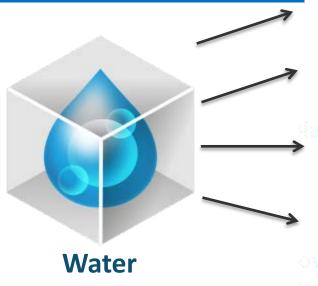


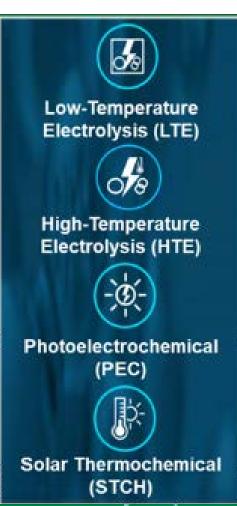
HydroGEN and H2NEW Data Hub

Huyen Dinh, Emily Harrell, Christina Vader, Rachel Hurst 3/14/2023
H2NEW In-Person Meeting, Napa, CA

https://datahub.h2awsm.org/

Challenges


Efficiency


Durability

Cost

HydroGEN Consortium

Goal: Accelerating R&D of innovative advance water splitting (AWS) materials and technologies for clean, sustainable and low-cost hydrogen production.

Lawrence Livermore

Sandia

Hydrogen

HydroGEN is advancing Hydrogen Shot goals by

fostering <u>cross-cutting</u> innovation using theory-guided applied materials R&D to accelerate the time-to-market and advance all emerging water-splitting pathways to enable clean, low cost, and sustainable low-cost hydrogen production

HydroGEN and H2NEW Data Hub

Data Hub Objectives:

1. Data Repository

 Storage and sharing of research data/Public vs.
 Private data

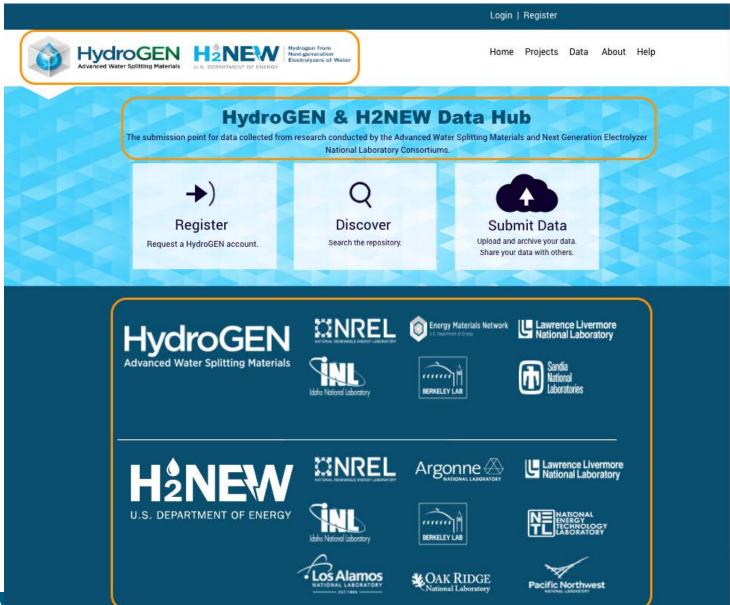
2. DOI/Publication of Data

- Internal vs. external data
- 3. Provide Security Mechanisms
 - User login
 - Project level access management
- 4. Visualization and Analysis Capabilities

*Collaborative **EMN** data hub that also houses **H2NEW** Data

Active Data Hubs

Perovskites PV
Data Hub



Upcoming Development Changes: Collaboration, Representation Matters

Upcoming changes to accommodate and represent H2NEW on the data hub:

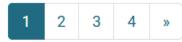
Front End:

- Addition of H2NEW primary logo
- Primary tagline description change to include H2NEW
- Addition of H2NEW Contributor Logos

