Transforming ENERGY

Hydrogen Fuel Cell Electric Bus (FCEB) Evaluations in US Public Transit Service

Matthew Post 2023 SAE WCX April 19, 2023

Photo from iStock-627281636

NREL at-a-Glance

2,926

Workforce, including

219 postdoctoral researchers60 graduate students81 undergraduate students

World-class

间围

wiiiiiiii

facilities, renowned technology experts

Partnerships

More than

900

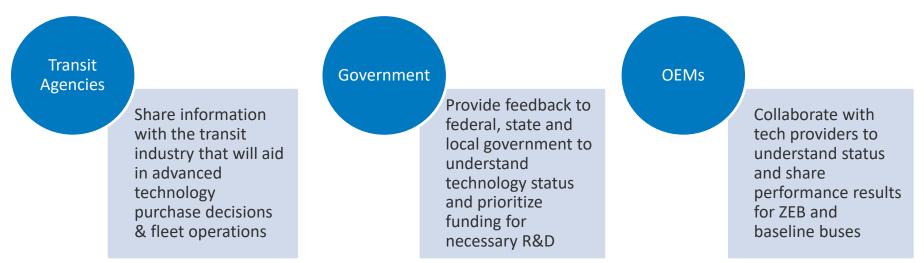
with industry, academia, and government

Campus

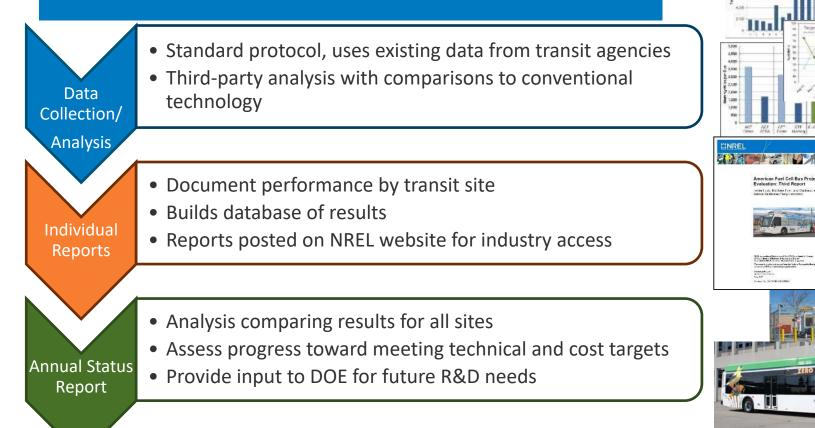
operates as a living laboratory

Hydrogen and Fuel Cell Research

Enabling hydrogen to be a common means of transporting, storing, and transforming energy at the scale necessary for a clean and vibrant economy.


Research Challenges

- Improving the economics of hydrogen production to enable it to shift energy across time, sectors, and location—including providing electric grid support and energy storage
- Developing advanced materials for polymer electrolyte fuel cells and electrolyzers, focusing on the emerging markets of intermittent H₂ production and heavy-duty transportation
- Enabling safe fueling for heavy-duty hydrogen trucks, reducing the cost and improving reliability of fueling fuel cell electric vehicles
- Researching hybrid bio-electrochemical processes and advanced cell concepts.


NREL Role in Zero Emission Buses Evaluation

3rd party evaluation of advanced technology in real-world service

- Established evaluation protocol provides consistent data collection and reliable analysis
- Unbiased results in common format
- Comparison to baseline conventional technology and technical targets

Data Collection Process

NREL works closely with the transit agencies and other partners to gather data including:

Fueling records – cost and efficiency calculations

Maintenance records – cost per mile by system

Daily bus use & availability - reliability

Roadcalls – reliability

Fleet experience – lessons learned

Data Summary FCEB Fleets Included in Data Summary

Transit Agency	Location	Bus OEM	# Buses	Data Included	
AC Transit	Oakland CA	Van Hool	13	Fuel cell hours only	
AC Transit	Oakland, CA	New Flyer	10	All	
SunLine Transit Agency	Thousand Palms, CA	New Flyer	5	All	
Orange County Transportation Authority (OCTA)	Santa Ana, CA	New Flyer	10	All	

