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ABSTRACT The expansion of Advanced Metering Infrastructure (AMI) has provided building operators and
researchers detailed information on building energy consumption. The majority of AMI systems, however,
record data at relatively low resolutions of 15, 30, or 60 minutes, due to cost, storage and bandwidth
limitations. Emerging applications in power flow analysis, Quasi-Static Time-Series Simulation (QSTS),
smart grid integration and load matching, however, require data at higher resolutions. Short-term energy
demand can deviate significantly from long-term averages, with an unknown magnitude and frequency when
only low-resolution load profile data is available. This paper presents a novel data-driven approach to predict
characteristics of the missing high-resolution information in a low-resolution signal, applicable to both
measured and modeled building load profile data, utilizing machine learning regression algorithms. In the
proposed framework, the relationship between characteristics of high-resolution and low-resolution signals
is learned from the decomposition and characterization of a subset of high-resolution building data. This
paper validates the underlying hypotheses and methodology of this approach through a single-building case
study, training a variety of machine learning models on one year of data, and using the resulting models to
predict high-resolution characteristics in a different year. An Ensemble Tree regression model demonstrates
a high predictive accuracy (R? of 0.79-0.92) for several statistical metrics of the high-resolution load profile.
These results support the broader potential for leveraging low-resolution information to accurately constrain
predictions of missing high-resolution information in building load profiles, which may greatly increase the
utility of both measured and modeled data in many practical and research applications. Generalizing such
models will require analysis of high-resolution data from a diverse set of building types.

INDEX TERMS Building load profile modeling, decomposition, DWT, regression, variability prediction.

I. INTRODUCTION AND RELATED WORK

With an increasing number of connected distributed energy
resources (DERs) in the grid, and electrical loads in the
built environment, the real-time impact on voltage, frequency,
and power generation/consumption should be evaluated [1].
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In such an effort, measured or modeled time-series data is
typically being used for power system analysis. The accuracy
of many of these studies depends on the available resolu-
tion (the time interval between two consecutive measure-
ments) of the time-series data. For example, researchers in [2]
studied the modeling of load profiles at the distribution feeder
level for a realistic Quasi-Static Time-Series (QSTS) simula-
tion. They have demonstrated the need for load profiles to
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provide at least a one-second resolution to accurately model
the distribution system and capture key component operations
such as the number of regulator tap changes. The author
in [3] discussed the importance of the availability of 1-minute
resolution data on the demand side management analysis,
while the impact of time resolution on load matching in the
presence of DERs such as photovoltaics (PV) was discussed
in [4] and [5]. They also concluded that high-resolution data
(with resolution in the 1 to 5 minute range) carries more infor-
mation about the generation/consumption than hourly data
and can significantly reduce the model’s error. As reported
in [6], accurate power flow and voltage regulation analysis
relies on high-resolution data, since the controller of the
current-voltage regulation equipment like capacitors requires
a time delay of around 30 seconds. Therefore, for power flow
analysis purposes, the resolution of load data should match
the controller’s defined delay.

Building load profiles are time-series load profile data that
vary across different observation time horizons from sub-
minute to hourly data [7], [8] measured using AMI devices.
AMIs provide critical spatio-temporal energy usage informa-
tion, applicable to energy efficiency measures [9] or building
energy analysis. The number of deployed AMIs across the
U.S. continues to grow. As of 2016, approximately 76 million
customers (out of roughly 152 million electricity customers)
had these smart meters [10]. By 2020, the number of installed
meters had grown to about 102.9 million [11]. These smart
meters are capable of providing near real-time power and
energy consumption information with high temporal gran-
ularity. This information can benefit building services and
assets in the smart grid domain by offering detailed infor-
mation, facilitating the realization of grid-interactive energy
efficient buildings (GEB) [12].

