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ABSTRACT: Metal halide perovskites (MHPs) combine extra-
ordinary optoelectronic properties with chemical and mechanical
properties not found in their semiconductor counterparts. For
instance, they exhibit optoelectronic properties on par with
single-crystalline gallium arsenide yet exhibit near-zero formation
energies. The small lattice energy of MHPs means they undergo a
rich diversity of polymorphism near standard conditions like
organic materials. MHPs also demonstrate ionic transport as high
as state-of-the-art battery electrodes. The most widespread
applications for metal halide perovskites (e.g., photovoltaics
and solid-state lighting) typically view low formation energies,
polymorphism, and high ion transport as a nuisance that should
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be eliminated. Here, we put these properties into perspective by comparing them to other technologically relevant
semiconductors to highlight how unique this combination of properties are for semiconductors and to illustrate ways to

leverage these properties in emerging applications.

etal halide perovskites (MHPs) exhibit outstanding
l \ / I optoelectronic properties1 featuring long carrier
lifetimes and diffusion lengths, tunable bandgaps,
and exceptional defect tolerance™ that result from a
crystalline-like electronic band structure combined with
liquid-like ionic lattices.” The prototypical MHP structure is
represented by AMX; (A = methylammonium (MA"),
formamidinium (FA*), Cs*, etc; M = Pb*, Sn**; X = I,
Br~, CI7), characterized by a 3D network of interconnected
[MX(]*~ octahedra with monovalent A-site cations occupying
interstitial sites (Figure 1). The connectivity of the [MXq]*"
octahedra dictates the observed optoelectronic properties and
can range from the fully connected perovskite phase (3D) to
partially connected (2D/1D) and fully isolated (0D) non-
perovskite phases.” MHPs also accommodate a variety of
dopants that influence the optoelectronic properties by
disrupting the [MX]*~ octahedral network and by interacting
with the soft, polarizable lattice. However, doping mechanisms
and lattice incorporation of dopants in MHPs are far from fully
understood and remain an area of active investigation.6
MHPs undergo a variety of structural changes near standard
optoelectronic device operational conditions. Though MHP-
based photovoltaic (PV) devices have achieved a remarkable
>25% power conversion efficiency (PCE) within a decade of
research,” fundamental material properties are easily changed
by exposure to humidity, heat, electric fields, and light, which,
if not managed, result in undesirable transitions between
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crystal structures, changes in electronic structure, ion
migration, and irreversible decomposition.*”'? Transformation
of material properties is detrimental to many established
applications of MHPs spanning PVs, electronics, light-emitting
diodes (LEDs), lasers, and thermoelectrics (Figure 1).
Considerable effort has gone into improving and managing
transformations in MHPs to prevent changes in crystalline or
electronic structure through formation energy manipula-
tion,"' ™" reducing defect density,'* and incorporating hydro-
phobic organic cations."

In MHP literature, “stability” generally refers to resilience to
changes in material properties, and numerous methods to
improve stability have been highlighted in many literature
reviews.””® A recent review surveyed applications that exploit
MHP instability.”” Here, we begin with the fundamental
properties of MHP materials that underpin stability by
comparing the formation energy, lattice energy, and ionic
transport of MHP materials to other technologically relevant
semiconductors before turning to novel applications that
exploit MHP instabilities. Our analysis illuminates just how
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Figure 1. Schematic overview comparing conventional MHP applications that require high resilience to material property transformations
with emerging MHP applications that take advantage of material property transformations. X-ray scintillation image adapted from ref 16,
Springer Nature 2018. Electronics image adapted from ref 17, Springer Nature 2018. CC-BY: https://creativecommons.org/licenses/by/4.
0/. LEDs image adapted from ref 18, Springer Nature 2021. Photovoltaics image adapted from ref 19, Springer Nature 2018. Solid-state
electrolytes image adapted from ref 20, Springer Nature 2020. CC-BY: https://creativecommons.org/licenses/by/4.0/. Switchable PV
windows image adapted from ref 21, Springer Nature 2017. CC-BY: https://creativecommons.org/licenses/by/4.0/. Smart windows image
adapted from ref 22, Wiley-VCH 2022. CC-BY: https://creativecommons.org/licenses/by/4.0/. Lasers image adapted from ref 23, Wiley
2016. Electronic ratchets image adapted from ref 24, Wiley-VCH 2020. LECs image adapted from ref 25, Wiley-VCH 2020. CC-BY: https://
creativecommons.org/licenses/by/4.0/. Thermoelectrics image adapted from ref 26, American Chemical Society 2021. Memory &
Computing image adapted from ref 27, American Chemical Society 2019.

