
1.  Introduction
Much of the southwestern United States has been in some form of drought for at least the last two decades 
(NADM, 2022), and water supplies continue to decline in the region (Williams et al., 2022). The El Niño/South-
ern Oscillation (ENSO) is the primary driver of interannual hydroclimate variability in the southwest United 
States (SWUS, 32–40°N, 120–105°W, Figure 1b), wherein El Niño (La Niña) brings anomalously high (low) 
amounts of rain to the region (Cook et al., 2018; Redmond & Koch, 1991). Despite the importance of the ENSO 
teleconnection to the SWUS hydroclimate, we lack a clear picture of its stability.

ENSO is the dominant source of interannual variability in the tropical Pacific Ocean with observable telecon-
nections to many other parts of the globe (Hoerling et al., 1997). Despite the abundance of research into this 
phenomenon and its teleconnections (e.g., Alexander, et al., 2002; Cai et al., 2020; Deser et al., 2017; Gupta & 
Jain, 2021), there are important aspects of ENSO that remain unknown, like its role in a changing climate (Yang 
et al., 2018). For instance, Yeh et al. (2018) examined general circulation models (GCMs) from both the Coupled 
Model Intercomparison Project Phase 3 and 5 (CMIP3 and CMIP5) and found that they do not yield a consistent 
picture of how ENSO and its teleconnections will change during the 21st century. While some studies have found 
consistent changes for a subset of these GCMs and the most extreme of ENSO events (Cai et al., 2018), others 
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Plain Language Summary  The El Niño/Southern Oscillation (ENSO) affects weather and climate 
across the globe through teleconnections. For example, when sea surface temperatures in the tropical Pacific 
Ocean are warmer than normal (e.g., during an El Niño), higher than normal precipitation is typically observed 
in the southwest United States (SWUS). However, because we have temporally limited observations of climate, 
we do not know how often El Niños actually bring more rain to the SWUS. Assessing this natural variability 
is difficult with commonly used approaches from the climate sciences. Here, we use a statistical model to 
emulate the characteristics of ENSO teleconnections from observations. Doing so demonstrates that there 
is considerable natural variability in the ENSO teleconnection to the SWUS. This suggests that even though 
ENSO and its impact on weather and climate are expected to change due to climate change, detecting such 
changes will be difficult.
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have identified a close relationship between mean state biases in these GCMs and their responses to anthropo-
genic climate change (Stevenson et al., 2021). The simulated strength and spatial pattern of ENSO teleconnec-
tions in our current climate varies considerably across GCMs (Langenbrunner & Neelin, 2013; Weare, 2013; Yeh 
et al., 2018). The biases in ENSO within the GCMs include too much sea surface temperature (SST) variability, a 
weak annual cycle, and El Niños that propagate too far eastward from what is observed (Chen et al., 2017; Jiang 
et al., 2021). Even when SST anomalies in GCMs are nudged toward observations, composite ENSO events in an 
ensemble of GCMs showed considerable teleconnection variability (Deser et al., 2017). And because of the short 
length of observational records, we do not have a sufficient real-world baseline against which to compare these 
GCMs (Deser et al., 2010, 2017).

