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Disclaimer

This work was authored in part by the National Renewable Energy 
Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. 
Department of Energy under Contract No. DE-AC36-08GO28308. The views 
expressed herein do not necessarily represent the views of the DOE or the 
U.S. Government. 
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Outline

https://www.nrel.gov/docs/fy23osti/85242.pdf https://www.nrel.gov/docs/fy22osti/82046.pdf

Optimal design and deployment 
of wind-solar hybrids in low-

carbon U.S. power system

In preparation for submission to Applied Energy
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Nationwide Capacity Expansion Modeling: ReEDS

Inputs Outputs
• Existing & planned capacity
• VRE temporal (hourly) & spatial 

(11.5km×11.5km) availability
• State & federal policies (current 

and hypothetical)
• Load (hourly) projections for 134 

zones across contiguous U.S.
• Capital, O&M, and fuel cost 

projections
• Technology availability & 

performance projections

• Generation and storage capacity 
additions & retirements in each 
solve year

• Transmission capacity additions
• Operations: Energy generation, 

firm capacity, & operating reserves 
by tech

• CO2, NOx, SO2, CH4 emissions
• System cost [$billion], electricity 

price [$/MWh], retail rates 
[¢/kWh]

Price-forming constraints: Energy balance; planning/operating reserves; RPS/carbon policies
Additional constraints: Resource availability (spatial & temporal); energy/reserve trading; 
generation/storage operations; fuel supply; planned builds and retirements; etc.

Objective: Minimize total capital + operational cost of electric power system

https://www.nrel.gov/analysis/reeds/

subject to…

Regional Energy 
Deployment System

https://www.nrel.gov/analysis/reeds/
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ReEDS: Key Inputs
High-resolution supply curves for renewable 

energy resources (e.g., Lopez et al. 2021)RE temporal availability
National Solar Radiation Database + WIND Toolkit → SAM
→ reV model → Hourly CF profiles for >50k sites across U.S.

RE spatial availability
Multiple land-type exclusions → reV model
→ Developable wind/PV potential for same >50k sites

Open
access

Reference
access

Limited
access

Utility-scale PV Land-based wind

180 TW 15 TW

96 TW 7 TW

35 TW 2 TWNSRDB: https://nsrdb.nrel.gov/
WTK: https://www.nrel.gov/grid/wind-toolkit.html
SAM: https://sam.nrel.gov/
reV: https://github.com/NREL/reV

https://nsrdb.nrel.gov/
https://www.nrel.gov/grid/wind-toolkit.html
https://sam.nrel.gov/
https://github.com/NREL/reV
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ReEDS: Key Inputs

The Prospective Impacts of 2019 State Energy Policies on the U.S. Electricity System  (Mai et al., 2020)

Regional and state policies National policies

Additional options:
• Renewable Portfolio Standard / Clean Energy Standard [%]
• Emissions rate constraint [gCO2/kWh]
• Technology-specific incentives (ITC, PTC, 45Q, etc)

2005 reference year

(Updated annually)

Including state-specific:
• Mandates and RPS carve-outs (e.g., offshore wind, solar)
• Technology deployment constraints (e.g., nuclear)



Evaluating Impacts of the Inflation 
Reduction Act and Bipartisan Infrastructure 
Law on the U.S. Power System

https://www.nrel.gov/docs/fy23osti/85242.pdf
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Scenario Framework

Scenario Description

No New Policy • Federal and state policies frozen as of September 2022; excludes IRA and BIL
• Electricity demand growth from EIA’s AEO 2022: 0.7%/year average

IRA-BIL • Includes major IRA and BIL power sector policies and programs
• Increased demand modified from Electrification Futures Study: 1.1%/year average

IRA-BIL Constrained

• Captures possible impacts of non-economic institutional barriers
• Restricted renewable resource available for deployment: wind, solar, geo, biomass
• Annual transmission expansion capped at recent historical average (1.4 TW-mi/yr)
• Does not allow new inter-regional (across 11 regions) transmission expansion
• Doubled CO2 transport, injection, and storage costs

