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Disclaimer

This work was authored in part by the National Renewable Energy
Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S.
Department of Energy under Contract No. DE-AC36-08G028308. The views

expressed herein do not necessarily represent the views of the DOE or the
U.S. Government.
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Nationwide Capacity Expansion Modeling: ReEDS

Objective: Minimize total capital + operational cost of electric power system

subject to...

Price-forming constraints: Energy balance; planning/operating reserves; RPS/carbon policies

Additional constraints: Resource availability (spatial & temporal); energy/reserve trading;
generation/storage operations; fuel supply; planned builds and retirements; etc.

Inputs

Existing & planned capacity
VRE temporal (hourly) & spatial
(11.5kmx11.5km) availability

State & federal policies (current
and hypothetical)

Load (hourly) projections for 134
zones across contiguous U.S.

Capital, O&M, and fuel cost
projections

Technology availability &
performance projections

Regional Energy
Deployment System

2N £ JEN

ReEDS

https://www.nrel.gov/analysis/reeds/

Outputs

Generation and storage capacity
additions & retirements in each
solve year

Transmission capacity additions

Operations: Energy generation,
firm capacity, & operating reserves
by tech

CO,, NO,, SO,, CH, emissions

System cost [Sbillion], electricity
price [S/MWh], retail rates
[¢/kWh]


https://www.nrel.gov/analysis/reeds/

ReEDS: Key Inputs

RE spatial availability

Multiple land-type exclusions — reV model
— Developable wind/PV potential for same >50k sites

RE temporal availability

National Solar Radiation Database + WIND Toolkit - SAM
- reV model - Hourly CF profiles for >50k sites across U.S.

0.3 0.4 0.5

PV CF [fraction]
Jan R ARARA, . . o o S A SN e s S A 4 BE.ES
W T NW vV 'YWYTTNT W T T
Mar AR LT A N L A A el
1N BT PRIV BT S WU AR
Moy AmAadabhal ae w0l ahALl AhadANL LA

Jut AR lalalatars A A benit ASAALAANK. Aossninlnfalia A.alh ... A
Aug LANAM MM D Boianal bl Rosfh) Achlidl a0l AARRAR.A. . & & adadd
sep A RanRuARAR AR A0 AR, o . .. 00 AN A MAbadd . naal as
oct w0 ooioin WAIRA 0B A AL ull NSRDB: https:/nsrdb.nrel.gov/
m WTK: https://www.nrel.gov/grid/wind-toolkit.html
Nov ‘“ “ ‘ "n‘ SAM: https://sam.nrel.gov/

Dec ha A“ ‘_.L adh m reV: https://github.com/NREL/reV

High-resolution supply curves for renewable
energy resources (e.g., Lopez et al. 2021)

Land-based wind

Utility-scale PV

Open
access

Reference
access

Limited
access

4 0.0 0.1 0z 0.3 A4

1 2 3
Available PV capacity [GW] Available wind capacity [GW]


https://nsrdb.nrel.gov/
https://www.nrel.gov/grid/wind-toolkit.html
https://sam.nrel.gov/
https://github.com/NREL/reV

ReEDS: Key Inputs

Regional and state policies
(Updated annually)

CO; Emissions Cap
Clean Energy Standard
. Renewable Portfolio Standard

The Prospective Impacts of 2019 State Energy Policies on the U.S. Electricity System (Mai et al., 2020)

Including state-specific:
* Mandates and RPS carve-outs (e.g., offshore wind, solar)
* Technology deployment constraints (e.g., nuclear)

National policies

2005 reference year

N
(63}
]

@® o))

e
.8

-
(63}
]

O Historical (EIA)
- Current policies
-+ 80% by 2035

| =+ 90% by 2035
—100% by 2035

-
o
1

o
o

CO2 emissions [gigatons/year]

o
o

2000 2010 2020 2030 2040 2050
Additional options:
* Renewable Portfolio Standard / Clean Energy Standard [%]

* Emissions rate constraint [gCO,/kWh]
* Technology-specific incentives (ITC, PTC, 45Q, etc)NReL | 7
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Scenario Framework

Scenario Description

No New Policy

IRA-BIL

IRA-BIL Constrained

Sensitivities

Federal and state policies frozen as of September 2022; excludes IRA and BIL
Electricity demand growth from EIA’s AEO 2022: 0.7%/year average

