‖

‖

‖

‖

2

2
, (18)

where 𝛥𝑇 RT denotes the length of time slot during the RT operation. Let
𝐸RT
𝑘 denote the RT balancing reference derived from the DA dispatch

esults.

emark 1 (Timescale Mismatch and Connection). We pursue the RT bal-
ncing market by tracking the DA dispatch decisions as a reference. The
djustments of DERs are determined every 𝛥𝑇 RT, but the DA reference
alues are given for every 𝛥𝑇 DA. To solve this timescale mismatch
nd build an appropriate connection between these two stages, we
niformly distribute the balancing task defined by {𝐸DAb

𝑡 , 𝐸DAs
𝑡 } over

he time slots in the RT operation. Given DA result at time 𝑡, the RT
eference in (18) therefore is

RT
𝑘 =

𝐸DAs
𝑡 − 𝐸DAb

𝑡

(𝛥𝑇 DA∕𝛥𝑇 RT)
, 𝑡 ⋅ 𝛥𝑇 DA ≤ 𝑘 ⋅ 𝛥𝑇 RT < (𝑡 + 1) ⋅ 𝛥𝑇 DA, (19)

where the time index 𝑡 is reserved for the DA stage and index 𝑘
represents the time-step during the RT operation.

Note that the social-welfare objective (19) indirectly connects the
RT optimal balancing market to the quality of DA forecast. The stochas-
tic modeling in the DA stage with different standard deviation settings
possibly leads to overly conservative or riskier DA dispatch decisions.
Our specific two-stage design allows DSOs to balance at a fast timescale
to explicitly compensate the mismatch between the DA decisions and
RT dispatches.

We introduce the following bi-level optimization problem, which
captures both DER-oriented (17) and network-oriented (18) objectives

min
𝑝𝑘,𝑞𝑘,

𝛼𝑘,𝛽𝑘,𝑣𝑘

∑

𝑖∈𝛺
𝐽Cost
𝑖,𝑘 (𝑝𝑖,𝑘, 𝑞𝑖,𝑘) + 𝛾𝐷𝑘(𝑝𝑘|𝐸RT

𝑘 ), (20a)

s.t.

(𝑝𝑖,𝑘, 𝑞𝑖,𝑘) = argmin
𝑝𝑖,𝑘 ,𝑞𝑖,𝑘

𝐽Cost
𝑖,𝑘 (𝑝𝑖,𝑘, 𝑞𝑖,𝑘) + 𝛼𝑖,𝑘𝑝𝑖,𝑘 + 𝛽𝑖,𝑘𝑞𝑖,𝑘, (20b)

𝑣𝑘 = 𝑅𝑝𝑘 +𝑋𝑞𝑘 + �̃�, (20c)

𝑣 ≤ 𝑣𝑘 ≤ 𝑣, (20d)

∀𝑖 ∈ 𝛺, (20e)

here the constant 𝛾 > 0 is given based on the DA imbalance price. In
he RT balancing market, the imbalance deviations happened on both
ides (i.e., positive/negative imbalance quantities) will be penalized
y the same cost, i.e., 𝛾. The interaction between the imbalance costs
nd the cost functions of local DERs can also be seen as a Stackelberg
ame [21].

The constraint (20b) models an embedded optimization problem
or the DER at node 𝑖 ∈ 𝛺 with given incentive signals 𝛼𝑖,𝑘 and
𝑖,𝑘. The linear power flow in (20c) maps the active and reactive set-
oints (𝑝𝑘, 𝑞𝑘) to voltage magnitude with sensitivity matrix (𝑅,𝑋) at
ny time slot 𝑘. The vectors 𝑣 ∈ R𝑁 and �̄� ∈ R𝑁 represent the lower
nd upper limits of voltage magnitude. In the RT market, the DSO is
esponsible for power balancing and voltage regulation at any time.
his time-varying problem is posed and solved every 𝛥𝑇 RT for the

