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Abstract

Perennial grass mixtures established on Conservation Reserve Program (CRP)
lands can be an important source of feedstock for bioenergy production. This
study aimed to evaluate management practices for optimizing the quality of
bioenergy feedstock and stand persistence of grass-legume mixtures under di-
verse environments. A 5-year field study (2008-2012) was conducted to assess
the effects of two harvest timings (at anthesis vs after complete senescence) and
three nitrogen (N) rates (0, 56, 112 ngha_l) on biomass chemical compositions
(i.e., cell wall components, ash, volatiles, total carbon, and N contents) and the
feedstock energy potential, examined by the theoretical ethanol yield (TEY) and
the total TEY (i.e., the product of biomass yield and TEY, Lha™"), of cool-season
mixtures in Georgia and Missouri and a warm-season mixture in Kansas. The
canonical correlation analysis (CCA) was used to investigate the effect of vegeta-
tive species transitions on feedstock quality. Although environmental variations
(mainly precipitation) greatly influenced the management effect on chemical
compositions, the delayed harvest after senescence generally improved feedstock
quality. In particular, the overall cell wall concentrations and TEY of the warm-
season mixtures increased by approximately 7%. Additional N supplies improved
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1 | INTRODUCTION

Currently, most commercialized biofuels are produced
from food-based crops, such as corn and sorghum, mainly
in the United States, and sugarcane in Brazil for ethanol
production or soybeans for biodiesel production (USDA,
2021). Using these crops as feedstock sources, however,
not only competes with food/feed supply (food vs fuel de-
bate) but also increases adverse effects on environmental
quality by committing more chemical inputs and field
activities. For example, heavy inputs of fertilizers, herbi-
cides, and pesticides, or continuous tillage practices result
in increases in the degradation of soil and water qualities
(Olsson et al., 2019; Tenenbaum, 2008). Instead, perennial
herbaceous crops (e.g., switchgrass) have been considered
alternative and sustainable energy sources because they
typically require less fertilizer (e.g., N) input and land-
disturbing activities that can offer multiple environmen-
tal benefits, including the mitigation of soil erosion and
greenhouse gas emissions, and increases in soil health,
nutrient retention, carbon sequestration, water quality,
and biodiversity (Brown & Brown, 2014; Lee et al., 2007;
McLaughlin & Walsh, 1998; Monti et al., 2012; Nikiema
etal., 2011; Yang et al., 2019). Furthermore, some margin-
ally productive and environmentally sensitive croplands
are not suitable for growing annual row crops because
of their low economic returns associated with high en-
vironmental hazards (e.g., substantial nutrient loss via
surface runoff and leaching). These marginal lands are
not suggested for continuing food/feed-based commodity
crop productions but for other purposes, including peren-
nial bioenergy crop cultivations (Emery et al., 2017; Kim
et al., 2018; Milbrandt et al., 2014; Varvel et al., 2008).
About 11% (~86 million ha) of the US mainland is
considered marginal (Milbrandt et al., 2014). By 2020,
around 9 million ha of the existing marginal land had
been enrolled in Conservation Reserve Program (CRP), a
land retirement program that was established by the Food

the total TEY of both mixtures by ~1.6-4.2 Lha™' per 1.0 kgNha™! input but
likely lowered the feedstock quality, particularly for the cool-season mixture. The
cell wall concentrations of cool-season mixture reduced by approximately 3%-
6%. The CCA results indicated that the increased legume compositions (under
low N input) likely enhanced lignin but reduced ash concentrations. This field
research demonstrated that with proper management, grass-legume mixtures on
CRP lands can provide high-quality feedstock for bioenergy productions.

bioenergy feedstock quality, canonical correlation analysis, conservation reserve program,
cool-season mixtures, harvest management, nitrogen management, warm-season mixtures

Security Act of 1985 to safeguard vulnerable land from fur-
ther degradation (USDA-FSA, 2020). Under the program,
land that was unstainable for intensive management as-
sociated with row crops was converted to long-term veg-
etative cover (e.g., native species). Recently, these CRP
lands have been proposed as a potential source of bioen-
ergy feedstock production and could contribute up to 50
million Mg of dry biomass annually (USDOE, 2011). This
contribution can help to achieve the goal of increased use
of renewable fuels (including cellulosic biofuel, biomass-
based diesel, and advanced biofuel) to 36 billion gallons
by 2022 to replace petroleum-based transportation fuels,
mandated by the US government under the Renewable
Fuel Standard program. Furthermore, sustainability and
resource use efficiency in CRP land can be improved
by planting polyculture (e.g., grass-legume mixtures).
Studies showed that polyculture production systems had
better yield productivity, resistance in weed invasion, and
ecosystem services than monoculture systems (Carlsson
et al., 2017; De Deyn et al., 2011; Dhakal & Islam, 2018;
Jungers et al., 2015; Nyfeler et al., 2011; Quijas et al., 2010;
Sanderson et al., 2012; Suter et al., 2015; Yang et al., 2019).
Establishing perennial grass mixtures on CRP lands has
shown their potentials for dedicated bioenergy feedstock
production (Anderson et al., 2016; Chen et al., 2021; Lee
et al., 2018; Mohammed et al., 2014). This production
system can also provide long-term opportunities for im-
proving the sustainability of agroecological farming and
socio-economic development by offering less effort/cost
input and alternative incomes for local farmers and by off-
setting the program rental costs (Chen et al., 2021; Zhang
et al., 2018).

To ensure a reliable feedstock supply and a sustain-
able production system, it is critical to optimize nitrogen
(N) and harvest management practices for perennial en-
ergy crops on CRP lands (Anderson et al., 2016; Guretzky
et al., 2011; Hong et al., 2014; Lemus et al., 2008; Mulkey
et al., 2006). For grass-legume mixtures, the management
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optimization is more complicated than for perennial
monocultures because each species responded differently
to different practices. For example, N applied to grass-
legume mixtures may improve the biomass yield of peren-
nial grasses while simultaneously reducing persistence
of legumes (Harmoney et al., 2016; Lee et al., 2013;
Mallarino & Wedin, 1990). Similarly, harvest manage-
ment impacts biomass yield, feedstock quality, and the
vegetative longevity of the perennial grasses. While an-
thesis and frequent harvest practices enhance overall
biomass yield, the regrowth vigor and feedstock qualities
are negatively affected (Anderson et al., 2016; Guretzky
et al., 2011; Mohammed et al., 2014; Waramit et al., 2011).
Contrastingly, delayed harvest after complete senescence
can maximize nutrient translocation to belowground bio-
mass and improve the vegetative persistence and resil-
ience to extreme events, such as drought events (Wayman
etal., 2014). Therefore, the optimal management practices
must incorporate aspects other than maximizing biomass
yield only, especially for bioenergy feedstock production
systems on CRP areas. The best management must main-
tain both vegetative vigor and high feedstock quality for
bioenergy productions (Lemus et al., 2008).

