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Considering the Variability of Soiling in Long-term 
PV Performance Forecasting 

Matthew Muller1, Faisal Rashed2

1National Renewable Energy Laboratory, Golden, CO, USA 
2Leidos, Denver, CO, USA

Abstract—This study presents the development of a 
methodology for evaluating the variability associated with soiling 
on long-term PV forecasting.  Independent engineering firms 
typically build P50 forecasts for large PV plants through the use 
of the PVsyst software, where monthly soiling losses are one of 
many inputs to the P50 model. Subsequently, long-term 
performance distributions, or Pvalues, are constructed through a 
Monte Carlo analysis that includes various factors such as: 
satellite irradiance modeling uncertainty, uncertainty in the 
PVsyst model, and long-term irradiance variability.  Often the 
PVsyst model uncertainty is increased to account for sites with 
significant soiling concerns but no systematic method has been 
presented in the literature to specifically include soiling variability 
within Pvalues.  In this work soiling information from 16 sites in 
the U.S. Southwest are combined with 20 years of rainfall data to 
generate 20 years of energy production with soiling losses and then 
subsequently generate Pvalues. The results show that the spread 
of Pvalues (P1-P99) can increase from 0-13% when interannual 
soiling variability is included. 

Keywords—photovoltaic soiling, performance forecasting, 
uncertainty, Pvalues, interannual variability 

I. INTRODUCTION 

Photovoltaic (PV) soiling loss is the well-known 
phenomenon where dust or other airborne particulates 
accumulate on the surface of PV modules causing light blockage 
and therefore power loss to the PV system.  Soiling losses 
depend on local climate, geography, nearby pollution sources, 
module orientation and various other factors [1].  Annualized 
soiling losses can be as low as 0.5%/year in temperate climates 
with frequent rainfall and as high 30%/year in deserts such as 
the middle east [2, 3]. Revenue losses due to soiling losses 
depend on the specific PV system but can easily reach millions 
of dollars per year for large utility scale systems [4]. 
Independent Engineers (IEs) typically model utility scale PV 
system P50 performance (annual energy yield that expected to 
be exceeded 50% of the time) using PVsyst or other software 
where key inputs are satellite site irradiance, temperature, and 
wind speed, losses due to irradiance transposition to plane of 
array, PV module electrical parameters, various other electrical 
losses, and monthly soiling losses. These monthly soiling losses, 
specifically consideration for their interannual variability and a 
method to propagate this variability into the plant probabilistic 
performance (Pvalues) is the focus of this work. Monte Carlo 
simulations of annual plant energy yield are used to generate a 
P1 (1% of all observations are estimated to exceed this energy 
yield) and a P99 (99% of all observations are estimated to 

exceed this energy yield) among other Pvalues that might be 
desired. While there are various methods to generate PV system 
Pvalues, all methods generally include uncertainty of the 
satellite derived global horizontal irradiance (GHI), interannual 
variability of the weather (i.e. irradiance and temperature), and 
uncertainty in the PV power production model (i.e. uncertainties 
associated with irradiance transposition, electrical, availability, 
soiling, and other losses [5].  IEs typically have internal 
proprietary methods that have been developed through years of 
experience to assign an uncertainty distribution to each site-
specific energy model.  While soiling has traditionally been 
included as part of this overall model uncertainty, there has been 
sufficient progress in soiling research in recent years to consider 
an approach for separately accounting for soiling interannual 
variability similarly to the handling of weather.  In this work we 
describe a transparent method for calculating soiling interannual 
variability and incorporating the results directly into Pvalue 
calculations.  We first present a methodology section and then 
we provide results from applying the approach to 16 sites in the 
Southwest U.S. with well-established data on soiling rates.  