‘best’’ incentive signals and optimal set-points for DERs’, while at the
ame time regulating the voltage. It is a challenge to solve problem
20) in real time, not only because of the non-convex nature of the
roblem but also because it requires continued communication between
SO and DERs due to the time-varying situation (i.e., supply/demand
ariations). To tackle this issue, we leverage a gradient approach to
pproximate the solution of problem (20) in an online distributed
7

ashion.
3.3. Online distributed algorithm: A gradient approach

Online gradient-based approaches deal with optimization problems
that have incomplete or time-varying input information (parameters).
The decisions are implemented over time without fully solving the op-
timization problem, and it aims to tradeoff optimality, communication
effort and computational efficiency. Such algorithms have been applied
and discussed for power systems and other applications in [14,37–41].
In this paper, we employ an online gradient-based approach to solve
the proposed RT incentive-based balancing market problem taking into
account the fast-changing renewable power output. While developing
the online algorithm, we firstly start with a convex relaxation of the
original problem (20), such that the optimization problem of local
DERs, i.e. (20b), is ignored. Then we show that a primal–dual gradient
approach together with a specific design of the incentive signal updates
can attain the optimum of the original problem (20). Replacing the em-
bedded constraint (20b) by the operational feasible region, we obtain

min
𝑝𝑖 ,𝑞𝑖 ,𝑣𝑖

∑

𝑖∈𝛺
𝐽Cost
𝑖,𝑘 (𝑝𝑖,𝑘, 𝑞𝑖,𝑘) + 𝛾𝐷𝑘(𝑝𝑘|𝐸RT

𝑘 ), (21a)

s.t. 𝑣𝑘 = 𝑅𝑝𝑘 +𝑋𝑞𝑘 + �̃�, (21b)

𝑣 ≤ 𝑣𝑘 ≤ 𝑣 ∶ 𝜆RT
𝑘 , 𝜆

RT
𝑘 , (21c)

(𝑝𝑖,𝑘, 𝑞𝑖,𝑘) ∈ 𝑖,𝑡,∀𝑖 ∈  , (21d)

where 𝜆RT
𝑘 ∈ R𝑁

+ and 𝜆
RT
𝑘 ∈ R𝑁

+ are the dual variables associated with
the lower and upper voltage constraints, respectively. We make the
following assumptions.

Assumption 1. For any time 𝑘 > 0, the local objective functions of
DERs, 𝐽Cost

𝑖,𝑘 (𝑝𝑖,𝑘, 𝑞𝑖,𝑘),∀𝑖 ∈ 𝛺 are continuous differentiable and strongly

convex functions of 𝑝𝑖,𝑘 and 𝑞𝑖,𝑘, and their first-order derivatives are
bounded within their operation regions, i.e., ∇𝐽Cost

𝑖,𝑘 (𝑝𝑖,𝑘, 𝑞𝑖,𝑘) ≤ 𝑀𝐽 ,∀𝑖 ∈
𝛺. The imbalance cost function 𝐷𝑘(𝑝𝑘|𝐸RT

𝑘 ) = ‖

∑

𝑖∈ 𝑝𝑖,𝑘𝛥𝑇 RT −𝐸RT
𝑘 ‖

2
2

is continuously differentiable, convex and with first-order derivative
bounded by given DA bidding strategies 𝐸RT

𝑘 , i.e., ∇𝐷𝑘(𝑝𝑘|𝐸RT
𝑘 ) ≤ 𝑀𝐷.

Assumption 2 (Slater’s Condition). For any time 𝑘 > 0, there exists a
feasible point located within the operating region (𝑝𝑘, 𝑞𝑘) ∈ 𝑘, so that

𝑣 ≤ 𝑅𝑝𝑘 +𝑋𝑞𝑘 + �̃� ≤ 𝑣.