However, current practices to measure this information
vary widely as AMI measurement intervals vary across the
built environment. Every utility across the United States col-
lects data at different time resolution scales ranging from one
second to one hour with typical values being one, five, 15,
30, and 60 minutes. In 2016, with approximately 16.3 million
AMI meters analyzed, the Smart Grid Investment Grant Pro-
gram (SGIG) found that 52% of residential meters collect
data at the 60-minute interval, 6% at the 30-minute interval,
and 42% at the 15-minute interval. For commercial meters,
the data shows 22% of meters collect data at the 60-minute
interval, 5% at the 30-minute interval, 72% at the 15-minute
interval, and 1% at the one-minute interval. For industrial
meters, 7% collect data at the 60-minute interval, 3% at the
30-minute interval and 90% at the 15-minute interval [13].

The time resolution of AMI data is often limited due
to hardware or financial constraints, preventing AMIs from
collecting, processing, transferring, or storing power con-
sumption data at higher resolution. Also, building owners do
not tend to share their power consumption in open access
databases due to privacy concerns. To overcome the lack of
load profiles at high resolutions, researchers often rely on data
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from nominally similar buildings, allocated and scaled feeder
data [14], or modeled load profiles [15], [16], [17], [18]. Each
of these approaches suffers from a potentially significant loss
of accuracy at high resolutions for a given building load
profile.

Some of the high-resolution features of a low-resolution
load profile may be recovered through signal-processing
techniques such as compressed sensing [19]. In [20] a com-
pressed version of a load profile is used to forecast 15-minute
demand with high accuracy, indicating that some high-
resolution load features may be predictable without requiring
measurement at that resolution.

There are several potential approaches to characterize
or model the high-frequency components of load profiles.
Authors in [21] analyzed load profiles in several higher
education buildings by applying wavelet decomposition and
constructing typical load patterns through two-stage clus-
tering. The uncertainty in these load patterns is quantified
by entropy, with a higher uncertainty observed in the high-
frequency patterns, but a high probability for patterns to
remain consistent over time. In [22], researchers developed
a diversity and variability library from high-resolution trans-
former data, by applying Discrete Wavelet Transformation
(DWT). Such variability libraries can be scaled to the feeder
level to produce a more realistic load representation, but the
library approach is difficult to generalize for an arbitrary
building. Similar to the library approach is the generation
of synthetic, representative high-resolution load profiles by
training models on real data. Researchers in [23] applied
generative adversarial networks and kernel density estimators
to generate realistic synthetic profiles based on real 1-minute
data.

Future short-term fluctuations may be highly correlated
to past short-term fluctuations in a given building, such that
short-term forecasting is possible with a reasonable degree
of accuracy, as long as historical data is measured at suf-
ficient resolution. In [24] researchers apply a long short-
term memory recurrent neural network-based framework to
predict short-term demand for individual residential users,
with promising accuracy compared to previous approaches.

One challenge for the prediction of high-resolution load
profile behavior, however, is the scalability of observed pro-
files to an arbitrary system for which high-resolution data
may not be available. In [25], researchers characterize the
short-term fluctuations in several datasets using the standard
deviation. The relationship between the short-term demand
uncertainty and the base demand level is modeled as a poly-
nomial function. Such a model shows a significant increase
in accuracy over the assumption that uncertainty is a fixed
percentage of the base demand.

The present research seeks to generalize this scalability,
by examining the dependence of high-resolution character-
istics on the low-resolution profile as a function of time,
as well as other building or external characteristics. The
underlying problem of resolution is illustrated in Figure 1.
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This Figure represents a load profile of an actual building
for three consecutive days in 2019, measured at two different
time resolutions of one minute and one hour. Energy (kWh)
measurements are converted to average kW to allow direct
comparison across time resolutions. As can be seen, the
load at the one-hour resolution (red), interpolated to one-
minute, is not an accurate representation of the consumption
at the one-minute resolution (blue) because high-frequency
fluctuations are missing in the one-hour resolution. At the
hourly scale, many load profiles follow somewhat determin-
istic patterns, exhibiting a predictable rise and fall over the
course of a day. Below this scale, short-term energy demand
can exhibit highly random characteristics, becoming more
similar to noise. The term “load profile variability” is used
to describe this highly random, high-frequency component of
the load profile. This variability exists at multiple timescales,
up to and including the actual instantaneous power. The vari-
ability may be affected by equipment, occupancy behavior,
building size, or any number of factors. Henceforth, the low-
resolution load profile data will be referred to as the “‘base
load,” and the high-frequency phenomena missing from this
base load as the “variability.”
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FIGURE 1. One-minute (blue) and one-hour (red) load profiles measured
in an actual building for a three-day period.