AC Transit, New Flyer

OCTA, New Flyer

SunLine, New Flyer

AC Transit, Van Hool

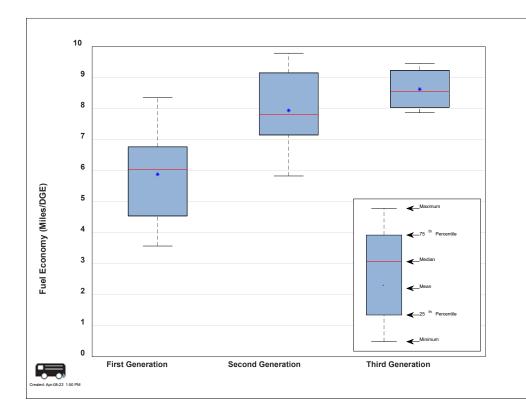
Evaluation Buses

Vehicle System	OCTA FCEB	SunLine FCEB	OCTA CNG	SunLine CNG	
Number of buses	10	5	10	5	
Bus manufacturer/model	New Flyer, Xcelsior	New Flyer, Xcelsior	New Flyer, Xcelsior	New Flyer, Xcelsior	
Model year	2018	2018	2016	2019	
Bus purchase cost* (\$)	\$1.3 M	\$1.2 M	\$580,000	\$681,000	
Length/width/height	41 ft/102 in./129.6 in.	40 ft/102 in./129.6 in.	40 ft/102 in./130.8 in.	40 ft/102 in./130.8 in.	
Curb weight (lb.)	33,500	30,900	30,000	30,500	
GVWR (lb.)	44,533	44,000	42,290	44,000	
Hybrid system	Siemens ELFA2, Permanent Electronic Motor, 210 kW	Siemens	N/A	N/A	
Fuel cell or engine	Ballard FCvelocity-HD85, 85 kW	Ballard FCvelocity-HD85, 85 kW	Cummins Westport ISL G 280 hp @ 2,200 rpm	Cummins L9N 280 hp @ 2,200 rpm	
Energy storage	A123 Systems, lithium-ion, 100 kWh	A123 Systems, lithium-ion, 100 kWh	N/A	N/A	
Accessories	Electric	Electric	Electric and Mechanical	Mechanical	
Fuel capacity	Gaseous hydrogen, 5 Type 4 composite cylinders, Agility Fuel Solutions, 37.5 kg at 5,000 psi	Gaseous hydrogen, 5 Type 4 composite cylinders, Agility Fuel Solutions, 37.5 kg at 5,000 psi	CNG, 6 cylinders, Lincoln Composites 156 gge at 3,600 psi	CNG, 6 carbon fiber cylinders, Agility Fuel Solutions, 158 gge at 3,600 psi	

Targets

With industry input, DOE and DOT established technical targets that FCEBs need to meet to reach commercial viability.

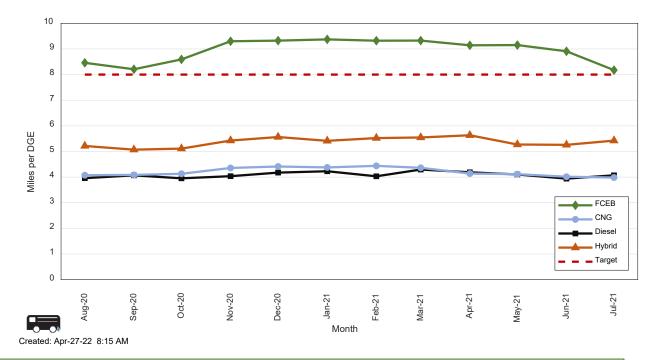
Data collected are used to assess the progress toward meeting those targets and to provide feedback to DOE on what research is needed.