Remark 2 (Optimal Condition). Under Assumptions 1 and 2, the solution
of (21) along with the incentive signals (𝛼∗𝑘 , 𝛽

∗
𝑘 ) defined by

𝛼∗𝑘 = 𝑅
(

𝜆RT,∗
𝑘 − 𝜆

RT,∗
𝑘 + 𝛾∇𝑝𝑘𝐷𝑘(𝑝∗𝑘|𝐸

RT
𝑘 )

)

, (22a)

𝛽∗𝑘 = 𝑋
(

𝜆RT,∗
𝑘 − 𝜆

RT,∗
𝑘

)

, (22b)

is the global solution of the original problem (20).

The proof is omitted here, which follows a similar derivation as
given in [42].

We now develop an online gradient-based algorithm to solve the
RT balancing market problem in (20). Initially, consider a regularized
Lagrangian function of the relaxed problem (21) given by

𝜂
𝑘

(

𝑝𝑘, 𝑞𝑘, 𝜆
RT
𝑘 , 𝜆

RT
𝑘

)

=
∑

𝑖∈
𝐽Cost
𝑖,𝑘 (𝑝𝑖,𝑘, 𝑞𝑖,𝑘) + 𝛾𝐷𝑘(𝑝𝑘|𝐸RT

𝑘 ) + (𝜆RT
𝑘 )⊺

(

𝑣 − 𝑣𝑘
)

+ (𝜆
RT
𝑘 )⊤

(

𝑣𝑘 − 𝑣
)

−
𝜂
2

(

‖𝜆RT
𝑘 ‖

2
2 + ‖𝜆

RT
𝑘 ‖

2
2

)

,

(23)

where a small positive constant 𝜂 > 0 is predefined. The Tikhonov
regularization term − 𝜂

(

‖𝜆RT
‖

2 + ‖𝜆
RT
‖

2
)

facilitates the convergence
2 𝑘 2 𝑘 2
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performance. To solve (21) in an online fashion, we formulate the
time-varying saddle-point problem

max
𝜆RT
𝑘 ∈R𝑁

+ ,𝜆𝑘∈R𝑁
+

min
(𝑝𝑡 ,𝑞𝑖)∈𝑖,𝑘

𝜂
𝑘

(

𝑝𝑘, 𝑞𝑘, 𝜆
RT
𝑘 , 𝜆

RT
𝑘

)

. (24)

s 𝜂 is small, the primal–dual gradient-based approaches can be applied
o (24) to reach an approximate solution of the original problem (21)
ut with better convergence. The optimality discrepancy due to the
egularization terms has been explicitly discussed in [43]. Together
ith the incentive signals defined in (22), we have the following online

terative updates at time 𝑘:

𝑝𝑘+1 =

[

𝑝𝑘 − 𝜖𝑝

(

∇𝑝𝑘

∑

𝑖∈
𝐽Cost
𝑖,𝑘 (𝑝𝑖,𝑘, 𝑞𝑖,𝑘) + 𝛼𝑘

)]

𝑘

, (25a)

𝑞𝑘+1 =

[

𝑞𝑘 − 𝜖𝑞

(

∇𝑞𝑘

∑

𝑖∈
𝐽Cost
𝑖,𝑘 (𝑝𝑖,𝑘, 𝑞𝑖,𝑘) + 𝛽𝑘

)]

𝑘

, (25b)

𝜆𝑘+1 =
[

𝜆𝑘 + 𝜖𝜆
(

𝑣 − 𝑣𝑘 − 𝜂𝜆RT
𝑘
)

]

R+

, (25c)

𝜆𝑘+1 =
[

𝜆𝑘 + 𝜖𝜆
(

𝑣𝑘 − 𝑣 − 𝜂𝜆
RT
𝑘

)

]

R+

, (25d)

𝛼𝑘+1 = 𝑅
(

𝜆RT
𝑘+1 − 𝜆

RT
𝑘+1 + 𝛾∇𝑝𝑘𝐷𝑘(𝑝𝑘|𝐸RT

𝑘 )
)

, (25e)

𝛽𝑘+1 = 𝑋
(

𝜆RT
𝑘+1 − 𝜆

RT
𝑘+1

)

, (25f)

𝑣𝑘+1 updates based on sensor measurement, (25g)

here 𝜖𝑝, 𝜖𝑞 and 𝜖𝜆 are the positive constant step-sizes for primal
nd dual updates. The operator [⋅]𝑘

projects onto the feasible set 𝑘.
The operator [⋅]R+

projects onto the nonnegative orthant. The above
iterations (25) are performed over time for time steps 𝑘 > 0 with time-
varying updates of the problem formulation (20). Due to the space
limitations, we omit the discussions of the convergence performance
and tracking capability but it will be demonstrated in the simulation
section. Here, we mostly focus on enhancing the connections and
exploring the tradeoffs between the DA market results and the RT
implementation.