To address this lack of variability in building load profiles,
this research builds upon ongoing work, by proposing a novel
data-driven approach to investigate the dependency between
characteristics of missing variability and base load informa-
tion, and predict characteristics of the missing variability in a
low-resolution load profile. It is applicable to both measured
and modeled time-series data. To predict this information,
this research first hypothesizes that various statistics of this
variability may be correlated to the base load, as well as to
other characteristics of the signal. Therefore, if the function
describing this relationship is known, statistics of the missing
variability in a low-resolution signal can be predicted.

The major contribution and novelty of this work focuses
on the development of a framework methodology to train
regression models for the prediction of missing variability

VOLUME 11, 2023

characteristics in both modeled and measured time series
data.

The remainder of this work is organized as follows:
In section II, the research methodology, decomposition,
quantification methods, and regression model are discussed.
Then in section III, results from different models are pre-
sented and analyzed, and section IV concludes this work.

Il. PROBLEM FORMULATION

The proposed framework in this research is part of ongoing
work and it is divided into two phases of discovery and
implementation (shown in Figure 2). The discovery phase
begins with a decomposition process previously discussed
in [1] and [26], applied to a subset of available high-resolution
measured data, to separate the variability signal from the base
load. Next, the variability signal is analyzed and character-
ized by various metrics such as root-mean-square-variability
(RMSV) [1] that summarize the typical deviation of the base
load over a given period of time, or by other metrics that are
related to its statistical distribution. This represents an impor-
tant distinction from other types of high-resolution analysis,
in that the variability is not directly modeled as a time-series
signal, but rather characterized by these scalar metrics. Using
the base load metrics as input features, and variability metrics
as response variables, the functional relationship between
them is determined using multivariate regression.

Discovery
phase
feasured high-resolution time-series

|

{ Decompose the signal using DWT }

¥ v
v

Extract base load ] [ Extract variability

v
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features load variability
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\—X& Train model (Regression) > Bzl

£y sclectionTuning

Implementation
phase

=

Adopted

L, Predicted variability
New base load metrics/features

< Trained Model | “1o me0 B

FIGURE 2. Research framework.

In the implementation phase, it is assumed that only a
low-resolution load profile is available. By using the gener-
ated model with this load profile as the input, the missing
variability characteristics can be predicted. The following
subsections describe the process in more detail, using an
actual building load profile as a case study.

A. CASE STUDY AND DATA DESCRIPTION

The example in this paper focuses on the prediction of vari-
ability characteristics in a single building, by training a model
over a different time period in that same building. The data set
used is a 1-minute time-resolution load profile of a cafeteria
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building in the U.S. Midwest collected over two consecutive
years, 2018 and 2019. The data set includes the measured load
profile for the entire building consumption as well as load
profiles of five end-use categories that form the full building
consumption: mechanical, “cooking 17, “cooking 2", light-
ing, and miscellaneous electrical loads. The instantaneous
power demand is recorded once per minute, and for the
purposes of this analysis the power readings are treated as
equivalent to the average demand over that minute. In reality,
this results in an overestimation of the energy variability at
the one-minute timescale, as the variance of instantaneous
power is larger than that of power averaged over longer time-
frames. Conversely, it is an underestimation of the variability
in instantaneous power, due only to being sampled once per
minute. Thus, the magnitude of variability in this case study
lies between the variability in instantaneous power and one-
time energy demand. It is noted that while the relationship
between the base load and the actual one-minute energy
variability may be different from that obtained through this
assumption, the framework for generating a model at any
timescale remains the same. Data preprocessing was per-
formed to replace missing data with representative data using
an interpolation method. Less than 0.5% of the data required
such replacement, and for no contiguous periods longer than
1 hour.