Data

H2NEW Project Creation

All Projects


♣ Project Tree

- H2NEW AE
- H2NEW Benchmarking
 - PEME Benchmarking
 - ☐ SOEC Benchmarking
- H2NEW SOEC
 - Durability (SOEC)
 - Performance (SOEC)
 - Characterization (SOEC)
 - Scale Up (SOEC)
 - └ Modeling (SOEC)
- H2NEW PEME FOA Projects
- H2NEW SOEC FOA Projects
- H2NEW PEME
 - Durability (PEME)
 - Performance (PEME)
 - Characterization (PEME)
 - Scale Up (PEME)
 - Modeling (PEME)
- ANL PGM Free
- ASU Perovskites
- Hydrogen Benchmarking
 - LTE
 - HTE
 - ∟ет∩⊔

Search projects...

Order by:

Name Ascending

H2NEW AE

Hydrogen from Next-generation Electrolyzers of Water (H2NEW) Low-Temperature...

H2NEW Benchmarking

Benchmarking: Hydrogen from Next-generation Electrolyzers of Water (H2NEW)...

Sub-projects:

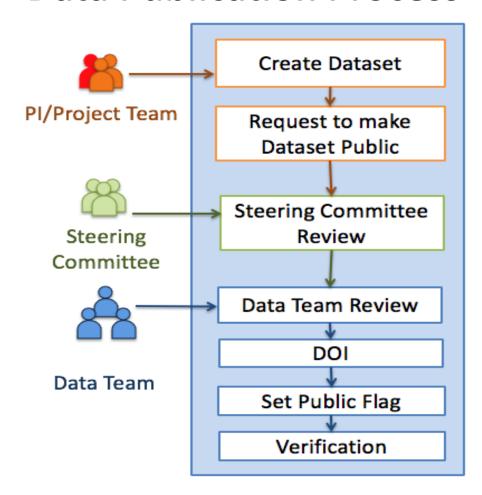
PEME Benchmarking

SOEC Benchmarking

H2NEW SOEC

Hydrogen from Next-generation Electrolyzers of Water (H2NEW) Consortium High...

Making Digital Data Accessible

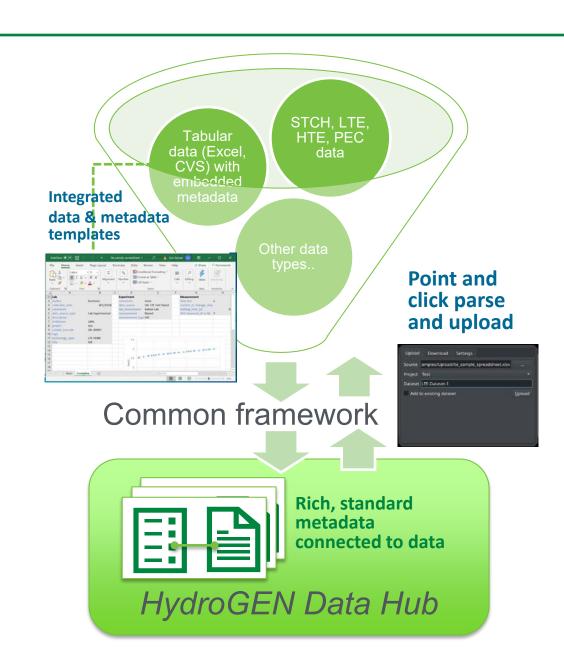

- Secure project space for team members
- Experimental and Modeling Data
- Metadata tools and improvements to support advanced search

Many Types of Experimental Data

Material characterization

- XRD, SFR, XPS, XRF, SEM, TEM, Raman **Device performance**
- Electrolysis, PEC J-V, IPCE, Tafel plots
 Materials durability data
- TGA, membrane conductivity

Data Publication Process



Metadata automation and standardization

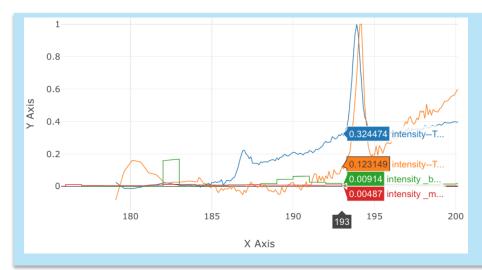
Metadata is crucial to data utility and re-use

