

A Comparison of Generator Technologies for Offshore Wind Turbines

Pietro Bortolotti, Garrett Barter, Latha Sethuraman, and Jon Keller

Dave Torrey

Feb. 21, 2023

The Fine Print

- **Acknowledgement:** This material is based on work supported by the U.S. Department of Energy under award number DE-EE0008787 (GE) and Contract No. DE-AC36-08GO28308 (NREL) through the Office of Energy Efficiency and Renewable Energy Wind Energy Technologies Office.
- **Disclaimer:** This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process or service by trademark, manufacturer or otherwise does not necessarily constitute or imply endorsement, recommendation or favoring by the United States Government of any agency thereof. The views and opinions of the authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Design Matrix

- Generator technologies
	- Interior permanent-magnet direct drive (IPM)
	- Low temperature superconducting (LTS)
	- Medium-speed geared configuration (gear ratio 120) with surface-mounted permanent-magnet generator (MS-PMSG)
- Ratings of 15/17/20/22/25 megawatts (MW)
- Floating and fixed bottom
- Design and optimization supported by the Wind-Plant Integrated System Design and Engineering Model (WISDEM[®]) and Wind Energy with Integrated Servo control (WEIS).

Wind Turbine Configurations

• Max blade tip speed of 95 m/s

rpm: revolutions per minute

2023 Drivetrain Reliability Collaborative NREL & GE Research | 5

Cost Model

- Bill of materials scaled by unit cost of materials and electricity consumption
	- Includes "buy-to-fly" multipliers
	- U.S. average cost of electricity for industry in 2022 = \$0.078 per kilowatt-hour (kWh)
- Cost and mass of cooling system scales by generator rating and diameter
	- Cooling cost multiplier = \$124 per kilogram (kg)
- Bureau of Labor Statistics manufacturing estimates final cost is 18.9% capital, 61.9% materials, 19.3% labor, so our materials estimate is scaled by 1/0.619 to obtain final cost.

Cooling Mass

Comparison of Generator **Technologies**

- Design optimization used finite element method magnetics (FEMM) models of generator sections; particularly important for permanent-magnet designs
- Code is publicly available at <https://github.com/WISDEM/GeneratorSE/>
- Cost vs. mass minimizations
	- We moved ahead with the minimum-cost designs.
	- Results are very sensitive to the unit costs of the materials.

Generator Design Optimization

LTS Design

- Optimal design parameters generally avoid extremes
- Good cost and consistent efficiency across power

2023 Drivetrain Reliability Collaborative NREL & GE Research | 9

 r_a h_{t}

 d_{mag} $h_{\bm m}$ h_{yr} h_{us} pp N_c b_t

> h_{ss} h_{sr}

- Difficulty maintaining efficiency target at high power
- Mass and cost increase with increasing power than LTS design

MS-PMSG Design

- Consistent efficiency across power
- Greater mass and cost increase with increasing power than LTS design

Mass and Cost Trends

Bounds on armature diameter limit growth of mass, not of cost, and IPMSG design at 25 MW does not meet efficiency requirement.

Fixed Bottom Designs

- Operational expenditure (OpEx) costs of 110 \$/kW/yr.
- LCOE results are very sensitive to this number, see LTS and MS-PMSG results for OpEx costs increased by 10%.

25

25

DD-LTSG

- MS-PMSG

Floating Designs

- Similar platform masses and BOS costs across generator technologies.
- At 25 MW, MS-PMSG and LTS are closer.

- Three drivetrain technologies (IPM, MS-PMSG, and LTS) at five ratings (15, 17, 20, 22, and 25 MW), fixed-bottom and floating evaluated in WISDEM and WEIS
- IPM efficiency struggles at higher power; could indicate topology limitations.
- LTS efficiency suggests no limitation over power; less sensitive to cost and efficiency change with power.
- MS-PMSG shows improving efficiency with power level, but higher rate of cost increase than LTS.
- Results are sensitive to models (material properties, costs, operations and maintenance), so focus on trends rather than specific numbers.

Summary

- LTS reduces LCOE by 2%–3% compared to IPM, which struggles especially at higher ratings.
- Despite the lower drivetrain efficiency, MS-PMSG shows the lowest cost of energy. However, we did not model operations and maintenance costs, which might increase with a gearbox or new technology, and results are very sensitive to OpEx.
- LCOE decreases with increasing rating for floating. For fixed bottom, it stays flat from 15–20 MW, and increases at 25 MW.

Q&A

NREL/PR-5000-85341