ENSO is an important source of seasonal predictability in the SWUS hydroclimate, and yet observed precipita-
tion responses can be inconsistent between individual events, including the sign of the precipitation anomalies 
(Hoerling & Kumar,  2002). Most recently, the 2015/2016 El Niño, despite being one of the strongest in the 
observational record (Zhai et al., 2016), did not result in wetter conditions across the SWUS, and thus many areas 
of the region, especially Southern California, remained in severe drought conditions (Cash & Burls, 2019). The 
presence of significant inter-event differences in ENSO and its impact also suggests that internal atmospheric 
variability alone can modulate ENSO teleconnections (Zhang et al., 2018). For instance, Chen and Kumar (2018) 
analyzed ensemble forecasts for the 2015/2016 winter season and found large differences in forecasted winter 
precipitation for the SWUS between ensemble members of the NCEP operational Climate Forecast System, 
version 2 (NCEP, 2019). Cash and Burls (2019) found that ensemble means often show the SWUS hydroclimate 
is over-modulated by ENSO and that the hydroclimate is dominated by internal variability. Furthermore, other 
modes of variability and external forcing can act as a modulating force on ENSO teleconnections, such as the 
Pacific Decadal Oscillation (Gershunov & Barnett, 1998; Singh et al., 2021), the Atlantic Multidecadal Oscil-
lation (Enfield et al., 2001; McCabe et al., 2004), and the North Atlantic Oscillation (Rajagopalan et al., 2000), 
all of which can reduce or enhance ENSO's teleconnections to the SWUS. Similarly, Li et al. (2019) and Larson 
et al. (2022) both found that the Pacific-North American pattern has significant variability not associated with 
ENSO, indicating another mode of internal atmospheric variability that can act as a modulating force on ENSOs 
teleconnections.

Figure 1.  A “typical” El Niño/Southern Oscillation teleconnection to the southwest United States, with (a) winter (DJF) sea surface temperature (SST) anomalies 
against the 1951–1980 climatology using Extended Reconstructed SST V3b in the color contours, and the Niño3.4 region within the Pacific Ocean, covering 5°S–5°N 
and 170–120°W in the box, and (b) the southwestern United States with a box over the specific study area covering 32–40°N and 120–105°W, with precipitation 
anomalies against the 1951–1980 climatology using GPCC gridded data (Schneider et al., 2011) in the color contours.
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Previous research into the stability of ENSO teleconnections have used GCMs, the paleoclimate record, or relied 
on the limited observational record. For instance, Coats et al. (2013) found a high amount of temporal variabil-
ity in ENSO teleconnection strength between winter (DJF) tropical Pacific SSTs and DJF 200-mb geopoten-
tial heights over North America in the control runs of CMIP5. In forced transient simulations from the same 
GCMs, a similar level of temporal variability in ENSO teleconnections was found (Lewis & LeGrande, 2015). 
However, results also showed that the spatial features of the teleconnections vary considerably across GCMs 
(Coats et  al.,  2013; Langenbrunner & Neelin,  2013), with implications for the real-world relevance of these 
results. Likewise, within observational records, it has been suggested that ENSO teleconnections vary in both 
space and time, although these results are limited to shorter timescales of variability (e.g., Cole & Cook, 1998; 
Gershunov & Barnett, 1998; Hu & Feng, 2001; Rajagopalan et al., 2000). Deser et al. (2018) showed that ENSO 
teleconnection strength can range more than twofold in certain locations.

The observed ENSO-SWUS correlation is just one number out of a range of plausible correlations that are 
consistent with the dynamics of the climate system. Despite the attempts referenced above, robustly defining 
this range is complicated. For instance, the range of correlation estimated from GCMs varies from model to 
model and from century to century in some GCMs (Langenbrunner & Neelin, 2013; Lewis & LeGrande, 2015). 
Additionally, GCMs have many biases that can preclude their relevance to understanding climatic phenomena 
in the real world (Coats et al., 2013). Adding a further complication, there is now debate on how to handle the 
“hot model problem,” wherein some models included in CMIP6 are predicting rising temperatures that are not 
supported by observations and that using these models may skew results (Hausfather et al., 2022), which is an 
important consideration when examining ENSO teleconnections. We therefore do not have a reliable benchmark 
for the distribution of realistic correlation values given what we know about the system over the historical period.

