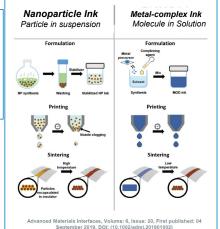


Metal-Complex Inks for Lower Cost and Improved Passivation for Silicon Photovoltaic Metallization

David L. Young¹, William Nemeth¹, Matthew Page¹, Markus Kaupa¹, Harvey Guthrey¹, San Theingi¹, Melbs LeMieux²

¹National Renewable Energy Laboratory, Golden, Colorado 80401 USA


²ElectronInks, Inc, Austin, Texas 78744 USA

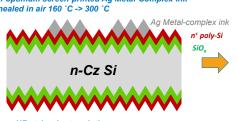
Two Types of Metal Inks Metal-Complex Ink

Walker, S. B. and J. A. Lewis (2012). <u>Journal of the American Chemical Society</u> 134(3): 1419-1421 Eva S. Rosker, et al., (2020). <u>ACS Appl. Mater. Interfaces</u> 12: 29684–29691

O Ag

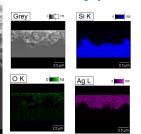
N-Cz Silicon

What are Metal-Complex Inks?

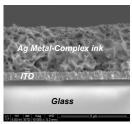

- New class of non-particle based inks
- Metals are suspended in solution as cations
- Metals "precipitate" out to form continuous metallic films upon annealing at low temperatures

What are the benefits?

- Dense films (up to 93% of bulk metal)
- High conductivity (up to 80-90% of bulk metal)
- Screen printable
- Ink Jet compatible with no particle clogging
- Low annealing temps (160 °C 300 °C)
- Compared with particle-based pastes:
 - 22% less Aq
 - 33% less cost

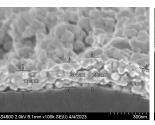

Initial Tests on PV Surfaces

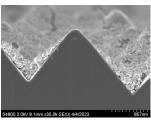
Poly-Si/SiO₂ Contacts



- Good screen printing fidelity
- Dense honeycomb-like metal film, but still quite porous
- Low recombination: $J_{o_metal} \sim J_{o_field}$ Poor contact resistivity: Ohmic, but very high resistance

No dielectric blocking layer detected

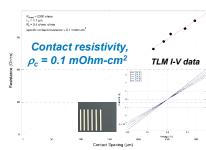

- Good adhesion to TCO
- Low contact resistivity to ITO



TCO Contacts

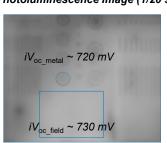
ITO (10 nm)/Poly-Si/SiO₂ contacts

Excellent Metal Resistivity



- Thin metallic layers 175 nm 250 nm
- $\rho_{\rm metal}$ = 3-7E-8 Ohm-m (~2-4 x $\rho_{\rm Ag}$)
 non-uniform coverage especially over the pyramid tips

Aa Metal-complex ink n-Cz Si


Excellent Contact Resistivity

Excellent Passivation Preservation

- The metal-complex inks do not aggressively etch the poly-Si surface
- The low-temperature annealing conditions preserve the field passivation (< 300 °C)
- J_o is preserved under the metal
- J_o is preserved in the field region
- $J_{o_metal} J_{o_non-metal} < 1 \text{ fA/cm}^2$

Photoluminescence Image (1/20 s)

Conclusions:

- Metal-complex inks are a promising new path for PV contacts to lower cost, Ag usage and improve passivation.
- Dense, thin films
- High metallic conductivity
- Low contact resistivity
- High passivation preservation under the metal
- Low-temperature anneal (preserves $J_{o\ field}$)
- Need to improve screen-printing uniform Need to improve direct contact to Poly-Si
- Cu-based metal-complex inks are under development

Post Doc Wanted!