Economic and Sustainability Assessment on
Bio-based 2,3-BDO Separation Approaches for
Sustainable Aviation Fuel Production

Eric C.D. Tan

2023 AIChE Spring Meeting
Houston, TX

March 12-16, 2023

MREL is a national laboratory of the U.5. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.



Preface

« Sustainable aviation fuel (SAF) plays a critical role in aviation decarbonization. SAF can
be derived from lignocellulosic biomass, such as corn stover, via 2,3-butanediol (BDO)
intermediate. BDO undergoes downstream upgrading, including dehydration,
oligomerization, and hydrotreating, to make the hydrocarbon blend stock like SAF.

» Separating BDO from a fermentation broth is challenging. Water is more volatile than
BDO, so energy consumption for ordinary distillation is prohibitively high. For BDO to be
a feasible intermediate for sustainable biofuels such as SAF, the total energy usage for
the BDO separation target was set to be no greater than 30% of its lower heating value
(LHV).

 We have developed and explored less energy intensive separation technologies for
processing dilute fermentation BDO broth into suitable feed for downstream upgrading.
The combined economic and sustainability assessment was performed to assess the
feasibility of select cost-effective process designs and comparisons with baseline
technology (i.e., cascade vacuum distillation).
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2,3-butanediol (BDO) as intermediate for sustainable biofuels
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2,3-butanediol (BDO) as intermediate for sustainable biofuels

* Preconcentrate BDO for
downstream catalytic upgrading
is desirable but challenging

 Challenges
* Low BDO concentration
* Energy intensive
* High distillation temp 2>
oligomers (require
hydrogenation)
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Water is more volatile than BDO, so
energy consumption for ordinary
distillation is prohibitively high.

To WWT

\ Removing large

/ vol water
"%

Fermentation
broth
~10 wt% BDO

.
OH
= BDO
BP 177 °C \)\
OH

> 140 °C BDO
oligomerization




2,3-butanediol (BDO) separation

No BDO preconcentration approach

e Still, higher BDO concentration

H2 potentially lowers downstream
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2,3-butanediol (BDO) separation

Vacuum distillation + membrane pervaporation
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 Combination of the vacuum evaporation step and membrane

pervaporation step.
* Vacuum evaporation increases the BDO concentration to 30 wt%,

followed by the membrane pervaporation step to achieve 50 wt%.
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2,3-butanediol (BDO) separation

Membrane pervaporation (BDO 30 wt% - 50 wt%)

Feed (30 wt% BDO) =“ bp

Heating...
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Water
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30 wt% BDO i I |i
in water o . .
* Feed liquid at boiling point

- * Phase change through membrane (evaporation
el of permeate; adiabatic pervaporation mode) 2>
T Vacuum cooling of feed, reheating required after each
\ stage
Polymer Membrane

* BDO concentration target not achieved in a single
stage = in-series operation required
* Very low vacuum, i.e., 0.04 atm

Porous Ceramic Support

Water is separated into the tube by
passing through the polymer membrane
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2,3-butanediol (BDO) separation

Membrane pervaporation (BDO 30 = 50 wt%)
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2,3-butanediol (BDO) separation

= Baseline vacuum distillation process is
energy intensive

. Energy needed to enrich the BDO to 50 wt.% F
is 74% of lower heating value (LHV) of BDO !

Energy needed to enrich BDO to 99 wt. % is
approximately equal to the LHV

= For BDO to be a feasible intermediate for
sustainable biofuels such as SAF, the total
energy usage for the BDO separation target
was set to be no greater than 30% of its LHV.
» Analysis Goal : Evaluate BDO recovery,

energy efficiency, economics, and GHG of
alternative separations processes

— Energy use < 30% of LHV

— Energy use < 33% of baseline

— BDO recovery > 99%
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Initial BDO Separation Approaches
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2,3-butanediol (BDO) separation

Baseline — Cascade Vacuum Distillation Approach 1 - Liquid/Liquid Extraction
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A simplified process flow diagram for the reactive-extraction process
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Source: Kubic and Tan, Ind. Eng. Chem. Res. 2023, 62, 5241-5251. https://doi.org/10.1021/acs.iecr.2c04307
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2,3-butanediol (BDO) separation