Sensitivities
• Natural gas prices: High and low from AEO 2022 High- and Low- Oil and Gas Resource cases
• Technology cost and performance: NREL ATB Advanced and Conservative trajectories
• IRA impact: Vary bonus and credit monetization assumptions



NREL  |  10

Summary of IRA and BIL Policy Implementation

IRA-BIL Policy Implementation Assumptions

ITC and PTC
(48, 48E, 45, 45Y)

• All projects meet prevailing wage and apprenticeship requirements, so receive full ITC/PTC
• ITC or PTC selection based on exogenous analysis, does not vary with time or geography
• Endogenous phase out (with safe harbor) when emissions reach 25% of 2022 levels

ITC and PTC Bonuses
• All qualifying projects receive ½ bonus (5%) ramping to one bonus (10%) by 2028
• Additional 0.9 GW-dc/year of distributed solar exogenously added to dGen results due to 48(e) 

environmental justice bonus credit (and other non-tax IRA programs, including EPA GHG Fund) 

Nuclear PTC (45U) • No endogenous retirements allowed through 2032 due to PTC and Civil Nuclear Credit
• Tax credit value and expenditures not endogenously tracked

Carbon Capture (45Q) • Geologic storage assumed
• New build and retrofits allowed

Credit Monetization • Transferability + partial direct pay assumed to reduce tax credit value by 10% 
• Additional direct pay allowance for CCS assumed to reduce value by only 7.5%

Accel. Depreciation • Technologies that qualify for technology-neutral PTC or ITC also qualify for 5-year depreciation

Other Provisions • Most grant, loan, demo programs assumed to support and/or direct modeled outcome
• Some additionality assumed for subset of programs, evaluated outside ReEDS and dGen

Additional caveats: H2 45V PTC and DAC 45Q not represented; simple load growth assumptions
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Clean Electricity Generation Across IRA Analysis Scenarios
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The inclusion of IRA drives clean electricity to capture 71%-90% of total generation by 2030, 
where the range reflects the different sensitivities explored
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Generation and Storage Expansion Across IRA Analysis Scenarios
Coal & OGS Gas-CC/CT Coal-CCS Gas-CC-CCS Nuclear Wind Solar Storage Other RE

No New
Policy

IRA-BIL No New
Policy

IRA-BIL No New
Policy

IRA-BIL No New
Policy

IRA-BIL No New
Policy

IRA-BIL No New
Policy

IRA-BIL No New
Policy

IRA-BIL No New
Policy

IRA-BIL No New
Policy

IRA-BIL
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Resource/Deployment
Constraints

Mid
Constrain.

The inclusion of IRA drives wind, solar, and storage deployment rates 
to more-than-double relative to historical annual maximum levels
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Transmission Expansion Across IRA Analysis Scenarios
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The inclusion of IRA results in 11-24% growth in long-distance transmission capacity by 2030 
(relative to 2022 levels), where the range reflects the different sensitivities explored
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Power Sector CO2 Emissions Across IRA Analysis Scenarios
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Emissions decline to 72% to 91% below 2005 emissions levels in 2030



The Roles and Impacts of Hybrid Systems in 
a Decarbonized Power System 

https://www.nrel.gov/docs/fy22osti/82046.pdf
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Hybrids now comprise a large (and increasing) 
share of proposed projects

• Drivers of industry interest include:
• Shared balance of system costs 

including shared interconnection costs 
and potentially faster permitting/siting

• Increased capacity factor for hybrids 
that combine complementary resources

• Reduced variability, which helps to 
facilitate VRE integration, increases 
dispatchability/reliability services with 
reduced storage requirements, and 
maximizes transmission utilization

Rand et al. (2022), 
https://emp.lbl.gov/sites/default/files/queued_up_2021_04-13-2022.pdf
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Analysis Framework: PV-Battery Deployment Potential 
PV-Battery Representation:
• Use explicit time series profiles for the ILR-dependent 

amount of clipped energy that can be recovered and used 
by the coupled battery;

• Represent the shared costs associated with hybridization, 
so cost savings are design-dependent

• Assume the battery component in a PVB hybrid receives 
100% of the ITC value

• Capture curtailment-reduction benefit associated with 
charging batteries directly from renewable energy