II. METHODOLOGY 

The Kimber soiling model [6] is commonly used to estimate 
soiling losses, where the basic assumption is that soiling occurs 
linearly during dry periods followed by cleaning or recovery 
through rainfall events above a minimum threshold.  PVlib 
currently provides a free implementation of the Kimber model 
using Python [7].  The two primary inputs to the model are daily 
rainfall (available through PRISM for the continental U.S. [8]) 
and soiling rates for the site under investigation. Proposed utility 
scale sites are often subjected to an irradiance and soiling 
measurement campaign in order to capture data for reducing 
irradiance and soiling model uncertainty.  For similar reasons 
NREL has been working to build a soiling data map through the 
extraction of soiling information from PV time series data [9, 
10].  To examine the interannual variability of soiling losses we 
have selected 16 Southwest U.S. sites from the NREL soiling 
map that have soiling losses greater than 1% and therefore also 
report data on monthly soiling rates (see Fig.1).  We simulate 
soiling losses for 20 years using the basic Kimber model with 
the following assumptions: cleaning to 99.5% occurs for daily 
PRISM rainfall totals greater than 2.5 mm, no grace period is 
included, the monthly median soiling rates are input from the 
NREL soiling map, and in the event that data isn’t available for 
a specific month then the lowest median rate from all other 
months is used for that month.  20 years of simulation is chosen 
because 1999-2018 is currently available through both PRISM 
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and NREL’s free PSM3 satellite based solar irradiance data 
through the NSRDB [11].  As an NSRDB update is currently in 
progress it is expected that 1998-2021 can be run for the full 
paper.  

It is expected that to best account for soiling variability that 
daily soiling losses be weighted by daily insolation totals or 
optimally as a loss within the appropriate step in the PV 
performance model.  For example, a 5% raw soiling loss results 
in significantly lower energy loss during short sunny winter day 
as compared to long sunny summer day.  If the PV system 
DC/AC ratio is significantly greater than 1 it is critical to apply 
the soiling losses within the PV model as system clipping can 
mitigate soiling losses and reduce interannual variability.  
Similarly, if the PV system contract mandates cleanings, these 
cleanings should be included in the soiling model to correctly 
capture the impact on interannual soiling variability.  In this 
work we use the algorithms within PVlib’s ModelChain class to 
model hourly PV energy output for each of the 16 sites in Fig. 
1.  The baseline model is 100 megawatt single-axis tracking 
system (±60°) with a 0.33 ground coverage ratio, and DC/AC 
ratio of 1 (no clipping).  Each of the 20 years the monthly soiling 
losses resulting from the Kimber model are input into the PV 
model with the given years PSM3 irradiance to generate an 
annual energy production for that year.  Specifically, the 
effective irradiance profile within the PVlib model is multiplied 
by the monthly soiling loss factor.  The simulation is performed 
with and without soiling to estimate the impact soiling has on 
interannual performance variability. 

 
Fig. 1. 16 sites selected from the NREL soiling map. 

 Pvalues are generated with and without soiling using a 
Monte Carlo analysis.  20,000 samplings are made from the 20 
years of modeled performance data in conjunction with a 
sampling from a normal distribution for the PV models 
uncertainty, which is defined by a mean of zero with a ± 2.5% 
uncertainty at one standard deviation.  This uncertainty 
distribution is intended to represent all the uncertainties that go 
into the P50 PV model (for example, uncertainties associated 
with the soiling and irradiance models are considered here).  
This uncertainty is typically calculated by IEs through various 

evaluations of the plant specific model, including factors such 
ground tuning of satellite irradiance and site soiling 
measurement campaigns.  Here we are not evaluating individual 
PV plants and therefore we apply a general model uncertainty to 
all sites.  In the full paper we intend to examine a separate 
accounting for soiling uncertainty based on the range of soiling 
rates provided for each month on the NREL soiling map.     