The updates (25) are of a distributed nature and therefore can be
implemented in a distributed way. For any 𝑘 > 0, the DERs 𝑖 ∈ 𝛺 update
heir operational points (𝑝𝑖,𝑘, 𝑞𝑖,𝑘) locally through (25a)–(25b) based on
heir individual incentives {𝛼𝑖,𝑘, 𝛽𝑖,𝑘}. Note that it is not necessary for
ERs to broadcast their own cost functions 𝐽Cost

𝑖,𝑘 and operational region
𝑖,𝑘. Similarly, the topology information of distribution networks (𝑅,𝑋)

and the DA bidding results {𝐸DAb, 𝐸DAs} are not required for the local
computations. The system operators require the set-points of local DERs
and RT voltage measurements (25g) to update the dual variables (25c)–
(25d) and generate the incentive tariffs (25e)–(25f). Hence, the DSO
and local DERs can coordinate effectively and on a fast timescale under
this time-varying setup. This enables privacy preservation of DERs and
DSO and a minimal communication load to achieve both network-
oriented and DER-oriented objectives. Algorithm 1 below summarizes
our proposed online incentive-based market algorithm.

Remark 3 (Interpretation of Incentive Signals). The terms in the tariffs
defined in (22) can be uniquely assigned to specific incentive goals. The
terms that are functions of the dual variables associated with voltage
limits, i.e.,

𝛼V
𝑘 = 𝑅⊤

(

𝜆RT
𝑘 − 𝜆

RT
𝑘

)

, 𝛽V
𝑘 = 𝑋⊤

(

𝜆RT
𝑘 − 𝜆

RT
𝑘

)

,

incentivize local DERs to contribute to the voltage regulation. The last
term of (22a), i.e.,

𝛼DSO
𝑘 = 𝛾𝑅∇𝑝𝐷𝑘(𝑝𝑘|𝐸RT

𝑘 ),

uantifies how much the DSO encourages/discourages their DERs to
djust the set-points to contribute to the balancing objective. The
8

weighted summation of these two parts leads to the final incentive
information in (22) for which the DSO needs to tradeoff the network
performance and the RT market response by defining the parameter 𝛾.

Algorithm 1 (Online Incentive-based Market Implementation)

Require: [S0] DA bidding decisions {𝐸DAb, 𝐸DAs}. Initialization of set-
points of DERs {𝑝0, 𝑞0}, incentive signals {𝛼0, 𝛽0}, dual variables
{𝜆0, 𝜆0} and voltage profile 𝑣0.

1: while 𝑘 = 1 ∶ 𝑇 RT do
2: [S1] Network DSO performs the dual updates (25c)–(25d) for

voltage regulation.
3: [S2] Network DSO calculates the incentive signals (25c)–(25d)

and pass them to local DERs.
4: [S3] Local DERs 𝑖 ∈ 𝛺 perform updates of power set-points

(25a)–(25b)
5: [S4] Local DERs 𝑖 ∈ 𝛺 implement the power set-points

{𝑝𝑘+1, 𝑞𝑘+1}.
6: [S5] Network DSO collects the voltage magnitude measurement

𝑣𝑘+1.
7: end while

Finally, the decision sequence of the proposed electricity market
mechanism can be summarized in the following steps:

(1) The DSO attains the forecast samples of PV and demand and
determines the available generation capacity and forecast ranges.

(2) The DSO determines and submits its hourly aggregated bidding
decisions to the DA market for the next day.