Includes major IRA and BIL power sector policies and programs
Increased demand modified from Electrification Futures Study: 1.1%/year average

Captures possible impacts of non-economic institutional barriers

Restricted renewable resource available for deployment: wind, solar, geo, biomass
Annual transmission expansion capped at recent historical average (1.4 TW-mi/yr)
Does not allow new inter-regional (across 11 regions) transmission expansion
Doubled CO, transport, injection, and storage costs

* Natural gas prices: High and low from AEO 2022 High- and Low- Oil and Gas Resource cases
* Technology cost and performance: NREL ATB Advanced and Conservative trajectories
* |RA impact: Vary bonus and credit monetization assumptions

NREL | 9



Summary of IRA and BIL Policy Implementation

IRA-BIL Policy Implementation Assumptions

*  All projects meet prevailing wage and apprenticeship requirements, so receive full ITC/PTC
ITC or PTC selection based on exogenous analysis, does not vary with time or geography
Endogenous phase out (with safe harbor) when emissions reach 25% of 2022 levels

ITC and PTC
(48, 48E, 45, 45Y)

*  All qualifying projects receive % bonus (5%) ramping to one bonus (10%) by 2028
ITC and PTC Bonuses * Additional 0.9 GW-dc/year of distributed solar exogenously added to dGen results due to 48(e)
environmental justice bonus credit (and other non-tax IRA programs, including EPA GHG Fund)

No endogenous retirements allowed through 2032 due to PTC and Civil Nuclear Credit

AR I ) Tax credit value and expenditures not endogenously tracked

Geologic storage assumed

Carbon Capture (45Q) New build and retrofits allowed

*  Transferability + partial direct pay assumed to reduce tax credit value by 10%

I E Additional direct pay allowance for CCS assumed to reduce value by only 7.5%
Accel. Depreciation *  Technologies that qualify for technology-neutral PTC or ITC also qualify for 5-year depreciation

*  Most grant, loan, demo programs assumed to support and/or direct modeled outcome

DT B Some additionality assumed for subset of programs, evaluated outside ReEDS and dGen

Additional caveats: H, 45V PTC and DAC 45Q not represented; simple load growth assumptions NREL | 10



Clean Electricity Generation Across IRA Analysis Scenarios

~ (7)) 1 o L i
o8 %) A A 5 o o 4 Policy
(7p) © =2 .
s0n 9= Q Qf 3 £ = © = I No New Policy
80 80O © 8O 5 = 3 o :IC_,J
O 8 0} z 2 o) I IRA-BIL

= 0 "
o} ® Sensitivity Type
§, @ Mid
S~ 40
§' § 4@ Constrained
— = ® e QOther Sensitivities
© O
:C; o
c= 20
<O
g = ¢ *
©
g °W » °

o é o é o é o é o é o é o é o é o é

2 = 2 = 2 = 2 = 2 = 2T = 2 = 2 = =z =

() [0) (0] (0] (0] (0] (0] (0] (0]

pd pd pd pd pd z pd pd pd

[e] @] (@] @] (@] @] [e] @] [e]

pd pd pd prd pd zZ pd z pd

The inclusion of IRA drives clean electricity to capture 71%-90% of total generation by 2030,
where the range reflects the different sensitivities explored NREL | 11



Average Annual Deployment (GW per yr)

Generation and Storage Expansion Across IRA Analysis Scenarios

Pol-Res Group
Coal & OGS Gas-CC/CT Coal-CCS Gas-CC-CCS Nuclear Wind Solar Storage Other RE [ NoNewPol-Mid
NoNewPol-Constrain.
55 NoNewPol-Oth. Sens.
¥ IRA-BIL-Mid
50 IRA-BIL-Constrain.
, IRA-BIL-Oth. Sens.

45 . Case Type

Mid & Constrained

40 Other Sensitivities
Resource/Deployment
Constraints

35
® Mid

30 @ Constrain.