To validate the research framework using this case study,
it is supposed that only low-resolution load profile data is
available for 2019. Specifically, the 1-minute data is aggre-
gated to hourly intervals, a common resolution for both com-
mercial and residential metering. The model is trained on
2018 data to predict hourly variability characteristics from
the hourly load profile, following the discovery framework
in Figure 2. The resulting model is then applied to the
hourly 2019 data (following the implementation framework)
to make hourly predictions of 2019 variability characteristics.
These predictions are tested against the actual high-resolution
2019 data. Table 1 presents a table of the various variables
used in the following sections.

B. SIGNAL DECOMPOSITION

The first step in developing a model that relates high-
resolution load profile characteristics to low-resolution
characteristics is to separate these two components of the
signal. Previous research by the authors in [1] proposes the
use of the Discrete Wavelet Transform (DWT). The DWT
process separates a signal into an approximation signal and
a detail signal, corresponding to the base load and variability,
respectively. For the present case study, a level 6 Daubechies-
4 (db4) wavelet function is applied to the 1-minute time-
resolution measured data. The choice of level 6 corresponds
to a frequency cutoff between base load and variability with
a period of 64 minutes. Figure 3 shows a sample of separated
variability and base load signals over a day after applying
DWT. As can be seen from this figure, variability is the
difference between the high-resolution measured data and the
base load.
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TABLE 1. Table of variables.

P High-resolution load profile, P = [Py, P,,.. P,]
at minutes m=1...M, used for training

Prr Low-resolution load profile, Pz =

[PLr1, PLr 2+ PLry] at hours h=1...H, used for
testing

w DWT wavelet (‘db4’ in this case study)

/ DWT decomposition level, where L is the
maximum level (6 in this case study)

D Time-domain detail components of DWT
decomposition

A Time-domain approximation component of
DWT decomposition

14 Variability signal for a given w and L

SM Matrix of hourly statistical metrics of variability,
SM = [SM,,SM,,..SMy] at hours h=1...H

B Matrix of base load metrics used as model inputs

G Matrix of additional load information used as
model inputs

f The functional relationship established by a

machine learning model
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FIGURE 3. Decomposition output as a base load and variability.

C. FEATURE EXTRACTION AND STATISTICAL
QUANTIFICATION

This framework does not seek to predict an actual variability
signal in the time domain. Rather, the variability is considered
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to be a random signal with certain quantifiable metrics.
Several metrics can be used to describe the statistical or
frequency content of such a signal, and the importance of
various metrics is wholly dependent on the application.

In this case study, the variability signal is separated into
hourly segments, corresponding to the resolution of the
hourly base load. Figure 4a shows the variability signal over
two such hours on the same day - one during off-peak hours
during which variability is low, and one during peak hours
during which variability is high. Figure 4b shows the Cumula-
tive Distribution Function (CDF) of the variability over each
of these hours. The CDF allows for the visualization of not
only the minimum and maximum values, but any percentiles.

Because high-resolution energy measurements must sum
to low-resolution measurements, the mean of the variability
signal is near zero by design, with slight deviations due to the
smoothing of the DWT filter. To visualize the magnitude of
variability without respect to sign, the CDF of the absolute
variability over each hour is shown in Figure 4c, with the
median absolute variability and 95 percentile marked for
each hour.
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(c) CDF of the absolute value of variability for two separate hours

FIGURE 4. Daily variability and statistical characteristics of two separate
hours of March 6th of 2019.

In the subsequent analysis, the variability signal over each
hour is characterized by six metrics. The median absolute
variability, the mean absolute variability, and the Root-Mean-
Square Variability (RMSV) all describe the ““typical’ devia-
tion of the high-resolution signal from the base load, with an
increasing sensitivity to skewness and outliers. The RMSV is
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almost identical to the standard deviation of the variability,
except that it measures the RMS distance from the base
load, rather than the variability signal’s mean. The maximum
and minimum variability are simply the extremes of the
variability over each hour, which may be especially relevant
to applications involving peak demand or solar integration.
Finally, the 95" percentile of the absolute variability disre-
gards outliers, and constitutes a 95% confidence bound for
the absolute deviation of the high-resolution signal from the
base load. Table 2 displays these metrics for the two example
hours in Figure 4. These six metrics constitute the response
variables in the regression models and are calculated for every
hour.