Our analysis illuminates just how
unique MHP structural properties are
across materials science.

unique MHP structural properties are across materials science.
Instead of the stabilization-centric narrative driven by PV
literature, we highlight MHPs as switchable and stimuli-
responsive semiconductors”” that enable new applications
spannin% switchable PV smart windows,”* electronic
ratchets,”* solid-state electrolytes,20 light-emitting electro-
chemical cells (LECs),”> and next-generation memory or
neuromorphic computing elements””*** (Figure 1).
Formation Energy of MHPs. Unlike traditional semi-
conductors, MHPs are entirely solution 3processable at low
temperatures and atmospheric pressure,'”>* and do not require
high-temperature melt-processing, vapor phase growth in a
UHV chamber, or forming inks from nanocrystals that were
presynthesized at higher temperatures. MHP single crystals can
also be synthesized at room temperature,”* and engineering the
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acidity of the growth solution enables low temperature growth
with reduced defect densities.>®> In contrast to MHPs,
conventional semiconductors such as Si are grown by heating
above their melting point of 1414 °C while III-V semi-
conductors require vapor phase growth above 550 °C in
ultrahigh vacuum.’® Low energy intensity processing promises
reduced fabrication costs and increased manufacturing
throughput for an array of applications.

Low-energy synthesis is a consequence of low formation
energies in MHPs. The Gibbs free energy of formation (AG°)
is a measure of the thermodynamic driving force for synthesis
under standard conditions (25 °C and 1 atm = 101,325 Pa)
without external stimuli (e.g., light, heat, H,O, O,, etc.). AG®
is represented by

AfGo = AfHo - TA{SO (1)
where enthalpy of formation (AFH?®) is the energy released or
consumed when one mole of a product is synthesized from
reactants and can be thought of as a measure of the strength of
bonds broken and formed, while entropy of formation (AS®)

https://doi.org/10.1021/acsenergylett.2c02698
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Figure 2. (a) Unit cell comparison of the halide, chalcogenide, pnictide, elemental, and oxide semiconductors compared in this study.
Comparison of (b) Gibbs free energy of formation (AG®), (c) enthalpy of formation (AH®), and (d) entropy of formation (AS°) of MHPs
to those of other conventional semiconductors. Values for elemental semiconductors were obtained from oxide precursors (triangles) or
from chemical vapor deposition (CVD) precursors (squares). Values for chalcogenide, pnictide, and oxide semiconductors were obtained
from elemental precursors. Values and literature sources are supplied in Supporting Information.

describes the degree of compositional and energetic disorder in
the system. One caveat is that A{G® values given for standard
conditions may vary substantially from the decomposition of
materials into binary rather than elemental compounds.

Formation of a compound is thermodynamically favorable
for A¢G° < 0, and unfavorable for AG° > 0. We compare the
formation energy of MHPs to binary and elemental semi-
conductors due to their similar applications, with ternary oxide
perovskites as a direct structural comparison to MHPs (Figure
2a). MHPs have slightly negative A(G® values in the range of 0
to —15 kJ mol ™!, whereas conventional semiconductors exhibit
a large driving force relative to precursors, with deeply negative
A{G® values from —50 to —1500 kJ mol™" (Figure 2b).