Dimension Option #1 Option #2
PV and Battery 
Costs

Moderate 
reductions

Advanced 
reductions

Power Sector 
Decarbonization 
Policies

Existing 
policies as 
of June 
2021

95% reduction 
by 2035, 100% 
by 2050

PV-Battery 
Availability

Not 
Available

Two technology 
options available

The scenario matrix includes all 
perturbations of combining option #1 and 

option #2 for each dimension explored

https://www.nrel.gov/docs/fy22osti/82046.pdf
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All scenarios involve the widespread deployment of 
solar, wind, and storage technologies

https://www.nrel.gov/docs/fy22osti/82046.pdf
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PV-Battery hybrids primarily displace standalone PV 
and battery capacity

https://www.nrel.gov/docs/fy22osti/82046.pdf
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Hybrids represent a relatively small share of total PV 
and battery capacity

PVB hybrids account for 
16-20% of DC-rated PV capacity

Coupled (4hr) batteries largely displace 
standalone diurnal (4-6hr) storage

https://www.nrel.gov/docs/fy22osti/82046.pdf
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PV-Battery hybrids enable similar levels of solar generation with 
less transmission expansion and lower system costs

0.1% reduction 
in system costs

0.2% reduction 
in system costs

0.2% reduction 
in system costs

0.7% reduction 
in system costs

https://www.nrel.gov/docs/fy22osti/82046.pdf
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Exploring Wind-PV Hybrid Deployment
1. Hourly resolution for 
PV:wind complementarity

2. Individual-site-resolution 
for spur-line costs and PV 
& wind capacity

3. Site spur-line 
capacities optimized 
in ReEDS

(Illustrative) 
optimal spur-line 
capacity for site

Brown et al. “Optimal design and deployment of wind-solar hybrids in low-carbon U.S. power system.” In prep.
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Wind and PV Deployment: No Hybrids
2040 zero-carbon systems

Brown et al. “Optimal design and deployment of wind-solar hybrids in low-carbon U.S. power system.” In prep.
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Wind and PV Deployment: With Hybrids
2040 zero-carbon systems

Brown et al. “Optimal design and deployment of wind-solar hybrids in low-carbon U.S. power system.” In prep.
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Without 
hybrids

With 
hybrids

2040 zero-carbon systems

Wind Deployment in ERCOT: 
Minimal Shift with Hybridization

Brown et al. “Optimal design and deployment of wind-solar hybrids in low-carbon U.S. power system.” In prep.
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Without 
hybrids

With 
hybrids

2040 zero-carbon systems

Brown et al. “Optimal design and deployment of wind-solar hybrids in low-carbon U.S. power system.” In prep.

PV Deployment in ERCOT: 
Relocation to Wind Sites With Hybridization
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How Much Hybrid Capacity is Deployed?

• Most PV/wind capacity 
is not hybridized

• Still a significant 
amount of hybrids: 
195 GW of POI 
capacity = 348 GW of 
nameplate PV + wind 
(versus 218 GW 
nameplate PV + wind 
at end of 2020)

2040 zero-carbon system

Wind-PV Hybrid with 
1:1 Capacity Ratio

Wind-only 
or PV-only

Brown et al. “Optimal design and 
deployment of wind-solar hybrids 

in low-carbon U.S. power 
system.” In prep.
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What Value Does Hybridization Provide?

PV/wind deployment 
increases (but transmission 

costs matter more)

$2.5–12 billion in NPV 
of savings (0.6–2.8%) 
depending on spur-

line cost assumptions

20–30% decrease in spur-
line capacity [TW-miles]

Brown et al. “Optimal design and deployment of wind-solar hybrids in low-carbon U.S. power system.” In prep.

2040 zero-carbon ERCOT system
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Conclusions
• Clean generation: Clean electricity shares could increase substantially with IRA, ranging from 71% to 90% of 

total generation by 2030 (up from 50%-63% under no new policy)

• Renewable and storage deployment: the year-over-year deployment rate for wind, solar, and storage 
deployment rates could substantially exceed their historical annual maximum levels

• Fossil-CCS: IRA could drive 10s of GWs of retrofits of fossil generation capacity with carbon capture reaching 
1%-8% of generation

• Emissions: decrease to 72% to 91% below 2005 emissions levels

• Transmission: barriers to new transmission could partially mitigate clean energy deployment and emissions 
benefits

• Hybrid Systems: hybrids can help accelerate wind and solar deployment in the face of transmission barriers, 
but they remain a relatively small share of total wind, PV, and storage capacity in all scenarios explored.