III. SOILING VARIABILITY RESULTS 
The box and whisker plot in Fig. 2 provides the 20 years of 

energy-weighted soiling losses for each of the 16 sites.  The 
average soiling losses range from 4.3-15.5% while the full range 
of soiling losses varies significantly depending on the site.  For 
example, sites 5219 and 5286 are examples of low to moderate 
soiling with only about a 5% spread in losses over the 20 years.  
Alternatively, site 7052 has a median loss of about 15% and the 
spread of values over the 20 years is about 20%.  It is also clear 
that for 20 years the data is not necessarily normally distributed. 

 
Fig. 2.  Box and whisker plot of annual energy-weighted soiling losses for 

each site (the box represents the interquartile range, whiskers represent the 
maximum and minimum boundaries if an outlier/diamond is not plotted). 

Fig. 3 provides a box and whisker plot comparing the 
interannual variability of energy production for models with and 
without soiling (given as percentage change from the P50 for 
each model).  It is important to note that for some sites 
interannual variability over 20 years is significantly different 
between the models with and without soiling.  This demonstrates 
that the relationship between irradiance, rain, and soiling each 
year can be important to accurately representing interannual 
variability.   

  
Fig. 3.  Interannual variation of PV energy generation with and without 

soiling (the box represents the interquartile range, whiskers represent the 
maximum and minimum boundaries if an outlier/diamond is not plotted). 
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IV. PVALUE RESULTS 
Table 1 provides the spread of Pvalues (P1-P99) generated 

from the Monte Carlo simulation considering PV interannual 
performance variability and ± 2.5% model uncertainty at one 
standard deviation.  Mean and standard deviation of soiling for 
each site are provided for context.  The final column in Table 1 
provides the increase in the spread of Pvalues when soiling is 
included in the interannual performance calculations.  For three 
of the sites the Pvalue spread is nearly the same (± 0.1%).  The 
other thirteen sites show the Pvalue spread increase anywhere 
from 0.4-12.7% showing that including soiling within 
interannual variability can be especially important for PV plants 
with higher soiling rates. While these results will vary with 
system design, especially DC/AC overbuild or the inclusion of 
contracted cleaning schedules, they do point to the importance 
of accounting for interannual soiling variability within Pvalue 
calculations. 

TABLE 1. Pvalues:16 sites with and without soiling 
Site Mean 

 soiling [%] 
Soiling 

stdev [%] 
P1-P99 
no soil 
 [%] 

P1-P99  
soiling 

change [%] 

5112 8.0 1.9 14.9 3.0 

5219 5.1 1.0 14.7 0.4 

5286 4.3 1.1 15.4 0.8 

5349 5.9 1.5 15.5 1.8 

5359 5.7 1.4 14.8 -0.1 

6792 6.8 1.7 14.9 0.8 

7010 9.0 2.6 14.1 4.6 

7014 8.7 2.8 13.7 4.9 

7048 6.1 1.7 14.9 0.1 

7052 15.6 4.1 13.4 12.7 

7083 7.5 2.4 13.9 2.9 

7084 5.8 1.1 15.2 1.2 

7086 10.0 2.6 14.5 2.9 

7098 5.4 1.7 15.1 -0.1 

7101 7.6 1.9 13.7 1.9 

7135 15.5 3.7 13.6 9.8 

 

V. CONCLUSIONS  
This work has demonstrated a methodology that can be 

applied through existing tools (the PVlib Kimber model, the 
NREL soiling map, PRISM, and NSRDB) to estimate 
interannual soiling variability.  The methodology was applied to 
16 sites in the Southwest U.S. as a demonstration of what 
interannual soiling variability can look like.  In the case of these 
16 sites, the mean soiling ranged from 4.3% to 15.5%.  The 
inclusion of soiling calculations within 20 years of annual PV 
performance calculations resulted in the Pvalue spread (P1-P99) 
increasing from -0.1% to 12.7%.  These results are exemplary as 

actual results with depend on specific PV system design 
parameters like DC/AC overbuild and contract features around 
operations and maintenance (specifically cleaning schedules).  
Additionally, the specific calculated PV model uncertainty 
propagated into the Monte Carlo simulation will impact final 
results. 
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