

CO₂ Sorption in Aminopolymer-based Direct Air Capture Composites Through Fluorescent Detection

March 28th, 2023 Spring ACS Meeting <u>Wade Braunecker</u>, Glory Russell-Parks, Noemi Leick, and Brian Trewyn

NREL/PR-5900-85774

Outline

- Overview of Amine-Based DAC Technology
- Critical Role of Polymer Mobility
- Fluorescence for Probing Mobility
 - Mechanism
 - Benchmarking
 - CO₂ Uptake, Humid Environment
- Future Directions

J. Phys. Chem. C., **2022**, 126, 10419. https://doi.org/10.1021/acs.jpcc.2c01099

Amine-Based Direct Air CO₂ Capture

Factors Influencing Mobility

Factors Influencing Mobility

Factors Influencing Mobility

Need More Sensitive Benchtop Techniques

- Benchtop technique
- Not sufficiently sensitive for low polymer wt. fractions

Need More Sensitive Benchtop Techniques

- Benchtop technique
- Not sufficiently sensitive for low polymer wt. fractions

Neutron Scattering

J. Am. Chem. Soc. 2015, 137, 11749 https://doi.org/10.1021/jacs.5b06823

- Powerful for structure/morphology determination
- Not high-throughput

Tetraphenylethylene-Based Fluorescent Probes

Chem. Rev. 2015, 115, 21, 11718 https://doi.org/10.1021/acs.chemrev.5b00263

Tetraphenylethylene-Based Fluorescent Probes

Tetraphenylethylene-Based Fluorescent Probes

Fluorescence Spectra of PEI₈₀₀ doped with 1 wt.% THPE

Benchmarking

• Dashed lines indicate literature $T_{\rm m}$ or $T_{\rm q}$

THPE

Humidity

Conclusions/Future Directions

- Understanding polymer mobility is **Critical** for streamlining DAC operations
- Fluorescent probe provides sensitive benchtop analysis of mobility in confinement
- Future Directions
 - Moisture & CO₂ uptake with degradation
 - Tethered probes spatio-temporal resolution

https://doi.org/10.1021/acs.jpcc.2c01099

Acknowledgements

NREL

Noemi Leick

Colorado School of Mines

LLNL

Glory Russell-Parks Helen Correll

Maxwell Marple Simon Pang

This work was authored in part by Alliance for Sustainable Energy, LLC, the manager and operator of the National Renewable Energy Laboratory for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Work at Lawrence Livermore National Laboratory was performed under the auspices of the U.S. DOE under Contract DE-AC52-07NA27344. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.