TABLE 2. Variability metrics for two different hours.

Variability Metric (kW) | 12am 12pm
(00:00-00:59) | (12:00-12:59)
Median absolute 2.06 7.68
Mean absolute 2.34 9.1
RMS 2.92 10.76
Maximum 6.13 26.4
Minimum -5.49 -17.36
95" percentile absolute 5.21 23.14

D. REGRESSION INPUT FEATURES

While the base load is the primary input for the proposed pre-
dictive model, it is not the only information that can be lever-
aged for the prediction of variability. Variability could have a
relationship to temporal variables that is at least partially dis-
tinct from its relationship to the base load. In addition, when
constructing a model to encompass a large set of possible
buildings, various known categorical and numerical building
characteristics could serve as model inputs, as well as external
data such as weather information. Finally, additional features
may be engineered from available information, which could
correlate more strongly with variability than the raw data
itself. In the present case study for a single building, several
possible inputs are considered, falling into 3 categories:

1. Temporal - These categorical variables describe the
time of day, day of week, etc.

2. Base Load Metrics - in addition to the base load for
a given hour, statistics of the base load over the day,
week, and month are considered as well.

3. Engineered Features - These are mathematical com-
binations of other features, such as normalizing the
hourly base load by the daily mean.

4. External - Relevant data obtained from other sources,
specifically an hourly temperature profile.

Table 3 shows all of the input features tested in this case

study. In total, 15 features are considered.

E. RESEARCH ALGORITHMS

Algorithms 1 and 2 formally summarize the research frame-
work outlined above.
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TABLE 3. Regression input features.

Temporal Day of week, Month, Week, Hour of day,
por Weekend/Weekday binary, Business Day
(Categorical) bi
inary
Base l?ad Hourly Mean, Monthly Mean, Daily Mean,
metrics Weekly Mean
(Numerical) Y
Ensineered Abs Difference hourly Mean, Hourly Mean
8 scaled by daily Mean, Hourly Mean scaled by
features
. monthly Mean, Hourly Mean scaled by weekly
(Numerical) M
ean
External
information Hourly Temperature
(Numerical)

Algorithm 1 Discovery Phase

1: Given a high-resolution load profile P, measured each
minute:

2: Decompose the signal using wavelet w (w = db4) at
maximum level L (L = 6)

3: Let D and A denote the time-domain detail and approx-
imation components of P, such that for maximum level L,
wavelet w, and time ¢

L
Py = Diyi+ AL
=1
4: Define variability V at level L as the sum of details up to
level L

L
VL,w,t = Z Dl’W,T
=1

5: Quantify the variability V using the statistical metrics SM
for each hour
VlMedianl |Mean)| VRMS
SM, = Lwh > "Lwh *"Lwh
h= Max VMin V|95%\

Lw,h* "Lwh> "Lw,h

6: Quantify the base load metrics B by calculating statistical
metrics of A over various time frames

7: Train a model f using each statistical metric SM, base load
metrics B, and other available information G

SM = f(B, G)

8: Repeat step 7 as needed using alternative models or input
features, to determine the best-performing models

IIl. ANALYSIS OF RESULTS

A. LINEAR REGRESSION MODEL

As discussed in the introduction, the underlying hypothesis
in this work is that a functional relationship exists between
various characteristics of the variability and the base load.
Preliminary analysis examined one of the simplest tests of
this hypothesis - a univariate linear regression for a single
variability metric as a function of the base load. Figure 5
shows the hourly mean absolute variability vs. the base load
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Algorithm 2 Implementation Phase

1: Given a new low-resolution load profile P;r, measured
each hour:

2: Quantify the base load metrics Brr by calculating statisti-
cal metrics of P;r over various time frames

3: Predict the statistical metrics of variability SM using the
trained model f for each metric

SM = f(BLr, GLr)

4: Measure the model’s performance error using RZ, RMSE,
and MAE

error, = SMj, — SM‘;””“I

> (errory)?
R =1— h

- 2
% (SM‘;”MI _ SMthual)

RMSE = /Zh(e+m”’)2

MAE — > lerrory]

for all of 2018. The black line represents the best fit using
linear regression on the full data set, with an R2 of 0.88 and
an RMSE of 1.64 kW.