25

2 Hist.Ann. Max giS"IA""' Mt

Deploy ~EROY

15 L 4

. 3

° 1 ® e

' @ @ ® PR Y ¥ P

NoNew IRA-BIL NoNew IRABIL NoNew IRABIL NoNew IRABIL NoNew IRABIL NoNew IRABIL NoNew IRA-BIL NoNew IRABIL NoNew IRA-BIL
Policy Policy Policy Policy Policy Policy Policy Policy Policy

The inclusion of IRA drives wind, solar, and storage deployment rates
to more-than-double relative to historical annual maximum levels NREL | 12
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Transmission Expansion Across IRA Analysis Scenarios
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24%
22%
20%
18%
16%
14%
12%
10%
8%
6%
4%
2%
0%

Policy-Sensitivity
I NoNewPol-Mid

NoNewPol-Constrain.
NoNewPol-Oth. Sens.
+16% _
B IRA-BIL-Mid
IRA-BIL-Constrain.
IRA-BIL-Oth. Sens.

Sensitivity Type
£ Mid & Constrained

Other Sensitivities

2022 2024 2026 2028

Year

The inclusion of IRA results in 11-24% growth in long-distance transmission capacity by 2030
(relative to 2022 levels), where the range reflects the different sensitivities explored e | 13



Power Sector CO, Emissions Across IRA Analysis Scenarios

1600
1400
1200
1000
800

600

CO2 Emission (Mt

400

200

Constrained

ConsBRE

AJVBRE —__
AdvAllClean /

2022 2024 2026 2028 2030

Year

% below 2005 CO2 Emissions

80%

60%

40%

20%

0%

2022 2024 2026 2028 2030

Year

Policy-Sensitivity
I NoNewPol-Mid

NoNewPol-Constrain.
NoNewPol-Oth. Sens.

I IRA-BIL-Mid
IRA-BIL-Constrain.
IRA-BIL-Oth. Sens.

Sensitivity Type

Mid & Constrained
Other Sensitivities

Emissions decline to 72% to 91% below 2005 emissions levels in 2030

NREL | 14



The Roles and Impacts of Hybrid Systems in
a Decarbonized Power System

https://www.nrel.gov/docs/fy220sti/82046.pdf



Hybrids now comprise a large (and increasing)

share of proposed projects

Solar Storage Wind
e Drivers of industry interest include: ml ' _
* Shared balance of system costs ﬁ azf:nr:fame
including shared interconnection costs 6007 4
and potentially faster permitting/siting gsm_ ;
* Increased capacity factor for hybrids % ;/:Z
that combine complementary resources czr‘m”' —;f
& 77
* Reduced variability, which helps to ’%3{){1- 7
facilitate VRE integration, increases §
dispatchability/reliability services with gzﬂ”' -
reduced storage requirements, and
maximizes transmission utilization m"_r{
Rand et al. (2022), - oo 0o ]
https://emp.lbl.gov/sites/default/files/queued_up_2021_04-13-2022.pdf & 8 & & & G NREL |16



Analysis Framework: PV-Battery Deployment Potential

PV-Battery Representation:

* Use explicit time series profiles for the ILR-dependent m ption

amount of clipped energy that can be recovered and used [ildabakiassi gl Vioderate  Advanced
Costs reductions  reductions

by the coupled battery;

* Represent the shared costs associated with hybridization, RV Existing 95% reduction

SO cost Sa\”ngs are de5|gn_dependent Decarbonization pO|ICIeS as by 2035, 100%

) i ) Policies of June by 2050
e Assume the battery component in a PVB hybrid receives 2021 Y
0,

100% of the ITC value PV-Battery Not Two technology
e Capture curtailment-reduction benefit associated with Availability Available options available

charging batteries directly from renewable energy

Inverter The scenario matrix includes all

43—

DC-DC
Converter

perturbations of combining option #1 and
option #2 for each dimension explored

NREL | 17
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All scenarios involve the widespread deployment of

solar, wind, and storage technologies

Cumulative Installed Capacities Across No Hybrids Versions of Each Scenario

3000-
-
B‘I
B 2000-
-
k=
& 1000-
o
(12]
()
O.,

https://www.nrel.gov/docs/fy220sti/82046.pdf

Technology
coal

gas
storage
RE-CT
geobio
hydro
nuclear
wind
solar
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PV-Battery hybrids primarily displace standalone PV

and battery capacity

Reference LowCost

O 400 S 400
;““ Above Zero — More capacity in With Hybrids version g“ Above Zero — More capacity in With Hybrids version
o 200 o 200 —
3' b R s e .B' g—== pammll  ° o o o o

u u IS

© -200 @ -200 —
% Below Zero — More capacity in No Hybrids version % Below Zero — More capacity in No Hybrids version
) -400 O -400

