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Decarbonization Goals

>90% Clean Electricity by 2035

CURRENT: 100 GW

Deployment Rate —

19.2 GW/year
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Deployment
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World Decarbonization Goals and

PV Deployment Rates

Global PV Deployment Projections from various 2021 Studies
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Deployment Goals

-US x 10 (Solar Futures): 16 TW
-Gervais: 9 TW

-IEA Net Zero: 15 TW

-Zhang, Breyer & others: 70 TW+
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Deployment Rate Projected by 2030 Scaling current by

-US x 10 (Solar Futures): 600 GW/year (x4.6)
-Gervais: 200 GW/year (x1.5)
-|IEA Net Zero: 630 GW/year (x4.8)

-Zhang: 3000 GW/year (XZ%
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Modules Continuously Evolve

Crystalline Silicon Modules

Mainstream Module
Evolution

«—— Aluminum Frame ——

FrontGlass ——— =

Front Encapsulant ——
-~ =— Solar Cells
Busbars

~—— Back Encapsulant ——

Back Glass
Polymer Backsheet
Junction Box Junction
Boxes
Al-BSF cells PERC, PERXx, or HJT half cells
(monofacial) (bifacial)
Pre-2015 module, 20-25 year life 2022 module, 35 year life

Ovaitt & Mirletz et al, 2022. “PV in the Circular Economy, A Dynamic Framework Analyzing
Technology Evolution and Reliability Impacts.” ISCIENCE https://doi.org/10.1016/].isci.2021.103488.

Emerging Products — flexible,
non-CdTe thin film, BIPV, Etc.
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New Technology + Explosive Growth

ell Technologies

SiC
100%
S0%
80%
mono
70% p-PERC
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509
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Jarett Zuboy. DuraMAT Tech Scouting 2022

Module bifaciality factor ¢ = Prear

Front

HIT
23-25% cell efficiency
¢ ~0.85-0.95

TOPCon

21-23% by SP, 21-26% by PVD

¢ ~0.8

Frontside fingers (busbars optional)
compromised of low-temperature screen-
printed Ag pastes or electroplated
Ni/Cu/Sn/Ag

TCO by PVD (typically ITO for high optical
transmission and low sheet resistance)

p™ doping and full-area emitter formation by

PECVD of a-Si:H

Intrinsically doped a-Si:H by PECVD

High lifetime n-type base wafer
Intrinsically doped a-Si:H by PECVD

n" doping and full-area BSF formation by
PECVD of a-Si:H

TCO by PVD (typically ITO for high optical
transmission and low sheet resistance)
Backside fingers (busbars optional)

@

QOIS

(4)

v ww
®

. Ag and Al front metallization by

screen-printing or PVD

2. SiNy ARC and passivation layer by PECVD
3. PECVD or ALD of AlOy surface passivation

layer

. p* doping and full-area emitter formation

by ion implantation or BBr; diffusion

. High lifetime n-type base wafer
6. Tunnel oxide passivated contact (TOPCon)

layer formed by PECVD or LPCVD of doped
a-Si or poly-Si layers

. Ag rear metallization (sometimes full-area)

by screen-printing or PVD
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New Technology + Explosive Growth

Si Cell Technologies

100%
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aglelgle
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Jarett Zuboy. DuraMAT Tech Scouting 2022

Expect somewhat disruptive technology
changes requiring new fabs every few years

Current events illustrate benefits of increased
geographic diversity for new plants, and of
sustainable planning

Policies:
— Uyghur Forced Labor Prevention Act

— Defense Production Act
— Inflation Reduction Act

Market Dynamics
— Supply shortages, i.e. polysilicon price shocks

DEI & Sustainability Goals:

— Reduction of Increased negative environmental
and social impacts. i.e. forced labor in polysilicon
production, poorly regulated or illegal sand
mining

NREL | 7



How do we deploy TWs

Sustainably?
¢ 630 GW/ Year by 2030 y MANUFACTURH\E\;EULAETLITY)
— — |
(currently ~130 GW/yr) y 2 a&®
— Manufacturing demands PRODUCT DESION ﬂ% \
and impacts 4 %4%« AR d ey
*Do we make them: ' \ )
— More efficient? _Q.ﬁo(o@. \\
— More recyclable? ';',‘ m
- 7. X Os
— Long lasting? O3y.2° B
— Less material intensive? RESOURCE

NREL | 8



Big Questions About

Circularity e Circular Economy
concepts are well
defined and studied
for consumer products

* Should we think about
them differently for
renewable energy?