To address these issues, following the work of Ault et  al.  (2018), we use a Linear Inverse Model (LIM) to 
characterize variations in ENSO-SWUS teleconnection. LIMs have been applied to examine and determine the 
significance of low frequency variability in the tropical Pacific on decadal timescales (Ault, Deser, et al., 2013), 
the significance of “Modoki” El Niño events (Newman et al., 2011), determine the predictability of the Pacific 
Decadal Oscillation (Newman et al., 2016), and to test the significance of tropical Pacific SST gradient trends 
relative to internal variability (Coats & Karnauskus, 2017). Other studies have utilized a LIM to make seasonal 
ENSO predictions (Penland & Sardeshmukh, 1995), and to evaluate the ability of GCMs to make decadal fore-
casts (Newman, 2013). Additionally, the LIM has been shown to successfully reproduce ENSO and PDO statis-
tics and can outperform certain forecast models (Perkins & Hakim, 2020) and it has been used to predict Pacific 
SST anomalies (Alexander et al., 2008). Herein, we use the LIM to provide a robust characterization of the range 
of correlations that are consistent with the observational record. We then use this range as a benchmark against 
which to compare GCM ensembles from the Last Millennium Ensemble (LME), CMIP5, and CMIP6.

2.  Data and Methodology
2.1.  Constructing the LIM

We build upon the LIM used by Penland and Matrosova (1994) and Penland and Sardeshmukh (1995), and more 
recently that of Ault et al. (2018) and Coats et al. (2020), with some specific changes to its construction to emulate 
the inherent statistics found in an observational data set. First, SST anomalies were calculated using the National 
Oceanic and Atmospheric Administration (NOAA) Extended Reconstructed SST V3b (Smith et al., 2008), which 
is a monthly data set of SSTs spanning 1854 to present on a 2° grid. For the SWUS, reconstructions of the Palmer 
Drought Severity Index (PDSI) are an often-used proxy for drought conditions (e.g., Ault et  al.,  2018). The 
observational PDSI input data used was created by Sheffield et al. (2006) and is a 1° resolution monthly data set 
spanning 1948–2008. Second, to isolate the ENSO and SWUS hydroclimate teleconnection, we restricted the 
domain of the SST anomalies to that of just the Niño3.4 index and restricted the PDSI to the SWUS.

We ran the LIM for 100,000 years to provide a population of thousand 100-year periods. From there we computed 
the century-scale correlation values between SWUS PDSI and Niño3.4 SST anomalies for each 100-year period, 
to produce a range of 1,000 correlation values.
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2.2.  PDSI From Models

As this work follows Ault et al. (2018), and because soil moisture and PDSI are highly correlated in the SWUS 
(Ault, Cole, et  al.,  2013) we use PDSI to characterize the hydroclimate of the SWUS, which we calculated 
offline using available variables from CMIP5, CMIP6, and LME (Otto-Bliesner et al., 2016). LME is a paleocli-
mate experiment from the National Center for Atmospheric Research offering an ensemble of results covering 
850–2006 (Otto-Bliesner et al., 2016). For CMIP5 and CMIP6 we compared the teleconnection strength (Pear-
son correlation) in the historical experiments to determine if there have been improvements in the simulation of 
ENSO teleconnections in the new generation of climate models. For CMIP6, we also calculated the teleconnec-
tion strength for the newly developed future emissions scenario, Shared Socioeconomic Pathway 585 (SSP585, 
O’Neill et al., 2016), to quantify changes to ENSO teleconnections due to climate change. For direct comparison 
to the LIM, we calculate potential evapotranspiration (PET—Allen et al., 1998; Monteith, 1965; Penman, 1948) 
by utilizing the following variables: net radiation, soil heat flux density, 2-m air temperature, 2-m wind speed, 
and vapor pressure deficit (Table S1 in Supporting Information S1). A total of 14 models from CMIP5 (Table 
S2 in Supporting Information S1) and CMIP6 (Table S3 in Supporting Information S1) had the requisite varia-
bles needed to calculate PET. We then use precipitation from the models and PET to calculate PDSI. Additional 
details on calculating PDSI are available in Supporting Information S1. The Pearson correlation value was calcu-
lated for each of the CMIP5 and CMIP6 models. For the LME, we binned 99 realizations of the runs to create an 
ensemble of century-length time series.