- Need to capture all information about Lab, Experiment, Sample, and Measurement
- Automated this data capture
 - Extract metadata into a standard form, automate upload/download to/from the Data Hub
- Enabling more uploads & more powerful search across datasets
- Wrote a Python parsing architecture that lets new data types "plug-in", with collaboration on shared code in Github

LTE Metadata

	Α	В
1	Key	Values
2	Lab	
3	Researcher's Name	Allen Kang
4	Researcher's Email	allen.kang@nrel.gov
5	Researcher's Institution	National Renewable Energy Laboratory
6	MEA Creator's Name	Allen Kang
7	MEA Creator's Institution	National Renewable Energy Laboratory
8	HydroGEN Project Name	LTE Supernode
9	HydroGEN Dataset Name	
10	Data Collection Date	
11	Data Source Type	Lab Experimental
12	Technology Type	LTE
13	Measurement Type	
14	Sample Name	
15	Description	
16	Comments	

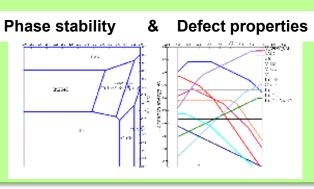
40	Call Assambly	5	-	M
18	Cell Assembly	5	8	M
19	Active Area (cm2)	2	' 5	
20	Hardware Set ID			
21	Hardware Station ID			
22	Hardware Origin/Vendor			
23	Compression Type			
24	Bolt Torque			
25	Number of Bolts			
26	Flow Field Flow Alignment Typ	oe e		
27	Lab Temp (oC)	2	25	
28	Lab Pressure (Bar)			
29	Cathode Flow Field Flow Type	triple serpentin	ıe	
30	Anode Flow Field Flow Type	triple serpentin	ıe	
24				


	l							
32								
	Anode Catalyst Material							
	Anode Catalyst Particle Size (n	m)						
	Anode Catlayst Support							U.S. DEPARTME
	Anode Catalyst Synthesis							— U.S. DEPARTIME
	Anode Catalyst Vendor			MEA				
	Anode Gasket Material			Anode Catalyst Loading (mg/cm				
39	Anode Gasket Material Thickne	ess (mm)		Anode Catalyst Thickness (um)				
40	Anode Ionomer Vendor			Anode Catalyst Deposition Met	hod			
41	Anode lonomer Type			Anode GDL Thickness (um)				
42	Anode Ionomer IEC		65	Anode Porosity				
43	Cathode Catalyst Material		66	Anode Ionomer:Catalyst Ratio				
44	Cathode Catalyst Particle Size	(nm)	67	Anode Catalyst:Support Ratio				
45	Cathode Catalyst Support		68	Anode DI:Solvent ratio				
46	Cathode Catalyst Vendor		69	Anode Solvent Type				
47	Cathode Gasket Material		70	Cathode Catalyst Loading (mg/				
48	Cathode Gasket Material Thickness (mm)			Cathode Catalyst Thickness (um)				
49	Cathode Ionomer Vendor		72	Cathode Catalyst Deposition M	ethod			
50	Cathode Ionomer Type		73	Cathode GDL Thickness (um)				
51	Cathode Ionomer IEC		74	Cathode Porosity				
52	Membrane lonomer		75	Cathode lonomer:Catalyst Ratio	0			
53	Membrane Thickness		76	Cathode Catalyst:Carbon Ratio)			
54	Membrane Ion Exchange Capa	city (IEC)	77	Cathode DI:Solvent ratio				
55	Membrane Prep Conditions		78	Cathode Solvent Type		83	Cell	
56	Membrane Type		79	Membrane Pre-treatment			Anode FF Material	
57	MEA Prep Custom Notes		80	MEA Type (Anode/Cathode)			Anode FF Pattern	
58	Membrane Vendor/Origin		81	Electrode Type			Anode FF Coating	
25	-						Anode FF Coating Me	thod
							Anode PTL (model or	
							Anode PTL (moder of	10 #)
							Anode PTL Thickness	e (um)
							Anode PTL Porosity	(uiii)
							Anode PTL Coating	
							Anode PTL Coating T	hickness (nm)
						33	Alloue FIL Coaling I	HICKINESS (HITI)