ELLEN MACARTHUR
FOUNDATION

NREL | 9



ENG 101 and Thermo Still Apply

Accumulation = In — Out + Generation — Consumption

e Minimize waste out OR virgin material in
e Required starting point

Mass Balance

e Very different from a consumer product because it

E ne rgy Ba |a nce makes clean energy over time

e Embedded energy, transportation, energy produced

Ca rbO N e Good metric for decarbonization

e Depends on the grid mix for manufacturing and Eol,
and use offsets it

Balance

NREL | 19



Circular R-strategies for PV
|

n the Energy Transition

[Refuse: Refuse virgin and conflict
materials.

Rethink: High energy vyield PV
systems, design for Repair and
Reliability Integrated PV.

Reduce: Material substitution,
increase  manufacturing  yield,
decarbonize manufacturing.

Mirletz, Ovaitt, Barnes, 2022 "Quantifying Energy flows in PV Circular Processes" PVSC Proceedings. Best Student Paper Area 8 Award
Graphic design: Macarena Mendez Ribo

Ao pijses 102

Reuse: Merchant tail, resellh
secondary markets.

Repair: Onsite repair of modules
and components.

Refurbish: Demount and
transport modules for repairs
Replace storm-damaged modules
on site .

Remanufacture: ~ Disassemble,
replace cells, relaminate.
Repurpose: Repower system with

\new components ‘

2 )

ecycle: Separate modules and
components, reclaim materials.

Remine: Mine input materials
from landfills, refine.

Recover:  Burn  component
materials for energy generation.

NREL | 11



From SETO CE & EoL Webinar, 2021:

Research Opportunities

[ Data

Materials Primary Better
and Energy Extend Materials, understand
Input useful life Energy, environmental
Cost effects
[ R&D Solutions, Analyses, Assistance }
‘ ERERGY | S i
energy.gov/solar-office SOLAR ENERGY TECHNOLOGIES OFFICE

| 12




PV ICE: an open-source tool Srellar o e

evaluating circular paths for PV

Materials and Systems Flow Concept (Mass Flow)d= ENERGY

DegradatIOﬂ Exit Material
Module Manufacturing

& Installation ( Demounting \

# New Installs ' Glass
. N silicon
% by technology 5 .

v —

Ag, Al, etc.
\ 1 technology j g

[ — \ _ ; \ Landfill Costs j

Silicon : : |
Modules loss:baSed.-onexpected 2l

Siveeelc lifetime + Early losses (Weibull Pdf)
Virgin Extraction & / \

\Manufacturing )

Includes pathways for circularity of materials and Energy

REUSE (RESELL & MERCHANT TAIL), REPAIR, REMANUFACTURE, RECYCLE

NREL | 13



Metrics of Success

_How do we measure lmpact of cwcular choices for PV Ilfcles F;':__:-_-'.j.__ '

a_._ -—_— i — —’-

..____—,

__'-_._
" ..___ -

'
_'h__'-_-

Installed Capacity

. . . Maintain PV
Virgin Material Capacity to meet Waste
Reduce Extraction of Reduce Wastes

Energy Transition
Virgin Materials &Y throughout PV

ANNONE

Supply Chain
Security
Energy In Energy Out Energy Balance Just and Reliable
Minimize Energy demands of Maximize PV Yield Maximize EROI, sourcing of materials

processes and materials for Energy Transition EPBT, Net Energy NREL | 14



New Installed Capacity [TW]

Features

1.2 B Reference
1
m High
0.8 Electrification
0.6
0.4
o2 it
A .|.|||||||||||||||I
a N —\ <t N O
— O N m M ™M
o O O O o O O O
AN AN AN &N AN NN

2043
2046
2049

Able to use ANY deployment forecast
(county, US, other countries, world, or

1200

:

g

Active Cazaily [EW]
a8 B
-

Accurate Installed Capacity Calculated
with degradation, and bifaciality corrections

by specific technology)

Bringing PV and Sustainability communities together, Interdisciplinary

Annual Average c-Si PV Module

. 100% g 100% fﬂ

S ® Glass E"”" dusrryn'ﬂadfn i

5 ® Aluminum £ g Ineﬂ."'