Selected Targets from DOE/DOT Program Record

Metric ^a	Units	2016 Target	Ultimate Target	
Bus lifetime	years/miles	12/500,000	12/500,000	
Powerplant lifetime	hours	18,000	25,000	
Bus availability	% 85		90	
Roadcall frequency (bus/fuel cell system)	miles between roadcall	3,500/15,000	4,000/20,000	
Operation time	hours per day/ days per week	20/7	20/7	
Maintenance cost	\$/mile	0.75	0.40	
Fuel economy	miles per diesel gallon equivalent	8	8	
Bus Cost	\$	1,000,000	600,000	

^a Fuel Cell Technologies Program Record # 12012, Sept. 2012,

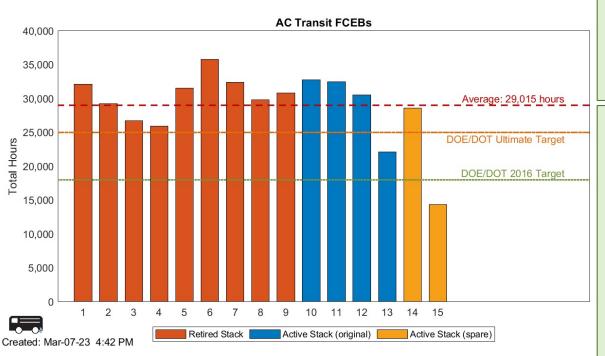
http://www.hydrogen.energy.gov/pdfs/12012 fuel cell bus targets.pdf


Initial Fuel Economy by FCEB Generation

Current generation FCEB average fuel economy has exceeded the ultimate target of 8 Miles/DGE

- The New Flyer FCEBs in this evaluation are their second generation, but considered an overall third generation after lessons learned from previous manufacturers
- Initial Fuel Economy is defined as the fleet average of the first full year in service

Fuel Economy Continues to Surpass Target


Bus type	mpdge
FCEB	8.95
CNG	4.20
Diesel	4.09
Hybrid	5.37

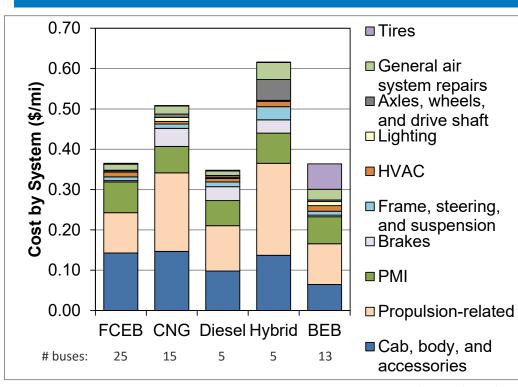
FCEB fuel economy continued to be >2 times that of CNG and diesel buses and >1.6 times that of hybrid buses

FCEB fuel economy stayed above target all seasons

Top Fuel Cell Powerplant Exceeds 35,000 Hours

AC Transit VanHool FCEB Fleet

- Top fuel cell powerplant(FCPP) >35,000 hours
- 13 FCPPs have surpassed
 25,000 hours

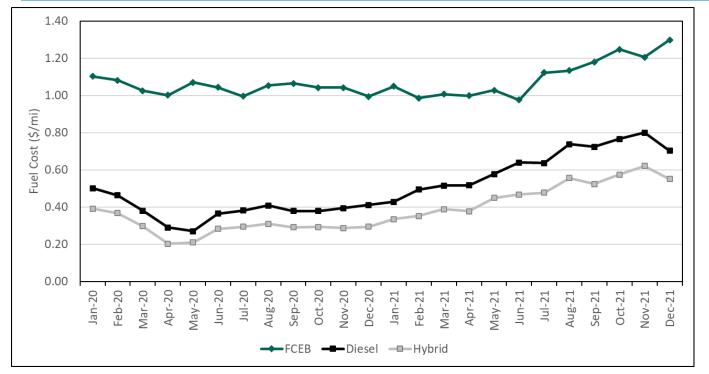

Durability

DOE's benchmark is 20% FC voltage degradation, but FCPP voltage/current data were not available. Therefore, using fuel economy as alternative, AC Transit's FCEBs reached 20% degradation at 17,000 hours, nearing interim target