;
25 || ——r*=02s
RMSE = 1.64 kW

20 F

15

10

Hourly mean absolute
variability (kW)

0 10 20 30 40 50 60 70 80
Hourly mean of base load (kW)

FIGURE 5. Linear regression of hourly mean absolute variability as a
function of hourly mean base load.

This linear model trained on individual building data is not
a robust predictive model for variability, but it offers a ten-
tative confirmation of the hypothesis that variability metrics
are indeed strongly correlated with the base load. At the same
time, the non-zero intercept of the fit line contradicts even
simpler assumptions about variability, particularly that it can
be assumed to be a fixed percentage of the base load.

B. SUMMARY OF MODEL PERFORMANCE

To address the potentially nonlinear dependence of variability
on the full space of numerical and categorical inputs, a broad
range of machine learning regressions are evaluated, includ-
ing Decision Trees, Support Vector Regression, Tree-based
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TABLE 4. Performance accuracy of multivariate regression models.

Model
9 3 -]
- BT REY-1FY e
= |8%| = |2E| & |Eg|E5 | E¢
w 22 £ /2% 2 EE 5% 52
s 2% % | PE 2 |2% g8 77
ResPonse S &~ 3 7 = é Sl
Variables
R? 0.83 | 0.79 | 0.83 | 0.80 | 0.87 | 0.87 | 0.75
|[Median| | RMSE | 1.86 | 2.06 | 1.84 | 2.03 | 1.65 | 1.62 | 2.26
MAE 347 | 1.16 | 1.12 | 1.15 | 0.94 | 0.92 | 1.24
R? 0.88 | 0.88 | 0.88 | 0.87 | 0.91 | 0.92 | 0.87
|Mean| RMSE | 1.65 | 1.69 | 1.65 | 1.73 | 1.42 | 1.38 | 1.74
MAE 1.18 | 1.02 | 1.06 | 2.99 | 0.85 | 0.82 | 1.02
R? 0.88 | 0.84 | 0.87 | 0.86 | 0.90 | 0.91 | 0.88
RMSV RMSE | 2.08 | 235 | 2.15 | 2.18 | 1.88 | 1.79 | 2.09

MAE 1.46 | 1.49 | 1.32 | 1.28 | 1.07 | 1.04 | 1.26
R’ 0.74 | 0.70 | 0.73 | 0.71 | 0.78 | 0.79 | 0.74

MAX RMSE | 7.69 | 827 | 793 | 8.16 | 7.13 | 6.96 | 7.66
MAE | 492 | 461 | 444 | 456 | 3.85 | 3.82 | 4.17

R 090 | 0.87 | 0.90 | 0.89 | 0.92 | 0.92 | 0.89
MIN RMSE | 2.71 | 3.00 | 2.65 | 2.75 | 2.35 | 2.34 | 2.80
MAE 191 | 1.88 | 1.75 | 1.79 | 1.51 | 1.48 | 1.81

R’ 0.79 1 0.75 | 0.77 | 0.76 | 0.82 | 0.82 | 0.79
[0.95| RMSE | 544 | 595 | 5.67 | 580 | 5.02 | 499 | 5.51
MAE | 3.05 | 3.09 | 3.09 | 3.16 | 2.62 | 2.59 | 2.86

Ensemble methods like Bagged Tree, and Neural Networks.
The 2018 data set is decomposed into variability and base
load signals, and the input and response variables outlined
in Section II are calculated for each hour of the year. These
features are used to train and validate the machine learning
models, using 5-fold cross validation for hyperparameter tun-
ing where applicable.