S £ o a!‘rant
2 0% = Silicon % . Y
o E o a

g m Silver -

o 1 10 25
o m Copper

S

B 60% m Encapsulant

=

Service Life definitions
(project lifetime, degradation, and
improved failures and reliability
approach)

N AT AT AT AT AR DT = Backsheets

Historic and projected baselines
Virgin Material Needs consider MFG Efficiencies,
all as open-data!

Sp— Landfill % occupied by PV Waste By Mass
N o

0 <012

B 012056
B 0.56-0.95

’\ ) . 0.95-3.23
- h . 3.23

Flexible Spatial and Temporal analysis

585 53 8
i

5
i

8 F 3

Framework that allows easy scenarios
comparison Sensitivity Analysis

NREL | 15



Total Capacity (GW)

PV ICE’s Integrated NREL Circular Approach

D D%

NEW INSTALLS MANUFACTURING INSTALLED CAPACITY AND CIRCULAR
. N EXTENDED USEFUL LIFE MODES | | PATHWAYS )
1500 p W \f‘_z)_\!_“\
1000 Illllllllll.llll "‘ %\\\*\\—Lm_@
. ek o DuraMAT =.—_.e
. R? 12D y N N B
Group mm%‘;."x‘lffrs-{-_;;—f-’//}“/
e __ w. = CELAVI Landfill
5 a f‘-,__. m Wa;zbe;gl\; Agelnt calculation approach
ased Mode
ReEDS o N o Y

MFI

Upcoming Carbon Footprint
Siting Optimization & EJ FEDERAL

o7 EJScrezsn
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Some results

« Circular business

Capacity for

- Energy for Manufacturing Decarbonization

- Energy for circular pathways + 1TWin 2035

+1.75TWin 2050

« Energy Balance

4

Economics

models

« Circular Supply Impacts of Photovoltics

Chains for Decarbonization

Carbon Equity

« Carbon intensity of + Jobs
circular pathways - Health

« Minimize carbon « Sustainable
impacts Supply Chains

Mass

Material Demands
« Lifecycle Wastes



Virgin Material

‘ How much Virgin Material do we need for this?

[C]= million tons

75mT Silicon M pper & Sive

~ Auminum SINNNN

e

 Reference =~ Decarb  Decarb+E

Figure 8 - 2. Comparison of virgin material demands for each silicon-based PV material cumulatively (2020-
2050) across the three scenarios

In perspective: 40 MT of electronic waste yearly Worldwide NOW

US. DOE EERE “Solar Futures Study” 2021. Contributed by Ovaitt et al with PV ICE

NREL | 18



Is there enough Virgin Material?

Virgin Material

45% of 2020 global production _ Average Annual Demand

O U.S. needs under Decarb+E
\/ U-S. needs under Decarb

\% v

Silver Silicon Aluminum

Figure 8 - 3. Percentage of 2020 global production of various materials needed to supply annual average
virgin materials demand for c¢-Si PV

NREL 19
US. DOE EERE “Solar Futures Study” 2021. Contributed by Ovaitt et al with PV ICE |



Is there enough Virgin Material?

Virgin Material

45% of 2020 global production Average Annual Demand

A Global decarbonization

@ Giobal projection

O U.S. needs under Decarb+E
v U.S. needs under Decarb

b

@ A

4 v

Silver Silicon Aluminum

Figure 8 - 3. Percentage of 2020 global production of various materials needed to supply annual average
virgin materials demand for c¢-Si PV

NREL 20
US. DOE EERE “Solar Futures Study” 2021. Contributed by Ovaitt et al with PV ICE |



Is there enough Silver? (1)

Energy In Energy Out

Virgin Material

30000 Cumulative Energy Generated
25000 | L=t ———.______Globalsilver Production
7 o 300000 A
20000
250000 -
HIT 200000 1
c
E 150000