Baseline:
Approach 2:  Approach 3:  Cascade
Approach 1:  Reactionof  Reactive Vacuum
Liquid-liquid  Aldehyde Extraction of  Distillati
Parameters Extraction and BDO BDO on
BDO Recovery (%) 99.1% 95.4%° 95.4% 99.3%
BDO purity (wt.%) >99% n.a.” >99% >99%
Heating duty (kl/kg) 1,271 1,192¢ 3,317 24,499
% of LHV of BDO®  4.67% 4.38% 12.2% 90.1%
2 % conversion BDO to into 2-propvl-4,5-dimethvyl-1_3-dioxolane

b Not applicable
¢ per kg BDO 1n dioxolane
42 3-BDO lower heating value (LHV) 27.2 MT/kg

*  Achieve recovery of more than 90% of the BDO from the
fermentation broth with high purity

* Achieve heating duty less than 30% of the lower heating value
(LHV) of the BDO
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The key benefits of pre-concentrating BDO to >99
wt% from the 10 wt% are smaller upgrading reactor
and significantly smaller heating demand [for the
dehydration step], due to smaller inlet flow.

No supplemental fuel (natural gas) is required,
except for the baseline case to meet the biorefinery
heating demand.




2,3-butanediol (BDO) separation

= Lowest emissions achieved from Approaches 1&3 (60% Environmental Impacts Comparison (Biorefinery)

lower than fossil jet and 40% lower than the baseline) 100 GHG emissions
— NG demand was eliminated while grid electricity use is A —
o) o,
60% Igwer o 63% 12% 64% 35%
— Chemical inputs were similar g 60
@, 40
= Approach 2 resulted in 35% higher GHG emissions than % 20 ¢ 7
the baseline case o . — e ] B
A . T E— —
— Electricity was reduced by 67% while no NG demand o Approach 1 Approach2  Approach3  Baseline
— But butanal was carbon-intensive to produce s Feedstock s Electricity
. . . . . . NG Chemicals
— Combustion emissions were higher since fossil C in Transportation o Gombustion
butanal represents 54% of C in final fuel product & NetGHG ===« Fossil based counterpart
— Better TEA and LCA results would be achievable for FEC & WC
sourcing the butanal via renewable sources? 1.4
s 12
. . . 0O ' eceoecececcccccccccccacaccaoooee
» Fossil energy consumption (FEC) results were consistent 53 10
with GHG emissions results Eg 0.8
_ =5 06
— Compared to the baseline case, Approaches 1&3 showed oS 04
a significant reduction in fossil energy use L 02 I !
: : - 0.0
= Water consumption (WC) was higher than fossil jet and Approach 1 Approach2 Approach3  Baseline
I . i i i mm FEC wcC
baseline cases: Mainly from embedded chemical inputs and e based FEC G @ based WC

process water
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Summary — Advantages and challenges (data gaps, key uncertainties, etc.)

> Approach 1
= Approach 1 allowed the BDO recovery via LLE without excessive energy consumption.
= However, the hydrophobic membrane drying efficiency dominates the energy cost of BDO separation.

» The membrane-assisted LLE needs further verification over extended period to account for membrane fouling.

» Finally, the solvent consumption for Approach 1 needs to be validated at a larger benchtop scale.

Water Content in Organic Phase after LLE with 5
solvents
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1-hutanol  2-ethyl-1 - Qleyl alcohol  1-hexanol Ethyl acetate
hexanol

m | LE by Separator Funnel mLLE by Membrane Assisted LLE

Water Content in organic phase, %

MATIOMAL RENEWABLE EMERGY LABORATORY



Summary — Advantages and challenges (data gaps, key uncertainties, etc.)

s Approaches 2 & 3

» Conversion of BDO to a dioxolane in Approaches 2 and 3 has several advantages over the vacuum
distillation baseline.

» Because of the favorable chemical and phase equilibrium, no energy is required for BDO extracted
from the broth as a dioxolane. The favorable equilibria also enable 95% of the BDO to be recovered
as a dioxolane with relatively few stages. Converting the BDO to a dioxolane reduces the possibility
of oligomer formation significantly.

» Further, reactive distillation in Approach 3 could recover BDO from the dioxolane with a 99% purity at
a modest temperature and a modest vacuum. The energy required for the process is the heat of the
reverse reaction and the heat required to distill the n-butanal.

= While promising, the reactive extraction process involves new approaches to implementing known
chemistry on an industrial scale.

= Most of the potential problems and risks are associated with the conversion of BDO to dioxolane.
The data gaps include accurate thermodynamic data for dioxolane and catalyst life with actual
fermentation broth.
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Questions?
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