(3) The market operator clears the DA market.
(4) The DSO receives the hourly RT balancing reference from the DA

market decision.
(5) The DSO attains the PV availability and measures the voltage

magnitude (25g) at time 𝑘.
(6) The DSO performs the dual update (25c)–(25d) at time 𝑘.
(7) The DSO calculates the incentive signals (25c)–(25d) based on

the current voltage profile, PV availability, and the difference
between the DA bidding results and the RT aggregated dispatch
at time 𝑘.

(8) The DSO sends the incentive signals to DERs at time 𝑘.
(9) The DSO clears the RT market at time 𝑘.

(10) DERs update and implement the set-points of power injections
(25a)–(25b) at time 𝑘.

The above steps (5)–(10) are repeated over time until the termination.
The flowchart in Fig. 2 visualizes the above decision sequence.

4. Numerical results

In this section, we provide numerical results for the proposed algo-
rithms. First, we study the DA market problem and discuss the results
thereof before then demonstrating the workings of the RT balancing
mechanism.

4.1. Day-ahead market data and results

The DA biddings of other market participants are assumed to be
perfectly forecasted and are modeled as parameters using the DA
market supply and demand curves based on the Nord Pool market
clearing data of 2018. For each hour the original supply (offering) and
demand (bidding) curves consist of up to nearly 1000 blocks. Due to
the computational burden, the original supply (offering) and demand
(bidding) curves are approximated focusing on the bids and offers near
the original market clearing point. The resulting approximated supply
and demand curves for each hour consist of a maximum of 79 blocks.
The considered DSO is modeled as a new prosumer to the market. In
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Fig. 2. The decision sequence of the proposed two-stage electricity market mechanism.
other words, the DSO enters the market by adding its offers and bids to
the existing offering and bidding curves. The total Nord Pool system-
level bidding and offering quantities, which cover the area of several
countries, are scaled to simulate the case for one transmission system.

Balancing market prices are modeled such as to guarantee that the
DSO can only sell (purchase) electricity in the balancing market at a
price lower (higher) than the DA market price:

𝑝𝑟BM+
𝑡 = 𝑎1 ⋅ (𝑝𝑟DA

𝑡 − 𝑝1), 𝑝𝑟BM−
𝑡 = 𝑎2 ⋅ (𝑝𝑟DA

𝑡 + 𝑝2), (26)

where 𝑝𝑟DA
𝑡 are the original DA market clearing prices. Constants 𝑎1

and 𝑎2 are set to 0.7 and 1.7, price adjustments 𝑝1 and 𝑝2 are set to 15
EUR/MWh and 20 EUR/MWh, respectively.

The DA forecast error of the PV power output is modeled as a
random variable. For each time step, 1000 samples of PV forecast errors
𝛿𝑡 are generated randomly under a Gaussian distribution with zero
mean and standard deviations 𝜎 equaling to 0, 10% and 20% of the PV
generation capacity. We evaluate the DA bidding decisions under these
three different standard deviations of PV forecasts. Note that as the
generation outputs are non-negative values and are limited by the PV
capacity, unrealistic forecasts that fall out of this range are adjusted to
9

the respective bounds. After replacing the unrealistic forecast samples,
the empirical distribution supported by the sampling dataset is no
longer a Gaussian distribution. This motivates us to leverage the DRO to
make market decisions based on a group of distributions to capture the
real unknown data-generated distributions. We assume that the upper
and lower bounds of 𝛿 used to construct the uncertainty set for DRO, the
empirical mean, the mean absolute deviation and standard deviation
used to build the ambiguity set for DRO are calculated based on the
sampled data.