To test the models (implementation phase), the hourly
aggregated 2019 data is used as the model input, and pre-
dictions of each variability metric are made for every hour
of the year. These are compared to the actual variability met-
rics obtained through decomposition of the high-resolution
2019 data.

Table 4 presents a summary of the performance of each
machine learning algorithm, as well as a multivariate lin-
ear model (which excludes the categorical inputs), for each
variability metric. The performance of each model is quan-
tified through the three error metrics R2, RMSE, and MAE,
as defined in Algorithm 2.

Neither the chosen algorithms nor the evaluation metrics
constitute an exhaustive set, but have been selected to present
a range of bias and variance trade-offs, as well as sensitivity
to outliers. Overall, the Ensemble Bagged Tree algorithm
produced the lowest error metrics for the 2019 test case, and
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the following subsections examine the performance of this
model in more detail.

C. PERFORMANCE ACROSS VARIABILITY METRICS

The R? values for the prediction of each variability metric are
shown in Figure 6. The maximum of variability exhibits the
lowest predictive accuracy, followed by the 95% confidence
bound on absolute variability. These results indicate that the
upper extremes of this building’s variability are more unpre-
dictable than its long-term averages. Notably, the minimum
of variability exhibits a similar predictive accuracy to the
mean and RMS value, as for this particular load profile, short-
term drops in demand are less extreme and more predictable
than short-term increases. Overall, these R (and RMSE)
values still indicate a relatively strong functional relationship
between these variability metrics and the input features.

Response Variables

|Median| |Mean]|

RMSV  Max Min  |95%]

FIGURE 6. Reported R2 of various response variables including hourly
mean absolute, hourly max, hourly absolute 95%, hourly standard
deviation (root mean squared), hourly median absolute, and hourly min.

Subsequent analysis will focus on prediction of mean abso-
lute variability, though similar patterns exist for each of the
variability metrics.

D. RESIDUAL ANALYSIS

Figure 7a shows the residuals of the model predictions for
mean absolute variability over the full year of 2019, while
Figure 7b shows a sample and the actual and predicted val-
ues vs. time, over three days. Overall, there are no obvious
undesired patterns in the residuals over the course of the
year, with the exception of a visible positive skewness to the
highest residuals in the month of March. This is likely due
to a change in the building’s load profile during March of
2018, in which the “cooking2” end use category was largely
unused. By including the month as a categorical input, the
model is trained to associate this anomalous behavior with
the month of March, and incorrectly predicts it to repeat in
2019. Aside from this skewness, the overall accuracy in the
month of march is nearly identical to the rest of the year.

To analyze patterns with respect to the magnitude of the
base load, Figure 8 shows the predicted and actual mean
absolute variability for each hour, plotted vs. the hourly base
load, analogous to the linear regression in Figure 5. With an
R2 of 0.92 and a RMSE of 1.38 kW, this model shows a
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quantifiable improvement over the linear regression, visibly
following the slope changes in the relationship between the
variability and base load.

Residual (kW)
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FIGURE 7. Results for an Ensemble Tree model trained on 2018 data,
predicting hourly mean absolute variability in 2019. a) Residuals vs. time
and b) predicted vs. actual values over three days in April.

25 T T T T T T T

O Actual &
O Predicted ©

Hourly mean absolute
variability (kW)

0 10 20 30 40 50 60 70 80
Hourly mean base load (kW)

FIGURE 8. Predictions vs. actual results of hourly mean absolute

variability vs hourly mean base load using the Ensemble Bagged Tree
regression method (Trained on 2018 and tested on 2019 data).

E. IMPACT OF TEMPORAL FEATURES
The impact of the various temporal features on predictive
accuracy can be examined by calculating a performance
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FIGURE 9. R? of predicted mean absolute variability, categorized by
Month.
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FIGURE 10. R? of predicted mean absolute variability categorized by Day
of Week.

metric such as R? separately over various temporal categories
in the full data set. Figure 9 shows the R? of mean absolute
variability for each month. Similar to examination of the
residuals in Figure 9, there are no clear monthly patterns,
and accuracy seems to be similar in each month of the year,
including the anomalous month of March.