The formation energy of inorganic compounds is often
discussed in terms of A;H® due to the inherently strong bonds
created when these compounds are formed. Elemental
semiconductors prepared by chemical vapor deposition
(CVD, squares) as well as binary chalcogenide (II-VI, IV—
VI, V,VI;) and pnictide (III—V) semiconductors exhibit AH°
values in the range of —50 to —300 kJ mol™', whereas ternary
oxide perovskites (AMO,) are as negative as —2000 kJ mol ™
(Figure 2c). Large, negative AF° values suggest these
compounds are unlikely to decompose into precursors due
to their strong bonding. Indeed, these compounds are highly
stable at >500—1000 °C, leading to their commercial use in
challenging environments.”’
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MHPs are typically synthesized from the reaction between
alkylammonium or metal halide salts with metal dihalide salts,
as described by the following equation:

@)

In contrast to conventional semiconductors, the AgH® term of
MHPs is between +5 and —10 k] mol™" (Figure 2b), with near-
equal driving forces between formation and dissociation into
precursors. Resiliency of MHPs to decomposition follows the
intuitive trend CI > Br > I, in agreement with the Pb-halide
bond strengths and redox potentials.”*” Whereas MHPs are
produced from precursors with similar ionic bonds, the
precursors for chalcogenide, pnictide, and oxide semiconduc-
tors are elemental, metal salts, or organometallics with
products containing bonds to metal centers with higher
valency anions, resulting in stronger bonding environments.
The AH°® term typically dominates the AS° term in
technologically relevant semiconductors due to large, negative
AH® values and small AS° values (0 to —20 J mol™! K™!)
(Figure 2d). In contrast, the AS° term of MHPs cannot be
ignored. MHPs exhibit positive AS® (+20 to +60 J mol™' K™*)
values that introduce a greater driving force than the near-zero
AHC*** Entropy is a facile method to improve the
operational stability of MHPs in solar cells because A S°® can
be easily increased through alloying and/or doping multiple
cations and halides.'” Despite high susceptibility to decom-

AX + MX, < AMX,
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The formation enthalpy term (AH°)
typically dominates the formation en-
tropy term (A¢S°) in technologically
relevant semiconductors due to large,
negative A¢H° values and small AS°
values (0 to —20 J mol™' K™"). In
contrast, the A(S° term of MHPs cannot
be ignored. MHPs exhibit positive A(S°
(+20 to +60 J mol™' K™') values that
introduce a greater driving force than
the near-zero AH°.

position, MHP-based PV devices have maintained >85% of
their initial performance after 1000 h*' of illumination, with
the current record at 10,000 h (>1 yr).*

The low formation energy of MHPs means small
disturbances can lead to decomposition of the MHP into its
precursors or transformation into nonperovskite phases. The
most widely investigated transformations in MHPs involve
H,0.”™* Reversible hydration of MHPs under controlled

humidity occurs according to the following reaction:

MAPbX, + 3MAX + 2H,0 < MA,PbX,-2H,0 3)

3D MAPDI, films prepared with excess MAI (Eg = 1.80 eV)
form the 0D hydrated phase MA,PbI-2H,0 (4,,,, = 370 nm =
3.35 eV) above 40% RH and MAPbI3 can be regenerated by
dehydrating above 75 °C (Figure 3a).”® Hydration also causes
decomposition of MAX by pushing equilibrium toward volatile
MA + HX, forming solid PbI, upon leaving the film.”
Though detrimental to conventional PV, reversible hydra-
tion has been leveraged for applications that benefit from

stimuli-responsiveness. For example, switchable PV devices can
generate electricity in the colored dehydrated state and offer
high light transmittance in a hydrated state,*”** which has
significant potential to cut building energy use and CO,
emissions in buildings.*® In contrast to hydrate phase
formation in MA-based MHPs, H,O triggers reversible
dimensionality tuning of Ruddlseden-Popper phases in FA-
based MHPs. Whereas most chromic films offer a single-color
transition, this mechanism enables switching between multiple
colors including yellow, orange, red, brown, and white/
colorless by turning the thickness of the layers."’