TOPCon

5000 H.iIStoriC PV 100000 -
Silver Dema PERC
50000 +
O 7777777777777777777777777777777
0_
<0, 50, S0, <05 Q5 05 “Q 90\9 0, <0, <0, <0, <0 PERC  HJT TOPCon

Annual PV Silver Demand Globally
[Metric Tonnes]
o
o o
o o
o o

Barnes, et al. 5th International SHJ Workshop, CEA-INES 2022 NREL | 21



1.8

1.6

1.4

1.2

0.8

0.6

Cumulative Installed Capacity
[TW]
[

0.4

0.2

Cumulative Installed Capacity and PV Materials
for Decarbonization Deployment

120
mmm Solar Futures: Decarbonization + Electrification [TW] 110
«+++« Mass of PV Materials Installed [million tonnes]
-==-Mass of End-of-Life PV Materials [million tonnes] 100
%) ]
90 ér_'
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80 5 O
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Mirletz, Silvana Ovaitt, et al 2022. “Circular Economy Priorities for Photovoltaics in
the Energy Transition.” PLOS ONE https://doi.org/10.1371/journal.pone.0274351

Cumulative Lifecycle Waste Material in 2050
[Million Metric Tonnes]

1.2 Mt

Silicon
12%

0.70 Mt
Encapsulant 0.003 Mt

7% Silver
0.42 Mt 0.03%
Backsheet 4%

Ovaitt & Mirletz et al, 2022. “PV in the Circular Economy, A Dynamic
Framework Analyzing Technology Evolution and Reliability Impacts.”
ISCIENCE https://doi.org/10.1016/].isci.2021.103488. NREL | 22



https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fdoi.org%2F10.1016%2Fj.isci.2021.103488&data=05%7C01%7CSilvana.Ovaitt%40nrel.gov%7Cca7030f89c7947c3008208da644387a0%7Ca0f29d7e28cd4f5484427885aee7c080%7C0%7C0%7C637932538455797511%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=OTlyiDd%2FmgQlgRS5gPGU4Qj6TgcGvBXUJtPl5X6%2BRPs%3D&reserved=0
https://doi.org/10.1371/journal.pone.0274351

How can we reduce Waste?

Waste

Decrease Waste Increase Waste
Overall improvement in EoL Circularity Pathways | ,10% 10%
+ Reliability and Lifetime
Module Lifetime and Reliability | +10% -10%
Module Manufacturing Efficiency | +10% -10%
Efficiency of Material Use
during Module Manufacturing +10% 10%
New Installed Capacity [MW] | -10% +10%
Mass per m2 | -10%rel. ] +10% rel.
Module Efficiency | +10%rel. | ] -10% rel.
Overall improvement on
manufacturing scrap recycling loop +10% -- -10%
Yield of the Material
Manufacturing Scrap Recycling process +10% .. -10%
Fraction of Material Scrap from o II o
Manufacturing that undergoes Recycling +10% -10%
Overall improvement on o II o
EolL Circularity Pathways | *10% -10%
Collection Efficiency of EoL Modules | +10% [ 10%

Ovaitt & Mirletz et al, 2022. “PV in the Circular Economy, A Dynamic
Framework Analyzing Technology Evolution and Reliability Impacts.”

ISCIENCE https://doi.org/10.1016/j.isci.2021.103488.
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Module Lifetime & Reliability

32 Years
-0.5% Degradation Rate

Waste Warranty—+Lifetime
1 WTRACY wE |8 - Start-up / Normal End
® DOastasheot #
5 | PPPT - Commissioning operation of life
,_'-' ! i1 111 E 0.200 ‘
™ ¥ & |6 E current failure rates for 50
201 Lail 0.175 1 ilure rates ear service life goal
- Yy & @ s> a | fa y :‘ g
-_;'-'15" w L & E LII"E 0.150 _: O Fou < BD%Fur-g —_— Dut}E'D.r"uPurg
B 2 o | O Paeg > 0.8%/yr for 90% of modules
-ﬁ ]D' LERNT] T-_ _; E ;‘_‘l- G.125 -: D
; | X R EEEe (25 @ 0.100
Y N e |
gl X A X o A | o 0.075 Hibathtub curve o .
o 0 = )
G = 0.050 1 o 50-year
Tirme L \ ¢cp0 service life
Project life {years) 0.025 41
40 o +
0.000
Average = 324 years I T T T T T
a0 —/-. 0 10 20 30 40 50
/ Years