3.  Results
The LIM suggests that there is a broad empirical distribution (Figure 2a) of correlations that are consistent with 
observations between 1948 and 2008, and thus considerable natural variability can emerge, even from the rela-
tively stable and short climatic interval sampled by the observational data set. More than 70% of the correlations 
calculated fell between 0.3 and 0.6, while over 90% fell between 0.2 and 0.6 (Figure 2a) The ensemble mean 
correlation from the LIM was 0.35, compared to a correlation of 0.37 calculated from the observational data set.

The LME correlation values show a slightly smaller range in teleconnection strength than the LIM, with correla-
tions ranging from 0.45 to 0.75 (Figure 2b). This narrower range is found despite the LME simulating the entire 
last millennium, and thus also simulating external forcings and long timescale internal variability not sampled by 

Figure 2.  (a) The 1000 the century-long correlation values calculated from the linear inverse model generated Niño3.4 sea surface temperatures (SSTs) and southwest 
United States (SWUS) Palmer Drought Severity Index (PDSI). The black dotted line is the ensemble mean. (b) Correlation values between Niño3.4 SSTs and SWUS 
PDSI calculated from 99 distinct century-long periods from the Last Millennium Ensemble (LME) (Methods). The black dotted line is the ensemble mean correlation 
value from the LME.
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the LIM. Importantly, the ensemble mean correlation from the LME of 0.65 is much greater than that from the 
LIM, consistent with previous research suggesting that CESM1 (the GCM used in the LME) has an overly strong 
ENSO teleconnection (e.g., DiNezio et al., 2017). The range of correlations from the LME is narrower than that 
from the CMIP5 or CMIP6 simulations (Figures 3 and 4), suggesting that inter-GCM structural differences in 
ENSO teleconnection strength are larger than the natural variability in this metric as simulated by a single model. 
The ensemble mean correlation from the LME is also higher than that of the CMIP5 or CMIP6 ensembles, and 
thus overly strong ENSO teleconnections are not a general feature of climate models.

In the CMIP5 simulations, ENSO teleconnections vary in strength, and even in sign, across the models. For 
instance, CNRM-CM5 exhibits a negative ENSO-SWUS correlation, whereas GFDL-ESM2M exhibits a corre-
lation of over 0.8 (Figure 3). Although the ensemble mean correlation of the CMIP5 simulations was quite close 
to that from the LIM (0.375 and 0.35, respectively), the range is much wider (Figure 4) and the distribution more 
uniform. Of relevance to the ability of CMIP5 models to simulate ENSO teleconnection strength, there are five 
models with correlations below 0.31 (the bottom of the LIM range), indicating too weak of a relationship between 
Niño3.4 SSTs and SWUS PDSI. Likewise, there are three models with correlations higher than 0.65 (the top of 
the LIM range), indicating an overemphasis of this relationship.

Overall, the CMIP6 historical simulations exhibit ENSO teleconnection strengths that are more consistent with 
the LIM as compared to CMIP5 (Figures 3 and 4). While the ensemble mean correlation of 0.26 for the CMIP6 
historical simulation is further from the ensemble mean of the LIM, the distribution is narrower, with a range 
of about 0.0–0.6 for CMIP6 as compared to about −0.1 to 0.8 for CMIP5. Interestingly, there appear to be large 
changes in teleconnection strength from CMIP5 to CMIP6 for individual modeling centers. For instance, the 
correlation from GFDL-ESM4 (CMIP6) is a more realistic 0.3 (just inside the LIM range), as compared to 0.7 
from GFDL-ESM2G from CMIP5. Likewise, while the NCAR models CESM1 (LME—Figure 2b) and CCSM4 

Figure 3.  El Niño/Southern Oscillation-southwest United States correlation values calculated from CMIP5 (blue), 
CMIP6-Historical (green), and CMIP6-SSP585 (orange). The linear inverse model ensemble mean is the dotted red line.
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Figure 4.  Density/probability plot comparison of El Niño/Southern Oscillation-southwest United States teleconnection 
strength for the linear inverse model (LIM) (panel (a), red), historical run of CMIP5 (panel (b), blue), CMIP6-Historical 
(panel (c), green), CMIP6-SSP585 (panel (d), orange), and the Last Millennium Ensemble (panel (e), purple) with the LIM 
mean (dashed red line) and LIM plus and minus one standard deviations (semi-transparent dashed red line) plotted on each.
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(CMIP5—Figure 3) exhibited correlations largely in excess of the LIM, CESM2 (CMIP6—Figure 3) exhibits a 
correlation that is slightly below the LIM range. Importantly, we also find an overall improvement in the ensem-
ble of CMIP6 models (Figure 3).