A long-term replicated field trial of different pe-
rennial grass and legume mixtures in six CRP sites
(i.e., Kansas, KS; Oklahoma, OK; North Dakota, ND;
Montana, MT; Georgia, GA; Missouri, MO) have been as-
sessed for yield potential and economic feasibility based
on different N and harvest management from 2008 to
2013 (Anderson et al., 2016; Lee et al., 2013; Mohammed
et al., 2014). The management effect on species compo-
sitions was also evaluated for the KS-, MO-, ND-, and
MT-CRP sites but not for grass-legume mixtures in GA
(Harmoney et al., 2016; Mohammed et al., 2014). These
studies concluded that the increased N fertilizer rate can
improve biomass yield, mainly by increasing perennial
grasses, but actually reducing the legume coverages for
all experimental sites. The N-induced yield, however,
might not be able to offset the incremental costs of N
fertilizers, application, and the total operations. From
the industrial standpoint, the feedstock chemical com-
positions are critical indices to ensure the quantity and
quality of the bioenergy products and the conversion
efficiency (Brown & Brown, 2014; Jonsson et al., 2013;
Li et al., 2016). For instance, glucan, xylan, lignin, and
ash contents in biomass are of particular importance in
either bio- or thermal-chemical conversion processes;
the increased biomass volatiles and biomass carbon
concentrations offers important advantages for com-
bustion processes, such as pyrolysis and gasification
(Demirbas, 2004; Jonsson et al., 2013; Li et al., 2016).
Nevertheless, the effects of the environment and man-
agement on biomass compositions of the grass-legume

Al ]
21 1%
s L

n 28:
o Wi ey

mixtures have not been investigated. Therefore, this
study aimed to evaluate (1) the effects of the cultivation
environments (GA, MO, KS), species (perennial cool/
warm-season grass and legume mixtures), and N (appli-
cation rates) and harvest management (harvest timing)
practices on biomass compositions, especially the crit-
ical attributes for bioenergy conversions (i.e., glucan,
xylan, lignin, ash, volatiles, overall C and N contents)
and (2) the impacts of the vegetative species transition
on bioenergy feedstock quality.

2 | MATERIALS AND METHODS

2.1 | Site description

Initially, six locations were identified as potential CRP
grassland regions and grass-legume mixtures were es-
tablished (see Anderson et al., 2016; Lee et al., 2013).
Subsequently, three sites with contrasting environmen-
tal conditions and species composition were identified
for evaluating feedstock quality. These were Oconee
County, GA (33.8°N 83.4°W), Boone County, MO (39.0°N
92.2°W), and Ellis County, KS (38.8°N 99.4°W). The
predominant species were managed differently among
locations. Cool-season grasses comprised of tall fescue
[TF, Schedonorus arundinaceus (Schreb.) Dumort.],
orchardgrass (OR, Dactylis glomerata L.), and the les-
pedeza [LSP, Kummerowia striata (Thunb.) Schindl.]
legume mixtures were established in GA. Mixtures of
tall fescue and the predominant legume of red clover
(RC, Trifolium pratense L.) were grown in MO. In KS,
the warm-season grass-legume mixtures were established
comprised of sideoats grama [SO, Bouteloua curtipendula
(Michx.) Torr.], switchgrass (SW, Panicum virgatum L.),
little bluestem [LB, Schizachyrium scoparium (Michx.)
Nash], Indiangrass [IN, Sorghastrum nutans (L.) Nash],
and yellow sweetclover [YSC, Melilotus officinalis (L.)
Lam.] (Table 1). Selected environmental conditions at the
three sites are shown in Table 1. Weather information,
including cumulative precipitation and monthly tem-
perature, from 2008 to 2012 along with 30-year averages
(1983-2012) were obtained from the National Oceanic
and Atmospheric Administration for Oconee County,
GA (Watkinsville 5 SSE station, USW00063850), Boone
County, MO (Columbia U of M station, USC00231801),
and Ellis County, KS (HAYS 1S station, USC00143527)
and shown in Figure 1. Based on the CRP regulations,
no fertilization, field management practices, and above-
ground biomass harvest were implemented in these re-
search sites prior to the beginning of this study in 2008. In
the spring of 2008, the field sites were mowed at a 10-cm
height before the first N fertilizer treatment.

85US0 |7 SUOWWOD BAFe81D) 8|qedl|dde au Aq peusenob ke ik YO ‘SN 0 S8|nJ 10} ArIg1TaUIIUO AB]IM UO (SUOTHPUOD-PUE-SWLBHLIOD™A8 | 1M AReq | BU1|UO//SARY) SUOIIPUOD pUe WS | 8U188S *[£202/20/ST] Uo AriqiT8ulluO A8|IM ‘0862T GGB/TTTT OT/I0p/W00 A3 1M ARe.q 1 Bul|UO//SONY W01} PAPEO|UMOQ ‘€ ‘€20 ‘L0LT.SLT



.
C
¥

TABLE 1 Location, conservation reserve program (CRP) enrollment year, environmental conditions including the 30-year averages of precipitation (Precip.) and temperature (temp.), the

selected soil chemical properties and soil classification in top 15cm of soil, and initial species composition, for each of the four CRP research sites

Predominant species

Soil characteristics and classification

30-year average

Perennial

grass

Ca® Mg?*

Ka

soc TN P?

CRP Since Precip. (mm) Temp.(°C) pH gkg™ mg kg™! Soil class

Location

State
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LSP
RC

TF, OR
TF

111.6  Kanhapludul

2126.2 240.6 Epiaqualfs

614.8
364.4 2973.2

166.6
94.9

1.1

104 0.8 2

5.5
5.7

7.5

15.8

1249

1056
588

1986
2004
1988

Oconee County (33.8°N 83.4°W)
Boone County (39.0°N 92.2°W)
Ellis County (38.8°N 99.4°W)

53.8

2.1
1.9

19.0

12.7

MO

YSC

SO, SW, LB,

Argiustolls

352.5

11.6

24.3

11.8

KS

IN

Abbreviations: IN, Indiangrass; LB, little bluestem; LSP, lespedeza; OR, orchardgrass; RC, red clover; SO, sideoats grama; SOC, soil organic carbon (LECO method); SW, switchgrass; TF, tall fescue; TN, total nitrogen

(Kjeldahl method); YSC, yellow sweetclover.