We first validate the effectiveness of the DA model by presenting the
DA bidding strategy of the DSO. Then we conduct sensitivity analyses
to investigate the impacts of the standard deviations of the day-ahead
output forecast errors. Fig. 3 shows the strategic bidding/offering strat-
egy of the DSO for two example time slots. It can be seen that the DSO
offers production at the market clearing price and bids for demand at
very high market price, so as to maximize the selling price and in times
of purchasing satisfying the demand of the distribution system. This is
due to the assumptions that the supply of the DSO can be curtailed at
cost zero while the demand is enforced to be satisfied for each time
step.
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Fig. 3. Aggregated DA market supply curve of rival producers, demand curve, and the DA bidding/offering price–quantity pair of the DSO (i.e., aggregator) marked as red of the
market for two example time slots: the top figure shows the case when the DSO acts as a net supplier and submits supply offers into the market, while the bottom figure shows
the case when the DSO acts as a net consumer and submits demand bids into the market.
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To investigate how the day-ahead bidding strategies of the DSO
are impacted by the variance of the DSO’s generation forecast errors,
simulations are carried out using different levels of forecast errors.
Fig. 4 shows the resulting DSO’s DA offering/bidding quantities setting
the standard deviations of forecast errors as 0, 10% and 20% of the
PV generation capacity. It is obvious that in general the DSO offers
less to the market with the increasing standard deviation, as the worst
distribution of the forecast errors worsens. However, exceptions can be
observed for hours around 12 PM, when the DA market offering quan-
tities with the standard deviation equaling 10% or 20% are higher than
the offering quantity under zero standard deviation i.e. the forecasted
net generation. This is likely due to the fact that (1) as the generation
is high during these hours, with the increasing standard deviation the
forecast errors after adjustment are more limited compared to the rest
of the hours; (2) the DA prices of these hours are relatively higher,
resulting in less penalty for negative imbalances according to Eq. (26),
i.e. a lower ratio of the negative imbalance price to the corresponding
DA price compared to other hours of the day.

The dispatched DA bidding/offering quantities with different risk
aversion settings now serve as inputs to the RT market, whose results
are illustrated in the following section.

4.2. Real-time market results

After the dispatched DA supply/demand quantities have been de-
cided in the wholesale market, we here demonstrate the proposed RT
balancing market for the considered DSO of a distribution network
with multiple local DERs. The considered network is a modified IEEE-
37 node test feeder: the parameters of the network, such as line
impedances and shunt admittances, are taken from [44]. Fig. 5 gives
the single phase equivalent of the modified network with high pene-
tration of distributed PV systems, i.e., we place 18 PV systems in the
network and their locations are marked by black boxes. Their available
10

power is proportional to the irradiance data with 5-s granularity taken
from [45], i.e., 𝛥𝑇 RT = 5 s. The original load profiles are replaced
y real measurements (in 5-s resolution) from feeders in Anatolia,
alifornia, during the week of August, 2012 provided in [46]. The
atings of the inverters are 200 kVA, except for the inverter at node
which is 340 kVA, and at nodes 15 and 16 which are 200 kVA. The

cost functions of DERs are defined as 𝐽Cost
𝑖,𝑘 = 𝑎𝑖,𝑘(𝑝𝑖,𝑘 − 𝑝PV

𝑖,𝑘 )
2 + 𝑏𝑖,𝑘𝑞2𝑖,𝑡,

hich minimizes the deviation of the active power set-point 𝑝𝑖,𝑘 from
he PV maximum available power 𝑝PV

𝑖,𝑘 and the costs of reactive power
eneration. The cost function parameters are set to 𝑎𝑖,𝑘 = 3 and 𝑏𝑖,𝑘 =
,∀𝑖 ∈ 𝛺. The voltage limits 𝑣 and 𝑣 are 0.95 p.u. and 1.045 p.u.

The DA market outcomes from the previous section are used as
an input to the RT market and we investigate the implications of
the different standard deviations also discussed in Section 4.1. We
then apply our RT market framework with the goal to minimize the
deviations of the RT aggregated dispatch from the DA-ahead dispatch
decisions. The default voltage of the system, i.e., without any control,
is given in Fig. 6. The aggregated PV generation and loads are shown
in Fig. 7. Due to high PV penetrations, an overvoltage situation can
emerge during the peak of solar production.