Intercalating species that Hbond with the MHP lattlce,
1nc1ud1n¥ methanol (MeOH),* carboxylic acids,”® and
amines,” " can also drive optoelectronic state switching in
MHPs. MeOH exhibits weaker H-bonding with the lattice
relative to H,O, reducing switching temperature from 70 to 50
°C. Thermochromic windows utilizing methanolation and
PAA have visible transmittance (VT) of 31% in the colored
state and 84% in the bleached state, with ~80% of the initial
VT after 200 cycles.”> Amine vapor transforms the 3D MHP
into a lower dimensional MHP through complex formation.
This process is reversed at room temperature upon removing
the amine vapor (Figure 3a). Sealing the MAPbl,-«CH;NH,
complex to prevent amine escape enables thermochromic
windows that darken upon complex dissociation under solar
heating above 60 °C, with a champion PCE of 11.3% and a VT
ranging from 3 to 68%.”

Polymorphism in MHPs. MHP materials adopt highly
symmetric cubic structures at elevated temperatures. Corner-
sharing [MX,]*~ octahedra tilt with respect to one another at
decreasing temperatures, which results in several polymorphic
transitions to lower-symmetry structures (Figure 3a). Poly-
morphic transformations in MHPs include those that maintain
the bonding environment of the original structure but with a
change in symmetry, and those that change both the bonding
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Figure 3. (a) Illustration of transformations between the 3D MHP phase with nonperovskite, low-dimensional 2D, 1D, and 0D structures.
(b) Comparison of lattice energy values of MHPs to those of other conventional semiconductors. B is a divalent group II or transition metal.
(c) Reaction coordinate diagram describing the thermodynamics of phase transformations in MHPs. The activation energy barrier is
decreased upon exposure to an H-bonding molecule (L). Values and literature sources are supplied in Supporting Information.
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environment and symmetry. In general, the closer a polymorph
is to the original structure, the more similar the optoelectronic
properties will be.”® For example, a (cubic),  (tetragonal),
and y (orthorhombic) polymorphs (Figure 3a) undergo a
symmetry change due to octahedral tilting while maintaining a
similar bonding environment, resulting in only a 0.2—0.3 eV
bandgap difference.” MHPs also exhibit two polymorphs near
standard conditions with a significant change in bonding
environment (3D < 1D) resulting in large differences in
optoelectronic properties: a 3D black cubic phase (@, Eg =
1.45—1.75 eV) and a 1D pale-yellow orthorhombic (Cs-based)
or hexagonal (FA-based) phase (5§, Eg = 2.40—2.85 eV)
(Figure 3a). A comprehensive discussion on the many
reversible MHP transformations can be found in ref 31.

The temperature ranges a specific polymorph exists in
depends on the composition of the MHP. In general, the
temperature range increases from I > Br > Cl, from Pb > Sn,
and from FA > Cs > MA, as shown in the table of MA-based
polymorph structures in the Supporting Information.>
Inorganic solids generally exhibit >100 °C temperature
differences between polymorphs while organic solids exhibit
many polymorphs over smaller temperature ranges (~15
°C).>* MHPs exhibit small energy differences between
polymorphs (5—14 kJ mol™),>> comparable to organic
materials (<7 kJ mol™").>

Polymorphism reflects lattice energy (AUp), the energy
released when infinitely separated ions in the gaseous state
under vacuum coalesce to form an ionic lattice. A more
negative AUy indicates stronger cohesive forces whereas a
near-zero value of AU| indicates a weaker lattice and a small
change in energy for transformations to occur. AU, for most
ionic semiconductors is significantly larger than the equivalent
cohesive energies (AU¢) of covalent elemental semiconduc-
tors and organic compounds. AUy of binary chalcogenide,
pnictide, and oxide compounds is typically in the range of
—3000 to —5000 kJ mol™ and up to —18000 kJ mol™" for
oxide compounds (Figure 3b). Metal halides compounds (AX,
A,BCl,, BX,) exhibit smaller AU; values of —500 to —3500 k]
mol™". AU, of MHPs is significantly lower than binary
chalcogenide, pnictide, and oxide compounds—between 450
to —600 k] mol™!, calculated from a Born—Haber cycle
approach.”” MHP materials have lattice energies closer to
organic compounds or elemental semiconductors than ionic
compounds.”” These lower values of AU; show less energy is
needed to form polymorphic crystal structures and suggest the
associated phase transitions may also have lower activation
energies.