Finally, to assess if there are consistent changes in the ENSO teleconnections strength in the future, we also 
analyzed data from the CMIP6 SSP585 simulations, which are run with a high emissions scenario and thus 
should exhibit large signal (climate change) to noise (natural variability) ratios. Eight of the 14 simulations 
exhibit a decrease in the ENSO-SWUS teleconnection strength in the 21st as compared to the 20th centuries 
(Figure 3), with a change in the ensemble mean correlation from 0.26 to 0.12, respectively. Together, the CMIP6 
simulations thus suggest a small but significant decrease in ENSO teleconnection strength in the future. To 
summarize all of the results, Figure 4 illustrates the ENSO-SWUS teleconnection strength and variability in each 
of the analyzed ensembles, with a direct comparison of the results between the climate models and the LIM.

4.  Discussion
We used a LIM to quantify the natural variability in ENSO-SWUS teleconnections that is expected intrinsically—
that is, the range of teleconnection strengths possible given the inherent statistics of an observational data set. 
Our results exhibit entire centuries of non-significant correlation (roughly 3%–6% of the centuries in the LIM). 
The LIM does not possess long-term sources of variability, as the output drawn from the LIM relies solely on 
the 3-month time-lag parameter, calculated from the inherent statistics of the observational data set. Because of 
this, the LIM samples only a narrow range of plausible behaviors of the system, effectively removing any source 
of long-term internal or external forcing. Despite this, there are centuries when the Niño3.4 SSTs and SWUS 
PDSI correlations diminish in significance for purely statistical reasons, indicating that it was not unreasonable 
to expect ENSO to have had no statistically significant impact on SWUS hydroclimate during the 20th century, 
like in the results found by Ault et al. (2018). These results are not dissimilar from those of Meehl and Hu (2006) 
which found SWUS hydroclimate variability in a GCM to be highly irregular. Furthermore, because this result 
is based entirely on the inherent statistics of the observational data set, it is also not unreasonable to expect a 
diminished correlation in the future, even without climate change.

The ensemble mean correlation from the LIM was slightly lower than the observational data set on which it 
was based (0.35 for the LIM compared to 0.37 from observations). While superficially interesting, this was an 
expected result given that the LIM does not retain 100% of the variance in the Niño3.4 SSTs and the SWUS PDSI, 
subsequently slightly underemphasizing their relationship. Within the timeframe of the observational data set 
(1948–2008), there have been seven strong El Niño event. Anomalously higher-than-average PDSI in the SWUS 
was recorded only after a few of these events (e.g., 1982–1983, 1988–1989, 1998–1999). Therefore, observations 
alone indicate that not all ENSO events affect the SWUS hydroclimate. Results from the LIM strengthen this 
conclusion, demonstrating that intrinsic variability is a robust feature of the ENSO-SWUS teleconnection.

This study provides further evidence that tools like the LIM that can be used to assess the ability of GCMs to 
simulate coupled atmosphere-ocean dynamics, and thus can provide an important benchmark as we subsequently 
use these GCMs to project climate change.

With such benchmarking in mind, in the LME, the ENSO-SWUS teleconnection is much stronger than in obser-
vations or the LIM, placing more importance on ENSO for driving SWUS hydroclimate than is realistic. Because 
the LME uses a 2° resolution configuration of CESM1, using CESM1 in this configuration to predict climate 
change could overemphasize ENSO's influence on future climate variability and change.