Decarb-ModCost _ Decarb

— o 400

o 400 < £ L i : ]
gqc Above Zero — More capacity in With Hybrids version g - Above Zero — More capacity in With Hybrids version
o 20 o
3' M . s A A B :E‘\ 0 —O0—===OC=== (o) [+] &) o
'O e S e g -200 _—— ©
@ -200 o o ) _‘

% Below Zero — More capacity in No Hybrids version 8 A Below Zero — More capacity in No Hybrids version
U -400

2026 2028 2030 2036 2040 2046 2050 2026 2028 2030 2036 2040 2046 2050
. 4-hr Battery 8-hr Battery
Gas-CT W Wind PVB ¥ (Independent) ™ (Independent)
W Gas-CC Solar (Independent) ™ 2t Baly g G-hrBattery g 0-hrBattery

(Independent)

(Independent) (Independent) REL | 19
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Hybrids represent a relatively small share of total PV

and battery capacity

«—No Hybrids| With Hybrids —»

High-ILR PVB
B Low-ILR PVB
W Utility-scale PV
W Distributed PV

2050 Capacity [GWpc]

Reference LowCost Decarb Decarb
-ModCost

PVB hybrids account for
16-20% of DC-rated PV capacity

https://www.nrel.gov/docs/fy220sti/82046.pdf

«—No Hybrids| With Hybrids —»

= 3000 -
= 2500 - High-ILR PVB
S, m Low-ILR PVB
2 2000 - B 10hr Battery
-4 - 8hr Battery
% 1500 - — W 6hr Battery
O 4hr Battery
§ 1000 W 2hr Battery
N 500 - . .l .

0

Reference LowCost Decarb Decarb
-ModCost

Coupled (4hr) batteries largely displace
standalone diurnal (4-6hr) storage

NREL | 20



PV-Battery hybrids enable similar levels of solar generation with

less transmission expansion and lower system costs

Decarb
e Reference LowCost -ModCost Decarb
o = . = 10 =
'g 1007 - ng Hybrids / &;;U
Q - With Hybrids /
© 80 - i il ! i , 81
(&) / /’
e Y ;70
H— /
% E 60- a I 4 . ¥,
Ig ”
EE 4o. _ _ |
= 40
g 23
- 20 22 . ]g . 8
=
(")
z 0 T T 1 T T 1 T T 1 T T
2020 2040 2020 2040 2020 2040 2020 2040
0.1% reduction 0.2% reduction 0.2% reduction 0.7% reduction
in system costs in system costs in system costs in system costs

https://www.nrel.gov/docs/fy220sti/82046.pdf NREL | 21



Exploring Wind-PV Hybrid Deployment

1. Hourly resolution for
PV:wind complementarity

Jan Siad it naiSd s
Feb iaSmSaSi 10 a0 dsi
Mar m
Apr IR OO O AN
May NSO
Jun W

Ju iSSHHLHLL0 D
Aug W
sep A AMiinks £ )
Oct DA
Nov riDSS A A S S
Dec ‘A VEVEN DO

Brown et al. “Optimal design and deployment of wind-solar hybrids in low-carbon U.S. power system.”

2. Individual-site-resolution
for spur-line costs and PV

3. Site spur-line
capacities optimized
in ReEDS

1.0 ~

0.8 1

0.6 1

0.4 1

0.2 1

(Hustrative)
optimal spur-line
capacity for site

\

0.0 4—mr—
1 12 13 14 15
Apr
2009

In prep. NREL | 22



Wind and PV Deployment: No Hybrids

2040 zero-carbon systems

a b
1dy .

" ‘.’:u:;;... ,
e .t‘;‘-*"l.
F =
[

.

e ——

0 100 200 300 400

Wind capacity [MW]

vFr

0 100 200 300
PV capacity [MW]

Brown et al. “Optimal design and deployment of wind-solar hybrids in low-carbon U.S. power system.” In prep.