Metal halides compounds (AX, A,BCl,,
BX,) exhibit smaller cohesive energy
(AU,) values of —500 to —3500 kJ
mol~". AU, of MHPs are closer to
organic compounds or elemental
semiconductors than ionic compounds.

Beyond the thermodynamic considerations of phase
stability, there is also a mechanistic question of how atomic
reorganization occurs; if an understanding could be developed
at this level, it may encourage new approaches to engineering
phase transitions. The mechanistic question is challenging to
address experimentally since X-ray and neutron diffraction, for
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instance, provide spatially and temporally averaged data that
primarily reveal the structures of the initial and final phases
rather than the local paths of lattice reorganization. Recently,
density functional theory and other modeling approaches are
beginning to shed light on the nuances of phase transitions,
yielding new insights on the role of vacancies, bond strengths,
and compositional mixing.”® Whereas experimental verification
of these predictions is challenging, electron microscopy or
diffuse X-ray scattering could offer the spatial and temporal
resolution required, and the latter has been used to resolve
polaron-induced lattice distortion.*”

Research on conventional applications of MHPs seek to
mitigate phase transformations to maintain the desired phase.
Though a-phase MAPbI; launched perovskite PV, FA-rich
compositions now yield the highest efficiencies,” and Cs-rich
compositions are desirable for their thermal stability. a-CsPbl,
and a-FAPbI; phases are only thermodynamically stable at
high temperatures and will spontaneously convert into &-
CsPbl; and §-FAPDI; phases at room temperature on the order
of days.

We illustrate polymorphic transformations in MHPs by a
reaction coordinate diagram where an activation energy (E,)
barrier must be overcome to transform the original structure
(phase 1) into a perovskite or nonperovskite structure (phase
2) with an energy difference of AH, olymorph  that is small
between different MHP polymorphs (PFigure 3c). Even the
influence of a hydrogen bonding molecules (L) at the crystal
surface can induce structural transformations.””*” For example,
several 2D FA,PbX, polymorphs exist as chains of corner
sharing [PbX,]*” octahedra whose connectivity can vary from
(1 x 1), (3 x2), and (3 X 3) step-like structures in either
standard or eclipsed layers with bandgaps only slightly varying
within a 0.2 €V range.’’ Because the energy landscape is so
shallow, crystallization of a specific polymorph is often
kinetically controlled, rather than thermodynamically, where
the less energetic phase is trapped by an energy barrier. For
instance, a specific polymorph can be obtained by varying the
solvent evaporation rate or by exposure to antisolvent.”” For
energetically unfavorable phases, E, can be increased,
mitigating the transition into the favored phase.

AH,qjymorph can be manipulated by controlling composition,
crystal size, or surface chemistry. For example, crystal
symmetry breaking in CsPb(I,_,Br,); polymorphs leads to
anisotropy in carrier transport, high power factor, and ultralow
thermal conductivity resulting in promising thermoelectric
figures of merit (ZT) of up to 1.7 at room temperature.®”
Cation vacancies lead to a decrease in the energy difference
between the a- and 6-phases.’” Surface strain introduced by
synthesizing <30 nm CsPbX; quantum dots favors the visibly
absorbing a-CsPbl; phase over the wider bandgap 6-CsPbl;
leading to record PV efficiencies and operational stability for
inorganic perovskite PV.** Tailored surface chemistry has a
similar effect to favor formation of 3D p-CsPbl; for PV
applications,®® and prevents reaction with the environment.’’
Multiphase films have also found utility with a-FAPbI,
nanocrystals precipitated from 6-FAPbI; forming a type 1
heterojunction that boosted LED performance by a factor of
58 compared to bulk-FAPbI, films.®®