20

IFigures from D. Jordan, Photovoltaic Module Reliability for the TW Age,

Progress in Energy 2022, 10.1088/2516-1083/ac6111 2 Wiser, LBL, 2020
3 M. Springer, Future-proofing photovoltaics module reliability through a unifying 54
predictive modeling framework. PinPV 2022, 10.1002/pip.3645

2007 2008 2009 2010 201 22 22 2014 25 26 2017 208 2ME
Figure 2. Project Life Expe ctati ons for Utility-Scale PV, over Time
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‘ The concept of Installs vs Effective Capacity

Installed Capacity

1.8

1.6

1.4

Effective Capacity [TW]
o o =
(o)} 0o = N

©
S

o
N

0
2020

Mirletz, Silvana Ovaitt, et al 2022. “Circular Economy Priorities for Photovoltaics in
the Energy Transition.” PLOS ONE https://doi.org/10.1371/journal.pone.0274351

—— 50 vyear
—— 44 year
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—— 32 year
----- PV ICE Baseline
30vyear
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—— 18 year
— 15 year

2025

2030

Identical installs, No Replacement Modules

|

2035

2040

2045
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https://doi.org/10.1371/journal.pone.0274351

What about Recycling?

Virgin Material Waste
o Lifecycle Wastes
Virgin Demands 160 100 a
100 95
95
90 - 2 70
85 & ?
80 B3 80 P
75 140 § 7 Pe
70 e 70 Q
< 5 = 65 2
5 55 S T 55 S
' 50 1202 o 50 - 402,
£ 45 3 5 Y 3
O s 2 o
S 40 S g 40 =
& 35 1 -110 2 ¢ 35 - 30 ﬁ
30 2 30 2
25 e 25 -203
5 100 20 0 E
15 15 O
10 Py - 90 10 - 10
5 5
0 - 80 g : s
15 18 21 24 27 30 32 34 36 38 40 42 44 46 48 50 15 18 21 24 27 30 32 34 36 38 40 42 44 46 48 50
Lifetime (years) Lifetime (years)

Mirletz, Silvana Ovaitt, et al 2022. “Circular Economy Priorities for Photovoltaics in
the Energy Transition.” PLOS ONE https://doi.org/10.1371/journal.pone.0274351 NREL | 26
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Virgin Material
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But Silvana, what about Recycling?

Virgin Demands
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Mirletz, Silvana Ovaitt, et al 2022. “Circular Economy Priorities for Photovoltaics in
the Energy Transition.” PLOS ONE https://doi.org/10.1371/journal.pone.0274351

Recycling Rate [%]
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But Silvana, what about Recycling?

Virgin Material

Recycling Rate [%]

2050 Cumulative Material Demands and Lifeycle Wastes:

Virgin Demands
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Mirletz, Silvana Ovaitt, et al 2022. “Circular Economy Priorities for Photovoltaics in
the Energy Transition.” PLOS ONE https://doi.org/10.1371/journal.pone.0274351
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Energy In

Traditional Si module Perovskite ABC Module

Assuming 100% of glass
Is recycled into close-loop

Assuming 100% of glass
Is remanufactured

Fig. 2 Diagram of the two evaluated scenarios: 100% recycled modules,
vs 100% remanufactured modules. Glass remanufacture i1s potentially
enabled by technology designs such as the perovskite all-back-contact
architectures. Scenarios are evaluated on material and energy flows of glass.

Mirletz, Ovaitt, Barnes, 2022 "Quantifying Energy flows in PV Circular Processes"
PVSC Proceedings. Best Student Paper Area 8 Award
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Energy Metrics Overview
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Energy Out
Energy Pay Back Time
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out . Year in which Net Energy
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Raugei, M. Methodological Guidelines on Net Energy Analysis of Photovoltaic Electricity, 2nd Edition 2021.