1
400+
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Wind and PV Deployment: With Hybrids

2040 zero-carbon systems

C d .
1 -.-.;- m .
- a
% g : .. e :
: - t*&': 3 o i . e
s - * 1 3 I. :
re -
_-_____._ . — l
e — e —
0 100 200 300 400 0 100 200 300 400+
Wind capacity [MW] PV capacity [MW]

Brown et al. “Optimal design and deployment of wind-solar hybrids in low-carbon U.S. power system.” In prep. NREL | 24



Wind Deployment in ERCOT:

Minimal Shift with Hybridization

Without . With z

o . . hybrids T

‘1,]

v

hybrids

[
-
= B
-
"
-
-
=
- .

2040 zero-carbon systems a . * v
i )
- L |
h—-“.-.-__ = M—
I | |
0 100 200 300 400 0 100 200 300 400
Wind capacity [MW] Wind capacity [MW]

Brown et al. “Optimal design and deployment of wind-solar hybrids in low-carbon U.S. power system.” In prep. NREL | 25



PV Deployment in ERCOT:

Relocation to Wind Sites With Hybridization

Without i With .
hybrids o hybrids
T TR
B~ __l.."
L .
L.-l: N .'. I-'
R "
2040 zero-carbon systems
| | - [
0 100 200 300 400+
’ P1\?’0cap:g(i]ty [Mm\l{\]l] 0 PV capacity [MW]

Brown et al. “Optimal design and deployment of wind-solar hybrids in low-carbon U.S. power system.” In prep.
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How Much Hybrid Capacity is Deployed?

2040 zero-carbon system

2000 - b

-
(o)}
o
o
1

1200 -

0

o

o
1

2040 PV+wind capacity
=N
3

2 hybridization factor [GW]

M NorthernGrid
CAISO

W WestConnect
SPP

B ERCOT
MISO

M ISONE .
NYISO

u PJM
SERTP

M FRCC

0 I I L]
1.0 0.8 0.6 0.4 0.2 0.0
/ Hybridization factor [.] /
Wind-PV Hybrid with Wind-only
1:1 Capacity Ratio or PV-only

Brown et al. “Optimal design and
deployment of wind-solar hybrids
in low-carbon U.S. power
system.” In prep.

Most PV/wind capacity
is not hybridized

Still a significant
amount of hybrids:
195 GW of POI
capacity = 348 GW of
nameplate PV + wind
(versus 218 GW
nameplate PV + wind
at end of 2020)
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What Value Does Hybridization Provide?

2040 zero-carbon ERCOT system

«— No Hybrids| With Hybrids —» «— No Hybrids| With Hybrids > «— No Hybrids| With Hybrids >
2 . 0. © — 20007 s 101 B NorthernGrid
S 2500 . Solar (utility) § 2 . -ﬂ CAISO
§ 2000 = Wind £ > ﬁﬁ l\éVsstConnect
T W Storage 98 S —
‘% E‘ W Nuclear 25 Eg 6 1 -- W ERCOT
23 15001 H2 Turbine == g E B == MISO
£ m Bio/Geo £a o2 4 ] m ISONE
§ 10001 = Hycro 2= 8 3 B g Bl === 1 NYISO
S 500 Solar (distributed) =SE BE B 5 L0 = mp
& S e % o o o 2 ] B SERTP
0 pd s b4 2 S  mFRCC
T T T A o 0 | | T
1x 2¢ b 1x 2% 5x Z 1x 2x 5x
POI cost multiplier POI cost multiplier POI cost multiplier
4 deol $2.5-12 billion in NPV
_ PV/win b €p oyme.nt. of savings (0.6—2.8%) 20-30% decrease in spur-
increases (but transmission depending on spur- line capacity [TW-miles]

costs matter more) line cost assumptions

Brown et al. “Optimal design and deployment of wind-solar hybrids in low-carbon U.S. power system.” In prep. NREL | 28



Conclusions

Clean generation: Clean electricity shares could increase substantially with IRA, ranging from 71% to 90% of
total generation by 2030 (up from 50%-63% under no new policy)

Renewable and storage deployment: the year-over-year deployment rate for wind, solar, and storage
deployment rates could substantially exceed their historical annual maximum levels

Fossil-CCS: IRA could drive 10s of GWs of retrofits of fossil generation capacity with carbon capture reaching
1%-8% of generation

Emissions: decrease to 72% to 91% below 2005 emissions levels

Transmission: barriers to new transmission could partially mitigate clean energy deployment and emissions
benefits

Hybrid Systems: hybrids can help accelerate wind and solar deployment in the face of transmission barriers,
but they remain a relatively small share of total wind, PV, and storage capacity in all scenarios explored.