“Macronutrients determined by the Mehlich-3 method.
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2.2 | Experimental design

A full factorial design was used in the experiment, includ-
ing three N levels (0, 56, 112 ngha_l) and two harvest
times (at anthesis or after complete senescence), within
a randomized complete block with three replicates at
each location. For each treatment, the plot size was ap-
proximately 0.5-ha. Urea fertilizer (46-0-0) was used as
the N-source and broadcasted annually using a farm-scale
fertilizer spreader between April and June (see Anderson
et al., 2016; Lee et al., 2013). Harvest management was de-
termined by grass species and locations. Entire plots were
harvested using a farm-scale harvester at a cutting height
of 10- to 15-cm. All harvest events at GA and MO were
imposed at anthesis/peak standing crop (PSC) or after se-
nescence/the end of the growing season (EGS). In the GA
site, the biomass harvest at PSC was conducted only in the
spring (single cut), but the EGS harvesting occurred in
both spring and fall (two cuts). Both biomass cuts, spring
and fall, were later combined to represent EGS treatment.
In MO, the biomass was harvested twice (in the early
spring and early fall at anthesis) and combined to repre-
sent the PSC treatment. Likewise, the biomass harvested
in the late spring and at the end of year was combined to
represent the EGS treatment. For the warm-season grass
and legume mixtures at KS, the biomass was harvested an-
nually either at PSC or after a killing frost (KF). The har-
vest timing at PSC for each location was determined based
on predominant grasses reaching anthesis. The details of
the harvest and fertilizer application dates were shown
in Lee et al. (2013) and Anderson et al. (2016). The dry-
weight-rank procedure (Gillen & Smith, 1986; Harmoney
et al., 2016) was used to evaluate the species compositions
of grass-legume mixtures. Estimated compositions were
proportionated to the range between 0 and 1.

2.3 | Biomass compositional analysis

The harvested biomass was baled and weighted, and
subsamples were collected from bales using an elec-
tric core sampler with 5-cm diameter and 50-cm length.
Subsamples were dried at 60°C for 48 hours in an air cir-
culated oven for the moisture correction and ground to
pass a 2-mm screen in a Wiley mill (Model 4, Thomas
Scientific) for the feedstock compositional analysis.
Concentrations of glucan, xylan, lignin, and ash in bio-
mass were determined using Fourier transform near-
infrared (FT-NIR) spectroscopy coupled with partial least
square (PLS) multivariate prediction models developed
by the National Renewable Energy Laboratory (NREL).
Further details on the laboratory analytical procedures
used to measure the chemical composition of the model
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FIGURE 1 Local weather conditions at three experimental sites (GA, MO, and KS) across the 5years (2008-2012) of study including
(a) monthly cumulative precipitation and (b) average monthly temperature and the 30-year monthly average (1983-2012) (data: NOAA).

calibration samples are described in Sluiter et al. (2010).
The measured concentrations of glucan and xylan were
used to estimate a theoretical ethanol (EtOH) yield (TEY)
per dry biomass basis (Liters of EtOH per Mg dry mat-
ter, L Mg_l) using equations (Equation 1-3) described in
Emerson et al. (2014). The total TEY per hectare of har-
vested biomass (Lha™'), was estimated by multiplying
TEY (LMg™") and the harvested biomass yield (Mgha™)
using Equation 4.

FT-IR spectra were also used to predict volatiles, ash, car-
bon, and nitrogen of samples using PLS 1 models. Model
calibration samples comprised of mixed perennial grasses,
energy cane, Miscanthus, sorghum, and switchgrass were
analyzed using a Thermo Anataris II FT-NIR with auto-
sampler attachment (Thermo Scientific) and via prox-
imate and ultimate analyses. Proximate analysis was
used to determine the volatiles and additional biomass
ash content data using the American Society for Testing

X(g) gl 1.11 .51(g) EtOH 3. 10*(kg) bi
C6 EtOH yield (L Mg‘l) _ [€9) g. ucan (g) C6  0.51(g) EtO 3.79(L) EtOH 10%(kg) b.10mass )
1(kg) biomass  1(g) glucan 1(g) C6 2971(g) EtOH  1(Mg) biomass
X 1 1.1136(g) C5 0.51(g) EtOH 3. 10*(kg) bi
C5 EtOH yield (L Mg_l) _ (® xy an (€] (€] 3.79(L) EtOH (kg) '10mass @
1(kg) biomass 1(g) xylan 1(g) C5 2971(g) EtOH  1(Mg) biomass
TEY (LMg™') = C6 + C5 EtOH yield (LMg™") (3)

Total TEY (L ha™") = TEY (L Mg™!) X Dry biomass yield (Mg ha™")

“4)
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and Materials (ASTM) standard D 5142-09 and a LECO
Thermogravimetric Analyzer 701 (St. Joseph). Briefly, the
dry biomass was placed in a covered crucible to prevent
samples from the air during devolatilization. The cov-
ered crucible was heated to 950°C for 9min under UHP
nitrogen. The content of volatiles was calculated from
the weight loss (ASTM standard E872-82). The biomass
ash was measured by heating the dry biomass samples at
750°C under O, until a constant weight is reached, and the
remaining mass was used to determine the ash content.
The ultimate analysis was used for determining biomass
C and N contents using the combustion process of dried
biomass in a controlled atmosphere according to ASTM
D 5373-10, but with a slightly different burn profile as de-
scribed in the Flour and Plant Tissue Method. During the
combustion, biomass-C and -N were converted to CO, and
NO,, respectively. The gas products were analyzed for C
and N contents using a LECO TruSpec CHN Analyzer.

2.4 | Statistical analysis
Treatment effects on feedstock chemical compositions were
analyzed using the three-way, repeated-measures analysis
of variance (ANOVA) using the PROC MIXED procedure
in SAS (SAS Institute, 2007). The harvest year (5years),
harvest management (two timings), N levels (three rates),
and their interactions were considered fixed factors, while
the replicates were considered random. The measurement
year was considered as the repeated factor, and each plot
was used as a subject in the repeated measurement. Each
location was analyzed separately because of the diverse spe-
cies and environmental conditions. The model-predicted
residuals were used to assess the normality and homoge-
neity of residuals to meet the ANOVA assumption using a
Shapiro-Wilk test and equal variance test. Proportion val-
ues of chemical composition ranging from 0 to 1 were found
to have departed from the mean and were subsequently
transformed using the arcsin square root transformation
(i.e., arcsiny/proportion value). All significant difference
were determined at p<0.05. Pairwise mean comparisons
were made using the Tukey method for p-value adjustment.
In addition, since the transition of vegetations likely
influenced feedstock quality, this transition effect on
feedstock chemical compositions was investigated using
the canonical correlation analysis (CCA). The CCA is a
multivariate technique that can simultaneously evaluate
the linear interrelationships between two variable sets,
namely vegetative species compositions (independent
variables/predictors) and feedstock chemical composi-
tions (dependent variables/outcomes). To investigate the
simultaneous relationship between several predictors
and outcomes, two synthetic variable sets (predictors

and outcomes) were created under the CCA process, and
the CCA can derive a canonical function by maximizing
the correlation between two synthetic variable sets. The
PROC CANCORR procedure in SAS was used for the
CCA. Two criteria are used to evaluate and establish sig-
nificance of the CCA-developed canonical functions: 1)
the significance of F statistic (p-value<0.001) and (2)
that >10% of the shared variance in the two variable
sets can be explained by the function of interest (Sherry
& Henson, 2005). Three indicators have been often used
to determine the relative contribution of each original
variable to each canonical function, including canonical
weights (standardized canonical coefficients), canonical
loadings and cross-loadings (structural correlation coeffi-
cient, r,). The canonical weights, however, are subjected to
multicollinearity (Liu et al., 2009). In this study, we focused
on canonical loadings and cross-loadings as suggested by
Kabir et al. (2014) and Liu et al. (2009). The variable was
considered to have a significant contribution to the canon-
ical function if its loading was >10.30! (Kabir et al., 2014).

