

Implementing the Inflation Reduction Act: What we expect and how we might get there

A CONTRACTOR

Presenter: Caitlin Murphy MIT CEEPR Spring Technical Workshop, Session 6

Photo from iStock-627281636

Disclaimer

This work was authored in part by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy under Contract No. DE-AC36-08GO28308. The views expressed herein do not necessarily represent the views of the DOE or the U.S. Government.

Acknowledgements

Funding provided by the U.S. Department of Energy (DOE):

- Office of Policy (IRA analysis)
- Office of Energy Efficiency and Renewable Energy
 - Strategic Analysis (PV-Battery Hybrids)
 - Wind Energy Technologies Office and Water Power Technologies Office (FlexPower, or Wind-PV Hybrids)

This presentation includes work by many colleagues:

- **IRA Analysis:** Daniel C. Steinberg, Maxwell Brown, Ryan Wiser, Paul Donohoo-Vallett, Pieter Gagnon, Anne Hamilton, Matthew Mowers, and Ashreeta Prasanna
- **PV-Battery Hybrids:** Patrick Brown and Vincent Carag
- Wind-PV Hybrids: Patrick Brown, Travis Williams, Matthew Irish, Maxwell Brown

Outline

Evaluating Impacts of the Inflation Reduction Act and Bipartisan Infrastructure Law on the U.S. Power System

Daniel C. Steinberg,¹ Maxwell Brown,¹ Ryan Wiser,² Paul Donohoo-Vallett,3 Pieter Gagnon,1 Anne Hamilton,1 Matthew Mowers,1 Caitlin Murphy,1 and Ashreeta Prasana¹

1 National Renewable Energy Laboratory 2 U.S. Department of Energy, on detail from Lawrence Berkeley National Laboratory 3 U.S. Department of Energy

NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC

Contract No. DE-AC36-C8GO28308

Technical Report NREL/TP-6A20-85242 March 2023

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.cov/bublications

NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

The Roles and Impacts of PV-Battery

Hybrids in a Decarbonized U.S.

Caitlin Murphy, Patrick Brown, and Vincent Carag

Electricity Supply

National Renewable Energy Laboratory

Technical Report NREL/TP-6A40-82046 September 2022

Contract No. DE-AC36-08GC28308

CINREL

https://www.nrel.gov/docs/fy22osti/82046.pdf

Optimal design and deployment of wind-solar hybrids in lowcarbon U.S. power system

In preparation for submission to Applied Energy

https://www.nrel.gov/docs/fy23osti/85242.pdf

NREL | 4

Nationwide Capacity Expansion Modeling: ReEDS

Objective: Minimize total capital + operational cost of electric power system

subject to ...

Price-forming constraints: Energy balance; planning/operating reserves; RPS/carbon policies

Additional constraints: Resource availability (spatial & temporal); energy/reserve trading; generation/storage operations; fuel supply; planned builds and retirements; etc.

Inputs

- Existing & planned capacity
- VRE temporal (hourly) & spatial (11.5km×11.5km) availability
- State & federal **policies** (current and hypothetical)
- Load (hourly) projections for 134 zones across contiguous U.S.
- Capital, O&M, and fuel **cost** projections
- **Technology** availability & performance projections

Regional Energy Deployment System

Outputs

- Generation and storage capacity additions & retirements in each solve year
- Transmission capacity additions
- Operations: Energy generation, firm capacity, & operating reserves by tech
- CO_2 , NO_x , SO_2 , CH_4 emissions
- System cost [\$billion], electricity price [\$/MWh], retail rates [¢/kWh]

ReEDS: Key Inputs

RE temporal availability

National Solar Radiation Database + WIND Toolkit \rightarrow SAM \rightarrow reV model \rightarrow Hourly CF profiles for >50k sites across U.S.