In contrast to efforts to isolate target phases for conventional
applications, low-energy polymorphism enables an array of
emerging applications. Exposing MHPs to a trigger molecule
that H-bonds to the lattice facilitates ionic reorganization by
reducing E,,”° reducing the transition temperature and

https://doi.org/10.1021/acsenergylett.2c02698
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Figure 4. (a) Activation energy of diffusion (E,4) comparison of MHPs to conventional semiconductors and Li-ion battery electrodes.
Circles denote intrinsic diffusion and squares denote extrinsic diffusion. (b) Illustration showing the common ion transport mechanisms in
MHPs. Values and literature sources are supplied in Supporting Information.

increasing transformation kinetics. These transformations
typically require heat to reverse, suggesting E, is sufficient to
prevent spontaneous conversion back to the original phase.”*’
For instance, the a-to-§ transition is reduced from days to
hours upon exposure to humidity, which lowers E, by initiating
ionic reorganization and defect formation at the grain
boundary-water interface.’”® The a-phase can be regenerated
from the J-phase upon thermal annealing at high temper-
atures.*®” Thermochromic PV windows that switch between
a-CsPbIBr, (VT = 35.4%, PCE = 4.7%) and 5-CsPbIBr, (VT
=81.7%, PCE = 0.15%) for over 40 cycles have been fabricated
with the a-to-0 transition occurring at 60% RH over 10h and
the -to-a transition occurring at 150 °C.>° MHP-based phase
change memory (PCM) has been demonstrated by exploiting
optoelectronic variability among polymorphs in perovskites
exposed to humidity, light, oxygen, and solvents.”” A 2D MHP
exhibited a large shift in the absorption onset between the
amorphous (T,, = 173 °C) and crystalline phases (T, = 101
°C), which may allow for Joule heating PCM and simple
device integration, but the electronic properties accompanying
this phase change have not yet been investigated.

lon Transport in MHPs. Mass transport is undesirable for
conventional optoelectronic devices because ion transport
competes with carrier transport. In PV devices, mobile ion
accumulation impacts carrier extraction at the electrical
interfaces by screening or permitting the formation of defects
that cause nonradiative recombination. Despite these concerns,
PVs based on MHPs exhibit comparable PCEs to state-of-the-
art PV materials” while exhibiting hi7%h levels of solid-state ion
transport even at room temperature. "> Anomalous properties
in MHPs as a result of high ion transport include current—
voltage hysteresis, above-bandgap photovoltages, light-induced
phase segregation, self-healing, and rapid chemical conversion
between cations and anions.”” Reducing defect density or
introducing kinetic barriers to ion transport suppresses ion
transport in MHPs, with methods including mixed-cation and
mixed-halide alloys,”* incorporating 2D MHP whose interlayer
spacing blocks ion transport,"> postsynthetic treatment with
iodine vapor,”® doping with K or Rb ions,”® or exposure to
elevated pressure.

The energy input required for ions to migrate throughout a
lattice is described by the activation energy of diffusion (E, 4)
through the following equation:

D, = Doe(_EA,d/ kpT)

(4)
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where D,,, is the diffusion coefficient of an ion, D, is the
temperature-independent prefactor, ky is the Boltzmann
constant, and T is the temperature. Ey4 can describe both
intrinsic diffusion (diffusion of ions that makeup the lattice)
and extrinsic diffusion (diffusion of external ions throughout
the lattice). Conventional binary and elemental semiconduc-
tors typically exhibit intrinsic E, 4 values >1.0 eV (Figure 4a,
circles); intrinsic ion diffusion is uncommon in these materials.
In contrast, MHPs exhibit intrinsic E, 4 values <1.0 eV for both
the A-site and X-site. The X-site exhibits exceptionally low E, 4
values ranging from 0.2 to 0.5 eV, which is on the same order
of magnitude as Li* diffusion in state-of-the-art Li-ion battery
anode (C,Li) and cathode (Li,;_,ClO,, Li;_,Mn,0,,
Li,_,FePO,) electrodes (Figure 4a). These low E,4 values
confer remarkable properties such as complete A- and X-site
exchange on the order of seconds. The low E, 4 values also lead
to phase segregation under illumination for mixed MHP
compositions, with a driving force provided by the free energy
reduction for photocarriers trapped in lower bandgap
phases.'””” In contrast, the M-site Enq values are >2.0 eV
and therefore remain stationary. MHPs also undergo extrinsic
ion diffusion with Li* exhibiting E,4 values of ~0.1 eV,
compared to 0.5-0.6 eV for Li* diffusion in crystalline
silicon.”®