Total hours accumulated on each FCPP as of 8/31/2022

Maintenance Cost by System

New Flyer FCEB Fleets

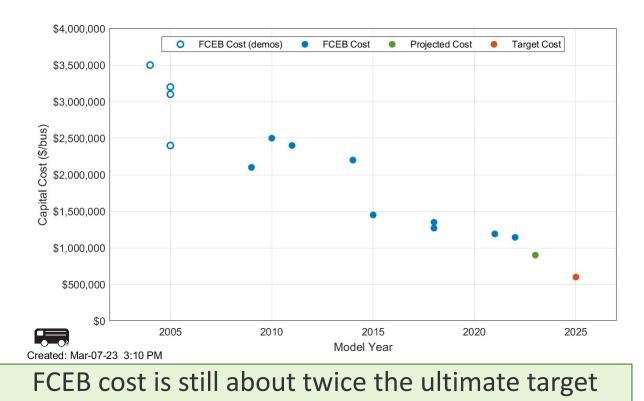


- Cost for FCEB similar to that of diesel and BEB
- Propulsion costs include:
 - Labor for
 - troubleshooting
 - Consumables
- PMI is labor for inspections

- Cumulative cost from in-service date
- Labor @ \$50/h

- BEB = battery electric bus BOP = balance of plant
- PMI = preventive maintenance inspection
- HVAC = heating, ventilation, and air conditioning

Monthly Average Fuel Cost Per Mile


Average fuel cost

- H₂ 2020 = \$8.43 /kg
- H₂ 2021 = \$8.64 /kg
- Diesel 2020 = \$1.60 /gal
- Diesel 2021 = \$2.55 /gal

Average cost per mile

- H₂ 2020 = \$1.04
- H₂ 2021 = \$1.10
- Diesel 2020 = \$0.39
- Diesel 2021 = \$0.63
- Hybrid 2020 = \$0.29
- Hybrid 2021 = \$0.47

FCEB Cost Trends

- FCEB cost continues to trend downward
- Ultimate target has not yet been met
- Larger volume orders have not yet been made in order to make significant cost reductions

Hydrogen Stations

Hydrogen Stations

Transit Agency	# Dis- pensers	Pre- cooling	Electrolysis	Liquid Storage	Max Fills/Day	Year Built	Station Cost	Maintenance Cost
AC Transit Oakland [102]	2	_	65 kg/day	9,000 gallons	13	2014	\$6.3 million	\$15,500/month
AC Transit Emeryville [102]	_	_	-	9,000 gallons	13	2011	\$5.1 million	-
AC Transit Emeryville [102]	2	_	-	15,000 gallons	65	2020 upgrade	\$4.424 million	\$11,800/month
OCTA [81]	2	10°C	-	18,000 gallons	50	2019	\$4.7 million	
SunLine [109]	2	-	900 kg/day	-	32	2019	\$8.3 million	\$0 for 3 years
SARTA [79]	1	-	-	9,000 gallons	20	2017	\$2.9 million	\$10,000/month
Foothill Transit [110]	-	-	-	5,000 kg	-	2022– 2023	\$6.6 million	-

Comprehensive Review of California's Innovative Clean Transit Regulation: Phase I Summary Report https://www.nrel.gov/docs/fy23osti/83232.pdf

Remaining Challenges and Barriers

For industry to fully commercialize FCEBs:

- Deploy larger fleets
 - Lower per-bus price: OEMs estimate ~\$1M/bus for higher volumes
 - Accelerate learning curve for staff
 - Combine orders for multiple agencies
- Incorporate training for FCEBs into standard maintenance training
- Install hydrogen stations
 - High capital cost to install, but easier to scale up compared to battery fleet
 - Turn-key stations where fuel provider owns, operates, and maintains station can help with stabilizing cost for long-term budget planning
 - Long-term fuel contracts can lock in lower cost
 - Station utilization—higher volumes can mean lower per-unit cost

Thank You

www.nrel.gov

Matthew.Post@nrel.gov NREL/PR-5700-85623

Transforming ENERGY

This work was authored by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Hydrogen and Fuel Cell Technologies Office. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.

Photo from iStock-627281636