3 | RESULTS

3.1 | General soil and weather
information

Compared with KS-CRP, the soils in GA and MO CRP-
sites were more acidic presumably due to lower contents
of alkali (K) and earth-alkaline (Ca and Mg) elements
(Table 1). Highly weathered soil in GA (Ultisol) also
showed lower soil organic carbon and overall fertility
compared with the soils in MO (Alfisol) and KS (Mollisol).
Monthly cumulative precipitation during the study pe-
riod (2008-2012) and their 30-year average (1983-2012)
for three CPR sites are shown in Figure 1a. The 30-year
precipitation averaged 1249-, 1056-, and 588-mm in GA,
MO, and KS, respectively. The 5-year average in the study
period was generally higher in GA (1097-mm) and MO
(1283-mm) than in KS (544-mm). The lower precipitation
recorded in 2012 (846-mm in GA; 744-mm in MO; 366-
mm in KS) was due to a nationwide drought. Increases in
monthly temperature were also observed in the drought
year in the three CRP locations (Figure 1b).

3.2 | Overview of species and chemical
compositions

The average species and biomass chemical compositions
across the 5years are shown in Table 2. In GA, the 5-year
averages of TF, OR, and LSP, a legume species, were
50.8%, 13.4%, and 10.5%, respectively. In MO, 61.5% and
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TABLE 2 Descriptive statistics for both vegetative species composition and feedstock chemical compositions of three CRP sites (GA,
MO, and KS) in 2008-2012

GA MO KS
Variables Mean (SD) Median (Q1, Q3) Mean (SD) Median (Q1, Q3) Mean (SD) Median (Q1, Q3)
Species %
TF 50.8 (13.1) 51.1(44.1, 61.4) 61.5 (13.0) 63.0 (53.8, 71.0) — —
OR 13.4(8.9) 14.6 (6.3, 17.9) — — — —
SO — — = — 23.9(13.5) 21.7 (14.1, 36.5)
SW — — — — 12.3(8.5) 10.7 (6.4, 16.0)
LB — — — — 12.9(8.8) 11.4(5.3,20.2)
IN — — — — 10.7 (8.0) 9.5(4.0,15.2)
Legumes® 10.5 (8.8) 9.8 (1.8, 18.0) 27.9 (9.0) 28.0 (21.0, 32.5) 14.1 (17.6) 8.1 (0.0, 22.6)
Weed 17.6 (12.8) 15.6 (8.1, 24.3) 7.0(5.1) 6.0 (3.0, 10.0) 15.9 (20.3) 7.3(1.8,20.2)
Compositions  gkg™
Glucan 284.8 (19.0) 285.3(273.1,297.8)  285.3(20.5) 282.7(270.2,301.8)  297.6(23.8) 294.0 (279.0, 313.3)
Xylan 165.6 (13.8) 165.9 (154.3,174.9)  141.4(15.1) 143.2(130.7, 147.9)  203.2(19.0) 200.0 (187.8, 221.3)
Lignin 153.0 (10.1) 152.9 (145.4,158.5)  157.4 (14.1) 156.5(147.0,168.1)  160.1 (12.2) 159.0 (150.0, 167.3)
Ash-C 76.4 (10.6) 75.7 (68.5, 83.3) 75.5 (10.3) 74.1 (67.5, 83.0) 84.2 (17.0) 83.0 (73.0, 95.5)
Volatile 796.3 (8.4) 795.9 (789.6, 801.2) 780.9 (6.6) 782.2(775.8, 785.3) 800.2 (11.5) 801.5(795.0, 807.3)
Ash-P 54.5(10.2) 55.1 (45.6, 61.8) 67.9 (8.2) 67.0 (62.7, 73.9) 66.1 (17.3) 63.2 (56.6, 70.3)
C 484.6 (6.5) 484.9 (481.1,488.0)  477.3(5.2) 477.9 (475.0,480.7)  472.8 (6.7) 472.5 (469.0, 476.0)
N 14.3 (3.5) 14.3 (11.5,17.5) 13.1(2.5) 12.8(11.3, 14.8) 8.3(3.0) 9.0 (6.0, 11.0)

,'5 WI LEYJﬂ

Note: Lowercase letters indicate mean separation between locations (@ = 0.05), organized highest to lowest value for each row.

Abbreviations: Ash-C, the ash based on the chemical compositional analysis; Ash-P, the ash based on the proximate analysis; IN, Indiangrass.; LB, little

bluestem; OR, orchardgrass; SO, sideoats grama; SW, switchgrass; TF, tall fescue.

*Legumes: lespedeza in GA, red clover in MO, and yellow sweetclover in KS.

27.9% of the canopy were covered by TF and RC, respec-
tively. The warm-season grass and legume mixtures in KS
were composed of SO (23.9%), LB (12.9%), SW (12.3%), IN
(10.7%), and YSC (14.1%). In GA and MO, the cool-season
grass predominant mixtures had lower concentrations of
structural components (i.e., glucan, xylan, and lignin),
ash, and volatiles than the warm-season grass mixtures
in KS (p<0.0001). Conversely, the cool-season grass and
legume mixtures had higher concentrations of biomass-
C and -N than the warm-season grass predominant field
(p<0.0001).

3.3 | Cool-season mixtures

The management effects on vegetative species and chemi-
cal composition of the cool-season grass and legume mix-
tures were evaluated in GA and MO sites. For species
compositions in GA, three-way interaction among year, N
rate, and harvest timing was only significant for the leg-
ume (LSP) content (Table 3); however, no consistent pat-
tern was observed. The two-way interaction between year
and harvest timing was significant for both the TF and

TABLE 3 Analysis of variance (ANOVA) showed the effects
of main factors, including year (Y), N rate (N), and harvest timing
(HT) and interactions on vegetative species compositions of the
cool-season grass and legume mixtures in MO-CRP site with
significance level of 0.05

Total
Factors TF OR CG Legume weed
Y skkskok skekckok EEE Y skkskek skkskok
N sk sksksksk skekokok skeekokok ek
HT kksk ns sk skekskok ns
YXN ns o ns ns ns
YXHT ok ns ns ok ns
NXHT ns ns ns ol ns
YXNXHT ns ns ns Ak ns

Abbreviations: CG, cool-season grass (sum of TF and OR); Legume,
lespedeza predominant; OR, orchardgrass; TF, tall fescue.