Murphy et al. Energy Return on Investment of Major Energy Carriers: Review and Harmonization, 2022.
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Measuring Sustainability of PV in Energy Transition: Mass,

Energy, Circularity, and Carbon

Idealized
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High Circularity
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/\‘ﬁ,al Material
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Mass

_ Lifecycle
Material

Losses

E@ Replacements
@
Energy
. Energy
Balance

Energy

[ Benefit

Mirletz et al. PVSC 2023 (To be presented)
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Siting Optimization of PV
Recycling and Manufacturing Plants
for Supply Chain Security &
Critical Material Recovery
(aka RICE)

Assess techno economic and life-cycle impacts of large-scale PV recycling

Help identify locations and speed at which a recycling industry needs to grow in the US to
meet target recycling rates, accounting for cost of transport, warehousing, and capital
costs

OBJECTIVES

Inform strategies for incentivizing collection and recycling

RELOG PV ICE

OPEN-SOURCE SOFTWARE PACKAGE FOR
REVERSE LOGISTICS OPTIMIZATION

Open-Source Software Package for
Evaluating Circular Paths for PV

A Systematic Analysis of the Costs and Environmental
Impacts of Critical Materials Recovery from Hybrid Glass Waste by PCA Region  Decarboniztion
Electric Vehicle Batteries in the U.S (2022) C:hm“"”"":'””_

ousand metric tonnes
(https://doi.org/10.1016/].isci.2022.104830)
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https://doi.org/10.1016/j.isci.2022.104830

RICE Project Status
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RICE Project Status
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Shooting for the sun

e More US MFG and supply chain

security decision support, including
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CO N Cl us i ons 1. We have a tool that is flexible to all new deployment scenarios, that considers technology
evolution and PV-specific circular paths.

S — 2. We have used PV ICE to calculate virgin material demands, waste production with yearly
2 for Decarbonization Deployment 120 . . o . . . « e .
e geospatial resolution, and conduct a sensitivity analysis to the decision points and process
] efficiencies governing both.
3. We have evaluated different circularity pathways enabled by novel technologies (i.e.
o Perovskite remanufacturing)
T A 4. We have identified lifetime and recycling thresholds that can help us meet decarbonization

goals from a Mass Perspective

5. We have detailed how poor module quality reduces Energy Balance, and how reducing
degradation is a good lever to ease Energy Transition deployment.

6. We are exploring sustainable strategies for PV for Mass and Energy, finding that when
: evaluating a suite of metrics, module lifetime consistently scores well while other strategies
Dol Tomm T have obvious tradeoffs.

We are exploring PV ICE geospatial and temporal results for siting optimization of recycling

and manufacturing facilities of PV
8. We can use PV ICE to support US manufacturers and supply chain to make informed
’ decisions

Assuming 100% of glass Assuming 100% of glass
Is recycled into close-loop Is remanufactured 9

Dacraase Waste Incrests Wasts

Traditional Si module Perovskite ABC Module 7

We could use PV ICE to evaluate critical materials or other materials if funded to do so
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Timeline and Funding

PV-ICE NREL P&A NREL P&A NREL P&A/BD AMO- RELOG
FRAMEWORK DuraMAT DECS

Module materials Colorado School of NREL P&A, 50% NREL LDRD 100% Solar TEA — data
baselines and case  Mines Solar Futures 50% Solar TEA set is dual purpose for
studies PV LCA

Technical oversight  NREL P&A NREL P&A/BD NREL Strategic Planning  DuraMAT MGMT

and mentoring

Addition of thin film n/a n/a AMO - RELOG AMO- RELOG

and other tech Waiting for FY22

REMADE funding 38
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nrel.gov/pv/pv-ice-tool.html
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Mass Flows — EolL anc
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PV ICE Baseline
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e Even for fastest cycling (15-year module), EoL materials mis-aligned in time to supply

decarbonization-scale material demand.

* Manufacturing Scrap happens closer to deployment and can be leveraged for material

demand

Mirletz, Silvana Ovaitt, et al 2022. “Circular Economy Priorities for Photovoltaics in
the Energy Transition.” PLOS ONE https://doi.org/10.1371/journal.pone.0274351
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All circles have associated
yields/efficiencies

All Hexagons have associated
decision points

PV ICE Diagram
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