– Storage-based hybrid systems can facilitate similar shares of variable renewable energy generation with 
smaller amounts of long-distance transmission capacity

– Wind-PV hybrid systems can facilitate similar shares of variable renewable energy generation with 
smaller amounts of new interconnection capacity



www.nrel.gov

Photo from iStock-627281636

https://www.nrel.gov/docs/fy23osti/85242.pdf

NREL/PR-6A20-86122

Thank you.

https://www.nrel.gov/docs/fy23osti/85242.pdf


NREL  |  31

Bulk-system costs decline (net of tax credits) 
by $3 per MWh to $6 per MWh (5%-13%)

Provisional results – do not distribute or cite
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IRA and BIL drive gross increases in investment, but net change in 
costs is negative driven by value of fuel savings and tax credits
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Emissions reductions are associated with substantial 
avoided climate and health damages
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• Avoided climate damages are estimated 
using SC-CO2 values from Rennert et al. 
(2022): 

• “Preferred mean,” 2% near-term discount 
rate:  $185 per t CO2 

• 3% near-term discount rate: $80 per t CO2

• Avoided health damages associated with 
reduced mortality:

• ACS study: $45 billion-$76 billion, 
cumulatively 2023-2030

• H6C study: $120 billion-$190 billion, 
cumulatively 2023-2030
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Scenario Design

Scenario
Name

PV and Battery Costs Power Sector Decarbonization 
Policies

PVB Hybrid

Referencea Moderate reductions
Existing policies as of June 2021

Unavailable
LowCost Advanced reductions

Decarb-ModCost Moderate reductions
95% reduction by 2035, 100% by 
2050Decarba Advanced reductions

Reference
With Hybrids

Moderate reductions

Existing policies as of June 2021

Low-ILR PVB: Slightly 
oversized PV arrays (ILR = 
1.4) and relatively small 
battery (BIR = 0.25)
s

High-ILR PVB: Significantly 
oversized PV arrays (ILR = 
2.2) and slightly larger 
battery (BIR = 0.5)

LowCost
With Hybrids

Advanced reductions

Decarb-ModCost With 
Hybrids

Moderate reductions

95% reduction by 2035, 100% by 
2050Decarb

With Hybrids
Advanced reductions
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PVB Hybrid Deployment
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ReEDS: Key Inputs
Existing & 
planned capacity

• Generation capacity: 
EIA National Energy 
Modeling System (NEMS)

• Updated annually

• Transmission capacity:
• Initial inter-zone transfer 

capacities from nodal 
GridView analysis 
(currently being updated)

• New inter-zone lines 
tracked individually

Marker size ∝
2022 existing capacity

→ Maintained or retired 
in order to minimize 
total system cost
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ReEDS: Key Inputs
Demand Technology cost & performance

+ Fuel costs from EIA Annual Energy Outlook (AEO)
+ Interconnection spur line costs, discussed later

Annual Technology Baseline (ATB)
EFS: https://www.nrel.gov/analysis/electrification-futures.html 
AEO: https://www.eia.gov/outlooks/aeo/ 

https://atb.nrel.gov/ 

https://www.nrel.gov/analysis/electrification-futures.html
https://www.eia.gov/outlooks/aeo/
https://atb.nrel.gov/
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ReEDS: Key Outputs

Firm
capacityCapacity Generation

Operating
reserves

System operation & service provisionSystem 
design

ILLUSTRATIVE modeling results only
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ReEDS: Key Outputs
Transmission additions

Currently planned 
additions

ReEDS-
optimized 
additions

ILLUSTRATIVE modeling results only
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ReEDS: Key Outputs

Emissions (CO2, CH4, SO2, NOx) Health impacts

Marginal price System cost Retail rateNPV of costs over 
full model horizon

ILLUSTRATIVE 
modeling results 
only
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