Level-1 (*): 0.05<p<0.01; Level-2 (**): 0.01 < p <0.001; Level-3 (***):
0.001 < P<0.0001; Level-4 (****): p <0.0001; ns: not significant.

legume contents. Two harvest regimes did not influence
the TF and legume compositions in 2008-2010. In 2011
and 2012, the EGS harvest substantially reduced the TF,
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conversely increased the legume, compared with the PSC
harvest (Table 4). Averages across years and N treatments,
EGS harvest reduced the TF and overall cool-season grass
contents by approximately 15% and 13%, respectively, but
increased legume proportion by 59%. Overall, the propor-
tion of cool-season grass stabilized in the third experimen-
tal year (2010) when averaged across treatments; however,
the legume proportion substantially declined while weeds
increased over the years (Table 4). In contrast, all species
were sensitive to different N inputs (Table 3). Increased
N rate from 0 to 112kg-Nha™" increased the overall cool-
season grass composition from 54.7% to 70.3% but reduced
the legume and weed compositions from 14.9% to 6.7%
and from 21.8% to 16.4%, respectively.

Although all analytes related to the chemical com-
position of feedstock were significantly impacted by the
two-way interaction of year and harvest timing in GA
(Table 5), only the total TEY showed a consistent pattern
between two harvest practices (Table 6). The EGS harvest
regime consistently improved the total TEY relative to the
PSC harvest in 2008, 2009, and 2012 (Table 6). Averages
across years and N rates showed the EGS harvesting not
only increased the total TEY by 47% but also improved the
overall feedstock quality (i.e., increased TEY and reduced

ash concentrations) compared with PSC. Average cell wall
components, and TEY tended to be higher in 2008 and
2012 than in other years. For N rate, only the main factor
was significant for all quality indicators. Compared with
the zero N input, the 112kg-Nha™" increased the total TEY
from 1142.1 to 1365.4Lha™"! (~20% increase) but reduced
the overall cell wall compositions (622.3-586.9 gkg ™), vol-
atiles (801.9-792.2gkg™"), biomass-C (486.1-483.5gkg™"),
and the TEY (339.1—317.3LMg_1). Concentrations of both
ashes and the biomass-N also increased with increasing N
rate (Table 6).

In MO, the responses of the feedstock compositions
to three factors and their interactions were similar to
the responses in GA. Two-way interaction between year
and harvest timing was also significant for all chemi-
cal compositions (Table 5), but no consistent trend was
shown (Table 7). This interaction effect was likely due to
the year variations in compositions. The average across
Syears and three N rates indicated that the EGS harvest
regime also substantially improved the total TEY by 47%
compared with the PSC harvest. Averages across all treat-
ments showed that higher cell wall concentrations, TEY,
and total TEY, corresponding to lower concentrations of
both ashes and biomass-N, usually occurred in 2009-2011

TABLE 4 Species composition

Factor TF OR CG
Y HT Composition (%)
2008 PSC 47.8bcd 4.9 52.7
EGS 50.9abcd 0.0 50.9
2009 PSC 65.2a 14.8 80.0
EGS 61.4ab 13.2 74.7
2010 PSC 51.3abc 16.2 67.5
EGS  47.8bcd 13.5 61.3
2011 PSC 54.6ab 15.5 70.1
EGS 35.8d 19.5 55.3
2012 PSC 55.6ab 16.5 72.1
EGS 37.7cd 19.7 57.4
Y mean 2008  49.4b 2.4b 51.8¢c
2009  63.3a 14.0a 77.4a
2010  49.6b 14.8a 64.4b
2011 45.2b 17.5a 62.7b
2012  46.6b 18.1a 64.8b
HT mean PSC 54.9a 13.6 68.5a
EGS 46.7b 13.2 59.9b
N mean 0 45.6b 9.1b 54.7b
56 52.8a 14.8a 67.7a
112 54.1a 16.2a 70.3a

Total . .

e weed functional group Veigetatlon of the
harvested biomass in the GA CRP land
regimes, influenced by year (Y), nitrogen

12.3ab 14.0 fertilizer rates (N = 0, 56, and 112kgha™),

15.92 13.3 harvest timing (HT: PSC vs EGS), and

9.5abc 13 the Y X HT interaction fr.orr{ 2008 to
2012. Lowercase letters indicate mean

6.5bc 2.7 separation a = 0.05 organized highest to

12.5ab 18.8 lowest value for each column (no mean

17.1a 20.1 separations were applied if the variable
3.0c 24.4 effect was not significant)

12.7ab 259

3.0c 24.9
12.4ab 30.4
14.1a 13.7¢

8.0b 2.0d
14.82a 19.4bc

7.8b 25.2ab

7.7b 27.6a

8.1b 16.7
12.9a 18.5
14.9a 21.8a

9.8b 14.5b
6.7b 16.4b

Abbreviations: CG, cool-season grass (sum of TF and OR); Legume, lespedeza predominant; OR,

orchardgrass, TF, tall fescue.
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TABLE 5 Analysis of variance (ANOVA) showed the effects of main factors, including year (Y), N rate (N), and harvest timing (HT) and
interactions on chemical composition, and proximate and ultimate analytes of cool- and warm-seasons grass and legume mixtures in three

CRP sites (GA, MO, and KS) with significance level of 0.05

Proximate and ultimate

Chemical compositions (%) analysis (%)

Site Factors Glu Xyl Lig Ash-C* Cell wall Volatile Ash-P (e} N TEY Total TEY
N sekesksk Seksiek kK sekesksk sefesiek sekesksk seksiesk * Seksiek sekesksk *
HT ns %k ns *kk ns ns * ek * * skekskok
YXN ns ns o ns ns ok ok ok ns ns ns
NXxHT * ns ns ns ns ns ns ns ns ns ns
YXNXHT ns ns ns ns ns ns ns ns ns ns ns
N ns ook otk ns ok ns ns ns ns ns it
HT ns ns ns ns ns ns ns i ns ns oot
YXN & ns ns ns ns ns ns ns ns ns ns
YXHT skekeskok sk EE 3 sekesksk skekesksk skekesksk ek * ek ek ns
N X HT kekck * ns * kskok ns ns ns kksk sk ns
YXNXHT ns ns ns ns ns ns ns ns ns ns ns

KS Y EETTY kKKK kokkk EXTTY kKKK sksksksk kKKK EETTY kKKK kKKK kKKK
N ns ns ns ns ns ns ns ns * ns ok
HT sk sksksksk skeskoksk ns sksksksk * * skoksk sksksksk skeskokok *
YxN ns sokskok T3 ns kK ns ns KKKk * KKKk TS
YX HT skekesksk skkskok %k * skekskok ns ns skekesksk skekskok skkskok skkskok
NXxHT ns ns ns ns ns ns ns ns ns ns ns
YXNXHT ns ns * ns ns ns ns ns ns ns ns

Abbreviations: Ash-C, ash determined by chemical compositional analysis; Ash-P, ash determined by the proximate analysis; C, carbon; Cell wall, the sum of
Glu, Xyl, and Lig; Glu, glucan; Lig, lignin; N, nitrogen; TEY, theoretical ethanol yield; Total TEY, TEY times DM yield.; Xyl, xylan.