— Storage-based hybrid systems can facilitate similar shares of variable renewable energy generation with
smaller amounts of long-distance transmission capacity

— Wind-PV hybrid systems can facilitate similar shares of variable renewable energy generation with

smaller amounts of new interconnection capacity
NREL | 29
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https://www.nrel.gov/docs/fy23osti/85242.pdf

Average cost ($/MWh)

60
55

50
45
40
35
30
25
20
15
10

Bulk-system costs decline (net of tax credits)

by S3 per MWh to $6 per MWh (5%-13%)
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Provisional results — do not distribute or cite

2028
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2030

Policy-Sensitivity
B NoNewPol-Mid

I NoNewPol-Constrain.
NoNewPol-Oth. Sens.
B RA-BIL-Mid
I IRA-BIL-Constrain.
IRA-BIL-Oth. Sens.
Sensitivity Type
Mid & Constrained
Other Sensitivities
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IRA and BIL drive gross increases in investment, but net change in

costs is negative driven by value of fuel savings and tax credits

. 200 Policy

@ I IRA-BIL

ks

@ 100 N

e Sensitivity Type
é% & ‘l' @ Vid

c 0 & Constrained
% ® Other Sensitivities
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NREL | 32



Emissions reductions are associated with substantial

avoided climate and health damages

b B RABL ] * Avoided climate damages are estimated
900 ® o oo using SC-CO, values from Rennert et al.
800 Resource/Deployment ( 2022 ) :

00 ?'ma'ms * “Preferred mean,” 2% near-term discount
# Constrain. rate: $185 pert CO,
600 Case Type _ * 3% near-term discount rate: $80 per t CO,
Mid & Constrained
500 Other Sensitivities

* Avoided health damages associated with

400 ot reduced mortality:

300 e ACS study: $45 billion-576 billion,
cumulatively 2023-2030

200 «  H6C study: $120 billion-$190 billion,

100 cumulatively 2023-2030

Cumulative Avoided Global Climate Damages, 2023-2030 [Billion
20229]

0
SC-C022%DR SC-CO23% DR
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Scenario Design

PV and Battery Costs | Power Sector Decarbonization PVB Hybrid
Policies

Scenario
Name

Reference? Moderate reductions
LowCost Advanced reductions Existing policies as of June 2021
Unavailable
Decarb-ModCost Moderate reductions
95% reduction by 2035, 100% by
Decarb? Advanced reductions 2050
Reference Moderate reductions Low-ILR PVB: Slightly

With Hybrids oversized PV arrays (ILR =
LowCost Advanced reductions 1.4) and relatively small
With Hybrids battery (BIR = 0.25)
Decarb-ModCost With Moderate reductions
Hybrids

Existing policies as of June 2021

) High-ILR PVB: Significantly
95% reduction by 2035, 100% by oversized PV arrays (ILR =

De.carb : Advanced reductions 2050 2.2) and slightly larger
With Hybrids battery (BIR = 0.5)

NREL | 34



PVB Hybrid Deployment

Decarb
Reference LowCost -ModCost Decarb
'S 150 { — Low-ILR A ! |
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ReEDS: Key Inputs

Existing &
planned capacity

* Generation capacity:
EIA National Energy
Modeling System (NEMS)

* Updated annually

* Transmission capacity:

* Initial inter-zone transfer
capacities from nodal
GridView analysis
(currently being updated)

* New inter-zone lines
tracked individually

® Solar = Geothermal
— Maintained or retired A Wind *® Nuclear
in order to minimize ® Hydro <« Gas-CC '
total system cost v PSH » Gas-CT Marker size
¢ Battery * Coal 2022 existing capacity NREL | 36



ReEDS: Key Inputs

Dema nd EFS: https://www.nrel.gov/analysis/electrification-futures.html
AEO: https://www.eia.gov/outlooks/aeo/
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Technology cost & performance

Annual Technology Baseline (ATB)
Utility PV

https://atb.nrel.gov/
Utility battery
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+ Fuel costs from EIA Annual Energy Outlook (AEO)
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ReEDS: Key Outputs

System operation & service provision
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ReEDS: Key Outputs

T

Transmission additions .

Currently planned i ReEDS-
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ReEDS: Key Outputs

NPV of costs over Marginal price  System cost Retail rate
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