By contrast, the ensemble mean correlations are similar between the LIM, CMIP5, and CMIP6-Historical ensem-
bles. Nevertheless, it is also important to focus on the distribution of these correlations. The spread of the GCM 
correlations is wider than the LIM, and therefore some GCMs simulate unrealistically strong or weak telecon-
nections. Hence, any attempts to use GCMs for projections should carefully evaluate the role for ENSO in the 
simulated climate changes.

Our results with the GCMs are consistent with previous studies that found large variability in ENSO teleconnec-
tion strengths between models (e.g., Coats et al., 2013; Cook et al., 2016). While there is evidence for improve-
ment in the teleconnection strength in the CMIP6 ensemble, we find that there is still a wide range in the ability 
of GCMs to simulate ENSO-SWUS teleconnections. Regarding the results from the future climate scenario from 

 19448007, 2022, 23, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022G

L
099770 by N

ational R
enew

able E
nergy L

ab, W
iley O

nline L
ibrary on [08/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Geophysical Research Letters

EVANS ET AL.

10.1029/2022GL099770

8 of 10

CMIP6, it is important to note that this analysis does not provide a cause for the diminished ENSO-SWUS tele-
connection strength in the future. Whether this is simply an effect of the inherent variability that we know exists 
in the system or an altered teleconnection pattern due to a changing climate, we do not know, and is a question 
future analysis should answer.

Further process level analysis, particularly of the outliers in correlation in the CMIP5 and CMIP6 ensembles 
could lend insight into the physical processes most important to realistically simulating the ENSO-SWUS tele-
connection. Nevertheless, to robustly determine which of these GCMs best represents the statistics of the real 
world will require ensembles of each, like the LME, such that the true distribution of correlations can be quanti-
fied. In the absence of such ensembles, training LIMs on the climate models themselves may be a useful, though 
imperfect, path forward (e.g., Coats et al., 2020). Interestingly, two models from CMIP6 included in this analysis 
are among those considered “too hot” (Hausfather et al., 2022) (CESM2, CanESM2), yet they showed an overall 
improvement in capturing the ENSO-SWUS teleconnection.

Our results from the LIM are also consistent with previous studies that used observations and reanalysis data to 
characterize the intrinsic variability in the ENSO-SWUS teleconnection (e.g., McKinnon & Deser, 2018). Where 
our results differ from the previous literature is in the teleconnection response to a changing climate. In an anal-
ysis of GCMs, Yoon et al. (2015) found an increase in extreme hydroclimate events because of a strengthened 
ENSO in a warmer climate. Yet, predicting future changes to ENSO in a warmer climate remains a difficult task 
(Cai et al., 2021).

Drought remains an obstacle for water resource managers in the SWUS. Uncertainty in the strength of ENSO 
teleconnections further complicates water resource management. The SWUS hydroclimate is largely unpre-
dictable from year-to-year. Lack of predictability is particularly problematic when considering that it has been 
established that lack of water resources has caused the collapse of several civilizations in the SWUS (Benson 
et al., 2002; Stahle & Dean, 2011). Furthermore, projections exhibit large declines in Colorado River flow in the 
coming decades (Udall & Overpeck, 2017), which is the main source of water for roughly 60 million Americans 
in the SWUS. The results from our CMIP6 analysis indicate that the ENSO teleconnection to this region has the 
potential to decrease in strength, both through intrinsic variability and in response to climate change. Altogether, 
decreased teleconnection strength and intrinsic variability could mean fewer opportunities for the SWUS to 
replenish its water stores during El Niños, with potentially dire consequences for stakeholders in the region.

Data Availability Statement
ERSSTV3b data provided by the NOAA PSL, Boulder, Colorado, USA, from their website at https://psl.noaa.
gov. CMIP6 data downloaded courtesy of the World Climate Research Programme and Earth System Grid Feder-
ation and the Lawrence Livermore National Lab at their website https://esgf-node.llnl.gov and the PDSI data 
is available via the Terrestrial Hydrology Research Group at Princeton University. The output data from the 
LIM,  and the PDSI data created from the LME, CMIP5, and CMIP6 are available through Cornell University 
eCommons (https://doi.org/10.7298/8d7j-wt40).
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