The X-site exhibits exceptionally low
Enq4 values ranging from 0.2—-0.5 eV,
which is on the same order of
magnitude as Li* diffusion in state-of-
the-art Li-ion battery anode (C,Li) and
cathode (Li;_,ClO,, Li;_ ,Mn,O,,
Li,_,FePO,) electrodes.

Ion transport in MHPs is believed to occur through
defects,”” although direct observations have not indisputably
confirmed this, as they have with other material systems.79 The
weak cohesive forces in the MHP lattice lead to high defect
concentrations that can even be higher than carrier
concentrations.”” Each of the A-, B-, and X-sites are able to
migrate through vacancy-mediated ionic diffusion, and X-sites
are also able to migrate interstitially (Figure 4b).”*”® The
corner sharing octahedral network of the MHP lattice gives
each ion/vacancy eight nearest neighbors, making vacancy-
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mediated ionic diffusion especially prevalent. Low energy input
for ions migration is a result of high defect density inherent in
MHPs (measured to be 10" cm™ for single crystals, while
reliable measurement of thin film defect density has been
challenging),”’ many nearest neighbors over short distances,
and weak cohesive forces in the lattice.

The high ionic diffusivity of MHPs is suspected to
contribute to remarkable radiation hardness, and their high Z
elements and long carrier lifetimes make them promising
candidates for next-generation radiation detectors.”” While
ionizing radiation can displace nuclei, creating vacancies and
trap states, it has been suggested that MHPs “self-heal” as
displaced ions diffuse back to lattice sites and restore electronic
quality at room temperature.”> As a result, MHPs have a
damage threshold to proton irradiation nearly 3 orders of
magnitude higher than crystalline Si, which holds promise for
nonterrestrial PV.**** CsPbBr, also achieved energy resolution
of 1.4%,% rivaling state-of-the-art cadmium zinc telluride
(CZT), and may offer orders of magnitude reduction in cost.%
Polycrystalline thick film detectors have also been blade coated
for direct conversion X-ray imaging.”” Key challenges remain:
single crystals size is limited, electrode diffusion is problematic,
high dark currents due to low bulk resistivity and self-doping
reduces signal-to-noise ratio, and the spatial resolution of
imaging detectors can improve.

High ion transport in MHPs renders them materials of
interest for energy storage applications such as Li/Na-ion
batteries, photorechargeable batteries, and as solid-state
electrolytes.”® The MHP lattice can be reversibly doped by a
variety of ions including Li* and Na® via electrochemical
methods.®® Li/Na-ion batteries have been fabrication from a
variety of MHP compositions including organic, inorganic, 2D,
1D, and transition metals.”® Notably, low-dimensional perov-
skites have achieved 646 mAh/g and 961 mAh/g capacities for
Li-ion and Na-ion batteries, respectively, exceeding that of
conventional graphite anodes (372 mAh/g).”” The 1D
benzidine perovskite cycle life strongly depended on discharge
rate, with a worst-case capacity retention of 453 mAh/g after
250 cycles at 500 mA/g. Copper-based 2D MHPs have also
been used as Li-ion cathodes with 200 cycles, but their specific
capacity was an order of magnitude lower than commercial
LiNiCoMnO, cathodes.”’ MHPs can also undergo color
changes upon Li" intercalation, and CsPbBr; electrodes exhibit
electrochromism upon Li" intercalation between orange and
gray/black.*’