94 Cathode FF Material
95 Cathode FF Pattern
96 Cathode FF Coating
97 Cathode FF Coating Method
98 Cathode PTL (model or ID #)
99 Cathode PTL Vendor
100 Cathode PTL Thickness (um)
101 Cathode PTL Porosity
102 Cathode PTL Coating

103 Cathode PTL Coating Thickness (nm)

Data Tools

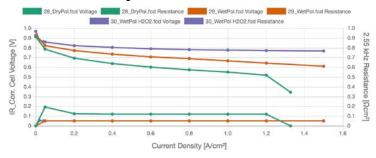

The interactive Advanced Multi-Spectra Data View allows many spectra files (any csv or tabular file format) to be visualized at one time, from one or many files.

https://bit.ly/2Vss96E

Data Tools for

- EMN collaboration
 - Data exchange and exploration
 - Data analysis and visualization (A&V)
- External users
 - Access to comprehensive database
 - Experimental and computational
 - Materials properties
 - Spectroscopy, phase stability, etc.
 - Device performance

Structural information: XRD interface in collaboration with ElectroCat The transport of the property of the p



Device performance

(A&V example)

Electrolysis Performance curve

Links to Data Hub User Resources

- Data Hub Help & Tutorial
 - https://datahub.h2awsm.org/dataset/h2awsm-data-hub-tutorial
 - https://datahub.h2awsm.org/dataset/help-and-tutorial
- Bulk Upload Feature & EMN Multiple File Uploader
 - https://datahub.h2awsm.org/dataset/bulk-upload
 - https://datahub.h2awsm.org/dataset/emn-multiple-file-uploader
- Demo: Electrolysis & Fuel Cell Pol Curve Data Tool
 - https://datahub.h2awsm.org/dataset/electrolysis-pol-curve
 - https://datahub.h2awsm.org/dataset/fcd-format-view-data-tool
- Demo: XRD Unmix Data Tool
 - https://datahub.h2awsm.org/dataset/demo-xrd-unmix-data-tool
- Demo: MgB2 and B203 Simulation Data versus experimental MgB2 Multi-Spectra Data View
 - https://datahub.h2awsm.org/dataset/multi-spectra-data-tool

Initiatives: Near & Long Term

1. Maintain Security Compliance

> 2. Build New Software **Deployment Infrastructure**

3. Improve Data Searchability

Save the Date for 5th AWSM Benchmarking Workshop

Goal: Develop best practices in materials characterization and benchmarking: Critical to accelerate materials discovery and development

Best Practices in Materials Characterization

Kathy Ayers, Nel Hydrogen (LTE)

Ellen B. Stechel, ASU (STCH)

Olga Marina, PNNL (HTE)

CX Xiang, Caltech (PEC)

Consultant: Karl Gross, George Roberts

- Strong community engagement and participation, nationally and internationally
- 19 test protocols submitted to Frontiers in Energy special issue for publication

SAVE THE DATE

May 2 - 3, 2023

5th Annual Advanced Water Splitting Technology Pathways Benchmarking & Protocols Workshop

Location: Sky Song: The ASU Scottsdale Innovation Center- Scottsdale, AZ http://skysong.com/

Objectives:

- · Summarize progress over past years and identify opportunities for further collaboration
- Review, refine, identify test protocols and plan for validation
- Review, refine, identify, and resolve issues regarding technology roadmaps
- Identify, leverage, and align related international efforts

We will be providing pre-registration and other details in late February. Requests to register will be reviewed to ensure uniform representation across advanced water splitting technologies and institutions.