Level-1 (¥): 0.05 < p<0.01; Level-2 (**): 0.01 < p <0.001; Level-3 (***): 0.001 < p <0.0001; Level-4 (****): p <0.0001; ns: not significant.

*The MO ash-C data in 2011 did not include for statistical analysis due to substantial number of missing values.

than in 2008 and 2012 (Table 7). Increased N rate (0-
112kgha™") also increased the total TEY from 1196.9 to
1670.3Lha"! (~40% increase) but lowered the feedstock
quality by reducing the overall cell wall concentrations
from 597.2 to 579.7gkg ™.

3.4 | Warm-season mixtures

Chemical compositions of the warm-season mixtures
in KS were also significantly influenced by the year x
harvest timing interaction (Table 5). Although harvest
timing impact on feedstock compositions varied from
year to year, the biomass harvested after KF generally
led to higher cell wall components (i.e., increased xylan
and lignin shown in Table 8). Contrastingly, the KF
harvest lowered biomass-C and -N concentrations rela-
tive to PSC in 2008-2010. Averages across year and N

rate showed that the KF harvest increased the overall
cell wall concentration and TEY by approximately 7%
but reduced the total TEY by 12% compared with PSC
(Table 8). On the other hand, the KF regime substan-
tially reduced the concentrations of ash-P and tissue-N
by 10% and 40%, respectively. The averaged cell wall
components (glucan, lignin), TEY, and total TEY across
all treatments showed reduced concentrations in the last
two experimental years (2011 and 2012). Both ash-C and
ash-P concentrations peaked at 100.3 and 87.4gkg ™", re-
spectively, in 2012. The total TEY increased over time
from 2008 to 2010 but substantially declined in 2011
and 2012. For the N rate, the ANOVA results showed a
significant year X N-rate interaction for chemical com-
positions (Table 5), but no discernible trend (data not
shown). The average across years and two harvest re-
gimes showed that only the biomass-N concentrations
and total TEY consistently increased with increasing N
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rate. By increasing N rate from 0 to 112kgNha™, the
tissue-N concentrations increased from 8.0 to 8.9gkg™"
and the total TEY improved from 453.0 to 632.7 Lha™"
(Table 8).

3.5 | Canonical correlation analysis

The number of CCA functions was based on a set, inde-
pendent or dependent set, with the least number of varia-
bles (i.e., vegetative species composition set in this study).
Thus, only 3-6 functions were derived based on the num-
ber of species in each location (Table 9). The full model
across all canonical functions was significant based on the
Wilk's A criteria of 0.22 (GA), 0.27 (MO), and 0.08 (KS),
respectively (p <0.0001 shown in Table 9). The Wilk's 1
indicates the variance unexplained by the full model, so
the value of 1-1 represents the overall effect size of the
model and can be interpreted as r* in multiple regressions.
For instance, the 1—1 of the model including four CCA
functions in GA was 0.78, meaning that the full model can
explain about 78% of the variance shared between two var-
iable sets. Likewise, the full CCA models explained 73%
and 92% of the variances in MO and KS, respectively. In
each model, the Rf showed that first two canonical func-
tions explained substantial variability between predictor
and outcome variable sets, and the first function explained
59%, 47% and 78% of the total variability in GA, MO and
KS, respectively (Table 10). Thus, we only focused on the
first function, as this was deemed adequate for interpret-
ing variability between the two sets of variables. The load-
ings (r,) and cross-loadings of the species and chemical
composition variable sets are shown in Table 11. In GA,
the loadings showed the most important species compo-
sition predictors of the chemical compositions was weed
(—0.74) followed by TF (0.64), OR (0.60), and legume
(—0.40). The cross-loadings also showed the same trend.
The energy-rich indicators (i.e., cell wall, volatiles, and
biomass-C) were negatively correlated to the biomass-ash
and -N in the chemical composition set and the TF and
OR compositions in the species composition set. For the
MO site, loadings on weed (0.75) was also the most signifi-
cant predictor of the feedstock compositions/quality, fol-
lowed by legume (0.49). The contribution of TF, however,

TABLE 9 Wilks' A test results of

. . . Function
canonical correlation analysis between .
. . . Site no.
vegetative species and chemical
compositions from GA, MO, and KS in GA 4
2008-2012 MO
KS 6

»
T
it
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was minimal (—0.12). In the chemical composition set, the
loadings showed that lignin (0.91) and biomass-C (0.79)
were the primarily contributors to the first canonical func-
tion. In the KS site, the loadings on the first function indi-
cated that legume (0.93) was the most important variable
from the species composition set for predicting feedstock
quality. Among all warm-season grasses, however, only
SO (—0.54) showed a significant contribution for predict-
ing the chemical composition (and ultimately quality).
Three structural cell wall compositions, biomass-ash, and
-C had significant loadings (i.e., > 10.30l) among feedstock
quality variables.

4 | DISCUSSION

4.1 | Bioenergy feedstock quality

Each conversion technology has different chemical
composition requirements to ensure conversion effi-
ciency (Brown & Brown, 2014; Jonsson et al., 2013; Li
et al., 2016). For instance, the biochemical conversion
technique is commonly used to produce EtOH from the
carbohydrate-rich components (i.e., glucan/cellulose
and xylan/hemicellulose). For the biochemical process,
lignin is considered an undesirable compound along
with the ash content because the increased lignin can
(1) enhance biomass recalcitrance, (2) inhibit micro-
bial growth by producing toxic compounds (e.g., phe-
nols and aromatics) during the hydrolysis process, and
(3) interfere with cellulase enzyme accessibility to the
polysaccharides for sugar production, and (4) not be
the source for biological transformation (Li et al., 2010,
2016; Palmqvist & Hahn-Higerdal, 2000a, 2000b; Pu
et al., 2013; Studer et al., 2011). The thermochemical
process (e.g., combustion, gasification, fast pyrolysis,
or hydrothermal liquefaction) can use heat and/or cata-
lysts to covert carbon-rich materials, including lignin,
into energy resources (e.g. syngas or hydrocarbon bio-
fuels). Ash components, mainly inorganic compounds,
are unfavorable for bio- and thermo-chemical processes
because ash can reduce the conversion effectiveness and
upgrading performances due to its strong catalytic effect
(Bridgwater, 2012; Kenney et al., 2013; Li et al., 2016).