Unlike conventional battery materials, MHP’s act as a
battery electrode while simultaneously using sunlight to charge
itself as a photorechargeable battery. The Cs;Pb,l; defect
perovskite demonstrated this effect with a 975 mAh/g capacity
under illumination.”” MA(Pb/Sn)Cl, has also been used as a
solid-state electrolyte, allowing Li-ion transport while suppress-
ing dendrite formation at the surface of Li metal electrodes
(specific capacity 3860 mAh/g).”" Supercapacitors have
specific energies 1—2 orders of magnitude greater than
conventional electrolytic capacitors (~0.02 Wh/kg) and find
a niche where the required charge/discharge rates and cycling
life exceed the performance of rechargeable batteries, with
applications in regenerative breaking and power grid buffering.
3D MAPDbBr; and 2D PEA,PbBr, supercapacitors, with energy
densities up to 9 Wh/kg, retained 98% and ~100%,
respectively, of their initial performance after 1,000 charging
cycles.”” Both the energy and power density are comparable to
commercial state-of-the-art supercapacitors, but durability

1711

testing must be expanded since commercial devices offer 10°
cycle life. The 3D material offered greater capacitance and
energy density, while the improved diffusion kinetics of the 2D
material offered greater power density.”*

High ion transport combined with responsive optoelectronic
properties have enabled emerging technologies. Electronic
ratchets utilize spatially asymmetric potential distributions to
convert nondirectional sources of energy into direct current.
Recently, the first MHP electronic ratchet used a voltage stress
to redistribute ions within a 2D MHP, converting electronic
noise and unbiased square-wave potentials into current.”* LEC
devices induce a p-i-n junction within the MHP layer via ion
accumulation at interfaces to enable high emissivity,” with
advantages over LEDs including simple architecture, cost-
efficient fabrication, and air stable electrodes. However, the
best LEC t,, lifetime is 6700 h at 100 cd/m? and both the
efficiency and lifetimes fall short of commercial LED lighting,
which has t,, lifetimes exceeding 50,000 h.”” Humidity
sensors have also been developed that undergo photo-
luminescence and resistance changes caused by ion transport
induced by exposure to humidity.”® Control of ion migration
through a heterojunction formed between MHP nanocrystals
and single-walled carbon nanotubes enables optical switching
and functions for neuromorphic computing.’” Resistive
random access memory (ReRAM) utilizes electrochemical
metallization to form and rupture metallic filaments, resulting
in low and high resistance states. Challenges for MHP-based
ReRAM include short retention times (thousands of seconds),
low endurance (a few thousand cycles), and insufficient on/off
ratios (<10'°), but these may be overcome. Contracting the
lattice by moving from MAPbI; to MAPDbCI; increased the
extrapolated retention time from 1.6 to 28.3 years in a
perovskite ReRAM device.”” The electric field-induced ion
migration effect has also been used to reconfigure the
photoresponsivity of MHP devices over the range of 540—
1270%, which enables the fabrication of adaptive machine
vision systems with a maximum 263% enhancement of object
recognition accuracy.98

B SUMMARY AND FUTURE OUTLOOK

The dynamic structural flexibility inherent in metal halide
perovskites result from the union of several unique properties
whose combination is not observed in other semiconductors.
The low formation energies, low energy difference between
polymorphs, and high ion transport inherent in MHPs allow its
lattice to easily form, break apart, and rearrange with little
energy input. Though these features are often problematic for
conventional applications, they should not be feared; they offer
a unique opportunity to realize emerging applications that
require dynamic properties such as switchable PV smart
windows, electronic ratchets, solid-state -electrolytes, light-
emitting electrochemical cells, and memory or neuromorphic
computing elements. This work provides a thermodynamic
picture of perovskite structural properties and guidance on
how to exploit the unique properties. We offer a fresh
perspective on the properties of these materials without the
PV-centric narrative usually found in the literature.
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