Workshop Organizers

Kathy Ayers <kayers@nelhydrogen.com>; Ellen Stechel <Ellen.Stechel@asu.edu> Chengxiang (CX) Xiang <cxx@caltech.edu>; Olga Marina <Olga.Marina@pnnl.gov>

PNNL

Previous Benchmarking Workshop Presentations and Breakout Summaries on the Data Hub

https://datahub.h2awsm.org/project/benchmarking

2022 Water Splitting Technologies Benchmarking and Protocols Workshop

8 Resources

The fourth annual workshop for the Advanced Water-Splitting Technology Pathways Benchmarking & Protocols project was held May 3-4, 2022 in a hybrid in-person and virtual...

2021 Water Splitting Technologies Benchmarking and Protocols Workshop

16 Resources

The third annual workshop for the HydroGEN Advanced Water-Splitting Technology Pathways Benchmarking & Protocols project was held March 1-3 & 8, 2021 virtually. The...

2019 Water Splitting Technologies Benchmarking and Protocols Workshop

11 Resources

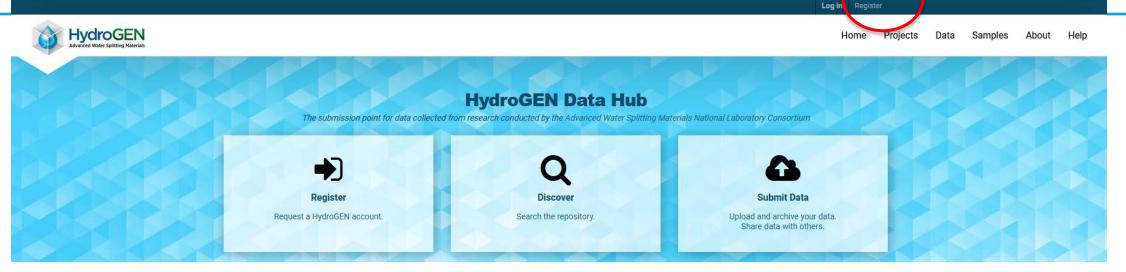
The second annual workshop for the HydroGEN benchmarking project was held October 29-30, 2019 at the Scottsdale campus of Arizona State University. Several breakout sessions...

2018 Water Splitting Technologies Benchmarking and Protocols Workshop

8 Resources

The benchmarking team held a workshop for the advanced water splitting technologies within the EMN on October 24-25 at Arizona State University, in Tempe, AZ. Several breakout...

Frontiers in Energy Research Publications:



Of the 19 papers published, 7 are for LTE. They are free to download on the Frontiers in Energy Research site. https://www.frontiersin.org/research-topics/16823/advanced-water-splitting-technologies-development-best-practices-and-protocols#articles.

- 1. Rotating disk electrode standardization and best practices in acidic oxygen evolution for LTE
- 2. Gas permeability test protocol for ion-exchange membranes
- 3. Standard operating protocol for ion-exchange capacity of AEMs
- 4. Assessing the oxidative stability of AEMs in oxygen saturated aqueous alkaline solutions
- 5. Protocol for screening water oxidation or reduction electrocatalysts activity in a threeelectrode cell for AEME
- 6. Measurement of resistance, porosity, and water contact angle of porous transport layers for LTE technologies:
- 7. Standard operating procedure for post-operation component disassembly and observation of benchtop electrolyzer testing

Register to Access Data Hub

Please register as a user on the Data Hub

- click Registration at the top right
- visit: https://datahub.h2awsm.org
- complete registration form, Create Account (we suggest you use the same login name and password as that for the SharePoint site)
- email Emily Harrel (<u>emily.harrel@nrel.gov</u>) with your username so that she can give you access to the appropriate project data space.
 - Let her know which projects you are working on

Thank you! Q&A?

https://datahub.h2awsm.org/ Huyen.dinh@nrel.gov

This work was authored [in part] by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Hydrogen and Fuel Cell Technologies Office. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.

NREL/PR-5900-85770