Wilks' Hypothesis Error

A F-statistic DF DF p-value
0.22 543 28 286 <0.0001
0.27 5.21 21 190 <0.0001
0.08 6.08 42 360 <0.0001

Abbreviations: DF, degree of freedom; Function, canonical function.
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For the combustion process, high biomass N contents
likely increased nitrogen oxide (NO,) formation, which
is considered a deleterious product for the environment
(Lewandowski & Kauter, 2003; Prochnow et al., 2009).
In this study, the increased concentrations of cell wall

TABLE 10 Canonical correlation analysis of vegetative species
and chemical compositions from GA, MO, and KS in 2008-2012

F
Site  Function R, R? value DF p-value
GA 1 077 059 543 28 <0.0001
2 0.62  0.38 3.27 18 <0.0001
3 0.34 011 1.47 10 0.16
4 023 0.05 110 4 0.36
MO 1 0.68  0.47 5.21 21 <0.0001
2 0.58  0.34  4.47 12 <0.0001
3 048 023 4.04 5 0.0029
KS 1 0.88  0.78 6.08 42 <0.0001
2 0.68 046 292 30 <0.0001
3 0.41 0.17 1.53 20 0.07
4 0.34  0.11 1.25 12 0.25
5 024  0.06 0.86 6 0.53
6 0.06 0.00 0.13 2 0.87

Abbreviations: DF, degree of freedom; Function, canonical function; R,,
canonical correlation coefficient; R2, squared canonical correlation, meaning
that the amount of the variance shared between the variable sets.

components, volatiles, biomass-C, and TEY referred to
the improved feedstock quality for energy productions;
conversely, the increased biomass-ashes and -N concen-
trations meant low-quality feedstock.

4.2 | Environmental effect

The warm-season grasses usually service as a better her-
baceous feedstock for bioenergy production than the
cool-season grasses by providing higher carbon-rich
components and lower ash content (Cherney et al., 1991;
Kenney et al., 2013; Hatfield et al., 2009; Sage & Zhu, 2011;
van der Weijde et al., 2013; Zhu et al., 2008). This study,
however, showed a higher ash content in the warm-season
grass predominant biomass (KS) than the cool-season
grasses predominant biomass (GA and MO). This opposite
trend was attributed to different soil properties and nutri-
ent contents of the CPR cropland. Compared with GA and
MO, the KS CRP site has higher alkali and alkaline earth
metals (e.g., K, Ca, and Mg) in soil (Table 1). Increased
concentrations of alkali/alkaline earth metals in soil likely
facilitate the accumulation of metal nutrients in plant tis-
sue, becoming the source of biomass ash (Li et al., 2016).
Also, significant year variations in vegetation species
and feedstock chemical compositions in each location
were due to the changed weather pattern over the years,

TABLE 11 Canonical solution for the first composition scores of the indicators of feedstock quality and vegetative species compositions

from GA, MO, and KS in 2008-2012

Variables GA MO KS

Independent Coef. T Cross r; Coef. rg Cross r; Coef. T Cross r;
TF 0.17 0.64 0.49 0.85 —0.12 —0.09 — — —
OR 0.55 0.60 0.46 = = = = = =
SO = == = = = = —0.14 —0.54 —0.48
SW — — — — — — —0.03 0.01 0.01
LB — — — — — — —0.10 —0.20 -0.17
IN = == == = == = 0.00 —0.15 —0.13
Leg —0.19  —0.40 —0.30 0.99 0.49 0.34 1.02 0.93 0.82
Weed —0.66 —=0.74 —=0.57 0.83 0.75 0.51 0.25 —0.18 —0.16

Dependent
Glucan 0.86 -0.17 —-0.13 0.06 -0.10 —0.0 0.56 0.75 0.66
Xylan —0.05 —=0.63 —0.48 0.16 0.51 0.35 —0.60 —=0.52 —=0.46
Lignin —-0.14 —=0.61 =0.47 0.65 0.91 0.62 0.39 0.58 0.51
Ash-C 0.66 0.64 0.49 —0.02 -0.14 —-0.10 —-0.01 —0.64 —0.56
Volatile 0.23 —0.73 —0.56 —-0.61 0.33 0.22 —0.04 0.29 0.26
C 0.01 —0.38 —-0.29 0.68 0.79 0.54 0.07 0.65 0.57
N 1.08 0.73 0.56 0.01 —0.35 —-0.24 —-0.01 0.01 0.01

Abbreviations: Coef., standardized canonical function coefficient; IN, Indiangrass; LB, little bluestem; OR, orchardgrass; r, structure coefficients (loadings),
great than 10.30] are underlined; SO, sideoats grama; SW, switchgrass; TF, tall fescue.
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especially precipitation (Harmoney et al., 2016; Templeton
etal., 2009; Williams et al., 2016). For instance, the nation-
wide drought event in 2012 led to substantial declines in
legume composition in GA shown in this study, and MO
and KS reported by Harmoney et al. (2016). Compared
with legumes, the perennial grasses were more resistant to
water stress by showing a stable biomass yield and cover-
age proportion. This decline in legume compositions was
likely followed by the increase in weed compositions. For
feedstock chemical compositions, legumes tended to have
higher lignin contents than grasses (Cherney et al., 1988;
Jensen et al., 2012). Although legumes only covered 10%-
30% of the canopy, the declined legume likely reduced the
lignin concentration, especially in GA and KS. Many stud-
ies consistently reported that the water-deficit growing
condition could reduce structural cell wall compositions
by increasing the non-structural carbohydrate in the lig-
nocellulosic feedstock (Hoover et al., 2018). In this study,
however, the reduced cell wall composition due to the se-
vere drought was only observed in MO and KS and not GA.
Although all three locations were subjected to water stress
in 2012, the cumulative precipitation during the growing
season (May to Oct) indicated that the MO and KS sites
only received 280-mm and 205-mm of rainfall (~50% of
the 30-year average), respectively, but the GA site still had
427-mm precipitation (~70% of the 30-year average).

4.3 | Harvest management

For perennial grasses, delaying a harvest until EGS or
after KF has been consistently reported to provide multi-
ple benefits, including (1) improvements of stand persis-
tence and regrowth vigor potentials by extending the time
for vegetative development and reproductive tiller growth
and (2) increases in nutrient use efficiency and feedstock
quality by facilitating the nutrient translocation from the
aboveground to underground biomass which can be re-
cycled in the following year (Lee et al., 2014; MacAdam
& Nelson, 2003; Zumpf et al., 2019). In this study, the
delayed harvest also benefited the perennial vigor in MO
and KS by improving the overall coverage of perennial
grasses except for GA (Table 4; Tables S1 and S2). Since
the harvest management in GA consisted of two harvest
timing and frequencies (only one harvest at PSC but two
harvests at the EGS in the late spring and fall), this con-
founding management effect on perennial persistence
became even more complicated in GA than MO and KS.
We hypothesized that this opposite effect was mainly due
to the rapid depletion of soil nutrients under the frequent
harvest practice. Compared with only one harvest at PSC,
the two harvests likely increased biomass nutrient re-
moval from soil and accelerated the nutrient depletion in

-
T
it

the soil (Follett & Wilkinson, 1995; Gabrielle et al., 2014;
Kering et al., 2013; Minson, 1981; Mullahey et al., 1992;
Pedroso et al., 2014). The GA CRP sites already had lower
soil fertility than the other locations, so the insufficient
nutrient contents can have a severe impact on grass per-
sistence (Table 1). Delayed harvesting has been suggested
to improve the feedstock quality through reducing mois-
ture, ash, and N contents in aboveground biomass due
to the nutrient translocation to the underground tissues
(Mitchell & Schmer, 2012; Ong et al., 2018).