Fig. 8 visualizes the resulting time-varying RT incentive signals
𝛼DSO
𝑘 related to the network-oriented objective for different standard

deviations of the DA solar forecasts. As the standard deviation increases
from 𝜎 = 0, i.e. perfect foresight, to higher values, it can be readily
seen that as variations of PV forecasts 𝜎 increase, the fluctuation of the
DA purchase/selling increase as well. The online framework enables
to counter larger standard deviations by generating larger incentive
signals to encourage/discourage DERs’ power injections. Notice that
more conservative DA decisions (i.e., for larger 𝜎) lead to more ag-
gressive incentive signals for compensating the forecast errors of PV
generations.

Figs. 9 and 10 show the aggregated (for balancing and voltage
regulation tasks) incentive signals 𝛼𝑘 for weight factors 𝛾 equal to
5 and 10, respectively, under the uncertainty realization, 𝜎 = 0.2.
As 𝛾 increases, the imbalance objective is emphasized. As a result,
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Fig. 4. DA dispatch of the DSO with forecast errors generated under Gaussian distributions with mean zero and standard deviations ranging from 0 to 20% with a step of 10%
of the generation capacity (from the top to the bottom figures), respectively.
Fig. 5. IEEE 37-node test feeders with 18 PV systems.

the signals for market balancing 𝛼DSO
𝑘 dominates the overall incentive

signal compared to the incentive signals for the voltage regulation 𝛼𝑉𝑘 .
These parameters offer distribution system operators explicit tuning
knobs to systematically design the RT market mechanism to achieve
a certain network performance. Fig. 11 gives the voltages for the
case of 𝛾 = 30 and 𝜎 = 0.2 indicating that voltage violations are
avoided. The overvoltage has been successfully resolved under other
settings of parameters, i.e., 𝛾 and 𝜎. In summary, we conclude that the
proposed electricity market design is able to systematically consider
and timely track the variations inherent to renewables in the DA
wholesale market and local RT balancing market, respectively. The
benefits of having a two-stage market framework can be observed in the
successful trade-offs between the renewable forecast errors, network-
oriented and customer-oriented objectives, while satisfying the network
voltage constraints.

5. Conclusions

A two-stage electricity market framework is proposed in this paper.
The uncertainties from DERs are handled by different optimization
techniques for the different time scales. In the DA market, the bidding
11
strategies of the aggregated DERs are optimized based on the sam-
pled forecasting dataset via distributionally robust optimization. The
controllable conservativeness of market decisions enables the TSO to
operate the system taking into account different levels of risk aversion.
Computational efficiency is achieved by leveraging the linear decision
rule to reformulate the original bi-level problem. In the RT market,
the proposed algorithm uses optimal dynamic tariffs to guide the DERs
to achieve the DA decision. Note that the incentive signals show the
nature of stochasticity so as to cope with large renewable variations
and yet guarantee fulfilling the voltage constraints. For future work,
as the generation suppliers are shifting from transmission systems to
distribution networks, an interesting extension of this work is to con-
sider the proposed market mechanism with a view on energy planning,
i.e., how the proposed market mechanism could be supported by or
contribute to the design of long-range market policies that foster the
energy transition and help guide the regional utilities with a high
penetration of DERs.
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Fig. 6. Voltage profile for the case without any control actions.

Fig. 7. Aggregated solar energy availability and load demands. The solar energy curtailment is also given here after the overvoltage situation has been resolved.

Fig. 8. Comparison on incentive signal 𝛼∗
DSO,𝑡 for the marking balancing at node 4, i.e., 𝛾 = 0.2.
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Fig. 9. RT incentive signals 𝛼𝑘 (i.e., voltage regulation & balancing market) for all nodes with 𝛾 = 5 and 𝜎 = 0.2.

Fig. 10. RT incentive signals 𝛼𝑘 (i.e., voltage regulation & balancing market) for all nodes with 𝛾 = 30 and 𝜎 = 0.2.

Fig. 11. RT controlled voltage trajectories with 𝛾 = 30 and 𝜎 = 0.2.
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