Figure 10 shows the R? of mean absolute variability when
the data is sorted by day of week, starting with Sunday. Here,
all weekdays exhibit a similar predictive accuracy, with a
small decrease on Saturdays, and a large decrease on Sun-
days. This corresponds with the fact that for this building
load profile, while there is some level of activity on some
Saturdays, Sundays are universally days of both low base load
and low variability.

This relationship between normalized accuracy metrics
(such as R?) and periods of high and low demand can be illus-
trated by examining the most significant temporal variable,
the time of day. Building load profiles are characterized by
large changes in demand over the course of the day, and the
hourly variability metrics exhibit similar patterns. Figure 11a
shows the R? of each hour of the day (calculated from that
hour’s residuals on every day of the year), while Figure 11b
shows the RMSE for each hour.
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FIGURE 11. Comparison of normalized and absolute error metrics
(R2 and RMSE) based on hour of the day.

It can be seen in Figure 11b that the absolute error - the
RMSE - is generally higher during daytime hours, and lower
during nighttime hours. Conversely, in Figure 11a, the R?
indicates a lower error (higher R?) during daytime hours, and
a higher error during nighttime hours.

This discrepancy arises from the large differences in the
magnitude of the target variable (mean absolute variability)
over each timeframe. Figure 12a shows the actual and pre-
dicted values for the entire year, binned by hour of the day,
and Figure 12b shows the residuals for each hour. During off-
peak hours, the absolute model error is low, but the target
variable is low as well. During these time periods, a higher
percentage of the variability’s variance is still “random”,
or at least uncorrelated to the input features used in the model.
As the absolute magnitude of the variability increases during
peak hours, a higher percentage of its variance is correlated
to the input features, resulting in a lower RZ

As a final note, there is a sharp decrease in R2 during
the transition hours between peak and off-peak - specifically
4-6am in the morning, and 6-7 pm in the evening. This may
reflect an actual increase in the volatility of high-frequency
signal characteristics during this time period, but it is also
in part an artifact of separating high and low frequency
components of the load profile during periods of rapid base
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FIGURE 12. Results for an Ensemble Tree model Trained on 2018 data,
predicting hourly mean absolute variability in 2019.

load change. When the load is much higher at the end of an
hour than the beginning of the hour, the one-minute loads
are often very far from the hourly average load, resulting
in artificially large values for variability metrics. Alternate
approaches to interpolating base loads between hourly mea-
surements may partially alleviate this discrepancy.

IV. CONCLUSION
In this ongoing research, a novel data-driven approach to
predict characteristics of the missing variability in a base load
signal is proposed. Based on the introduced framework, the
relationship between various statistics of variability and base
load is investigated, and it is found that a stable relationship
may exist between them for a given building. For the building
load profile in this case study, the relationship between the
response variables and the most significant inputs is primarily
linear. However, an Ensemble Bagged Tree regression model
exhibits a notable increase in accuracy. Across the six vari-
ability metrics examined, R? values range from 0.79 to 0.92,
and RMSE values are typically less than 20% of the response
variable mean.

While several input features are considered in this case
study as examples of available data that may affect variabil-
ity, many are highly correlated with the base load and are
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largely redundant. Feature impact, selection, and engineering
are far more important for the more difficult task of training
generalized models applicable to multiple building types,
where some of these normalized variables may be useful
in distinguishing buildings. Further research will apply this
framework to larger datasets comprising disparate buildings
and load profiles, to quantify the dependence of variability
on building characteristics. The specific machine learning
algorithms included in this research are not presented pre-
scriptively, but are representative of the many options avail-
able for regression. With a robust set of high-resolution data,
meaningful conclusions can be drawn about the accuracy and
trade-offs of various models. Future studies will assess the
ultimate efficacy of this approach in comparison to alter-
native methods such as compressed sensing or uncertainty
propagation.

Overall, despite the many factors that might cause short-
term metrics of day-to-day load behavior to differ between
years of building operation, these preliminary results speak
to the tractability of predicting variability characteristics by
leveraging base load information in machine learning models.
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