I-wi LEYM

4.4 | Nitrogen management

Our previous study showed that increased N rate typi-
cally improved biomass yield for warm- and cool-season
grass mixtures (Anderson et al., 2016; Lee et al., 2013;
Mohammed et al., 2014). The increased yield likely im-
proved the total TEY, shown in this study. Increased N
rate also improved the stand persistence and productiv-
ity of the cool-season grasses but consistently declined the
legume coverage over the years in our studies (Table 4 and
Table S1; Harmoney et al., 2016; Mohammed et al., 2014)
and other literature (Mallarino & Wedin, 1990). Compared
with the warm-season grasses, the cool-season grasses
were highly responsive to the N supply for stand cov-
erage and biomass chemical compositions (Cherney
et al.,, 1991). With more N input, the cool-season grass
becomes more competitive than legumes and the annual
weed compositions (Table 4 and Table S1; Harmoney
et al., 2016). Nitrogen effects on biomass compositions,
however, are substantially influenced by environmen-
tal variations (weather and soils) and species (Allison
et al., 2012; Emery et al., 2020; Heggenstaller et al., 2009;
Hong et al., 2014; Waramit et al., 2011). Increased N was
consistently reported to increase the overall yield and bi-
omass-N concentrations (Arundale et al., 2015; Gurezky
etal.,2011; Ibrahim et al., 2017; Lemus et al., 2008; Mulkey
et al., 2008; Murozuka et al., 2014; Vogel et al., 2002).
The additional N supply, however, has been reported to
have positive (Allison et al., 2012; Arundale et al., 2015;
Hong et al., 2014; Lemus et al., 2008; Nazli & Tansi, 2019;
Waramit et al., 2011), negative (Hodgson et al., 2010), or
no effects (Lee et al., 2007; Ibrahim et al., 2017; Seepaul
et al., 2014) on cellulose and lignin concentrations in the
monoculture production studies. In the mixture systems,
biomass compositions were influenced by the confound-
ing factors of N treatments and species transitions. In GA
and MO, increased N input decreased the feedstock qual-
ity by increasing the biomass-ash and -N contents and
reducing the cell wall compositions. Since legumes have
higher lignin than perennial grasses, the reduced lignin
can be attributed to the declined legume composition with
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increasing N input. Many studies reported that the biomass
compositions of the warm-season grass seldom responded
to N supplies except for the tissue-N concentration (Lee
et al., 2007; Ibrahim et al., 2017; Seepaul et al., 2014).The
increased tissue-N concentration resulting from more N
input was also shown in the KS site of this study and likely
has adverse impact on feedstock quality.

4.5 | Species effect on chemical
compositions

The CCA was used to study the relationship between
species transitions and feedstock quality because this
method can avoid the multicollinearity issue for the cor-
related predictors in regression prediction models, such
as multiple linear regression analysis (Kabir et al., 2014;
Sherry & Henson, 2005). The CCA analysis can also dif-
ferentiate the contributions of predictors (species) to the
outcomes (compositional analytes). This study showed
that feedstock quality was significantly associated with
species compositions, and their relationships varied based
on the predominant species and the growth environment.
For instance, the changed weed compositions substan-
tially influenced the feedstock chemical compositions of
cool-season mixtures but negligibly affected the quality
of warm-season mixtures. A strong negative association
between weed/legume and cool-season grasses demon-
strated that their competitive relationship and preferences
for management practices. The negative relationship be-
tween the cool-season grass and the quality attributes
showed that the increased cool-season grass compositions
likely reduced the feedstock quality for bioenergy pro-
ductions, such as declines in cell wall compositions and
volatiles. As a dedicated bioenergy crop candidate, the
cool-season grass has an attractive yield potential for en-
ergy productions (e.g., high total TEY) and early biomass
accumulation (i.e., in spring) before the warm-season bio-
mass are ready; however, its nutrient-rich characteristics
in plant tissues likely increase biomass-ash and -N con-
tents (Florine et al., 2006; Lee et al., 2013). The KS site
also showed plant competitions between the warm-season
grasses and legumes. Increased legume compositions
likely enhanced lignin (positive relationship) but reduced
xylan (negative relationship) contents because legumes
usually have higher lignin concentrations but much lower
hemicellulose (the predominant compositions of the
structural xylan) than grasses (Cherney et al., 1988, 1991;
Jarchow et al., 2012; Mohammed et al., 2014). Improved
lignin concentration was also associated with increases in
glucan (Pearson's correlation coefficient, r = 0.53) and de-
clines in ash concentration (r = —0.81 for the ash-C data
not shown). Although each indicator provided different

information regarding quality control, our results showed
that the quality attributes of structural xylan and lignin
and the overall C content were more sensitive to the tran-
sition of species in the grass-legume mixture system.

5 | CONCLUSIONS

Perennial grass-legume mixtures are ideal polyculture
production systems for the Conservation Reserve Program
(CRP) land, initially designed for soil and water conser-
vation. For grass mixture systems, it could be challeng-
ing to optimize the management practices for proving
a sustainable feedstock supply and ensuring vegetative
longevity. This study showed that different grass mix-
tures responded to specific practices for feedstock quality.
The chemical compositions of cool-season mixtures were
highly sensitive to the N supply compared with the warm-
season mixtures. Although the increased N input can im-
prove the total theoretical ethanol yield, the additional N
input likely reduced the feedstock quality by reducing the
concentrations of cell wall components. The warm-season
mixtures responded to the harvest timing more than the
cool-season mixtures. Delayed harvest after complete se-
nescence consistently improved feedstock quality of the
warm-season mixtures by increasing concentrations of
glucan, xylan, lignin, and volatiles and reducing the ash
and tissue nitrogen contents. The CCA provided a useful
tool to identify the effect of vegetative species transitions
on feedstock quality. Most of the quality attributes re-
sponded to the changes in species compositions (especially
legumes), but the biomass glucan concentrations seemed
insensitive to this transition in the cool-season mixtures.
Perennial grass and legumes/weeds usually showed a
competitive relationship, also meaning that these species
favored different management practices. The increased
legume compositions likely increased the lignin concen-
trations in biomass. This long-term field research demon-
strated that the goal of supplying high-quality feedstock
and maintaining stand persistence can be achieved under
proper management and a sufficient water supply. In ad-
dition, the CCA coupled with the approach of vegetative
species identification (e.g., remote-sensing techniques)
can be a powerful tool to predict feedstock quality for fu-
ture studies.
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