RE spatial availability

High-resolution supply curves for renewable energy resources (e.g., Lopez et al. 2021)

ReEDS: Key Inputs

Regional and state policies

(Updated annually)

The Prospective Impacts of 2019 State Energy Policies on the U.S. Electricity System (Mai et al., 2020)

Including state-specific:

- Mandates and RPS carve-outs (e.g., offshore wind, solar)
- Technology deployment constraints (e.g., nuclear)

National policies

Additional options:

- Renewable Portfolio Standard / Clean Energy Standard [%]
- Emissions rate constraint [gCO₂/kWh]
- Technology-specific incentives (ITC, PTC, 45Q, etc) NREL | 7

Evaluating Impacts of the Inflation Reduction Act and Bipartisan Infrastructure Law on the U.S. Power System

https://www.nrel.gov/docs/fy23osti/85242.pdf

Scenario Framework

Scenario	Description		
No New Policy	 Federal and state policies frozen as of September 2022; excludes IRA and BIL Electricity demand growth from EIA's AEO 2022: 0.7%/year average 		
IRA-BIL	 Includes major IRA and BIL power sector policies and programs Increased demand modified from Electrification Futures Study: 1.1%/year average 		
IRA-BIL Constrained	 Captures possible impacts of non-economic institutional barriers Restricted renewable resource available for deployment: wind, solar, geo, biomass Annual transmission expansion capped at recent historical average (1.4 TW-mi/yr) Does not allow new inter-regional (across 11 regions) transmission expansion Doubled CO₂ transport, injection, and storage costs 		

Sensitivities

- Natural gas prices: High and low from AEO 2022 High- and Low- Oil and Gas Resource cases
- *Technology cost and performance*: NREL ATB Advanced and Conservative trajectories
- *IRA impact*: Vary bonus and credit monetization assumptions

Summary of IRA and BIL Policy Implementation

IRA-BIL Policy	Implementation Assumptions			
ITC and PTC (48, 48E, 45, 45Y)	 All projects meet prevailing wage and apprenticeship requirements, so receive full ITC/PTC ITC or PTC selection based on exogenous analysis, does not vary with time or geography Endogenous phase out (with safe harbor) when emissions reach 25% of 2022 levels 			
ITC and PTC Bonuses	 All qualifying projects receive ½ bonus (5%) ramping to one bonus (10%) by 2028 Additional 0.9 GW-dc/year of distributed solar exogenously added to dGen results due to 48(e) environmental justice bonus credit (and other non-tax IRA programs, including EPA GHG Fund) 			
Nuclear PTC (45U)	 No endogenous retirements allowed through 2032 due to PTC and Civil Nuclear Credit Tax credit value and expenditures not endogenously tracked 			
Carbon Capture (45Q)	 Geologic storage assumed New build and retrofits allowed 			
Credit Monetization	 Transferability + partial direct pay assumed to reduce tax credit value by 10% Additional direct pay allowance for CCS assumed to reduce value by only 7.5% 			
Accel. Depreciation	• Technologies that qualify for technology-neutral PTC or ITC also qualify for 5-year depreciation			
Other Provisions	 Most grant, loan, demo programs assumed to support and/or direct modeled outcome Some additionality assumed for subset of programs, evaluated outside ReEDS and dGen 			

Clean Electricity Generation Across IRA Analysis Scenarios

The inclusion of IRA drives clean electricity to capture 71%-90% of total generation by 2030, where the range reflects the different sensitivities explored

Generation and Storage Expansion Across IRA Analysis Scenarios

The inclusion of IRA drives wind, solar, and storage deployment rates to more-than-double relative to historical annual maximum levels

Transmission Expansion Across IRA Analysis Scenarios

The inclusion of IRA results in 11-24% growth in long-distance transmission capacity by 2030 (relative to 2022 levels), where the range reflects the different sensitivities explored NREL | 13

Power Sector CO₂ Emissions Across IRA Analysis Scenarios

Emissions decline to 72% to 91% below 2005 emissions levels in 2030

The Roles and Impacts of Hybrid Systems in a Decarbonized Power System

https://www.nrel.gov/docs/fy22osti/82046.pdf

Hybrids now comprise a large (and increasing) share of proposed projects

Rand et al. (2022),

- Drivers of industry interest include:
 - Shared balance of system costs including shared interconnection costs and potentially faster permitting/siting
 - Increased capacity factor for hybrids that combine complementary resources
 - Reduced variability, which helps to facilitate VRE integration, increases dispatchability/reliability services with reduced storage requirements, and maximizes transmission utilization

Analysis Framework: PV-Battery Deployment Potential

PV-Battery Representation:

- Use explicit time series profiles for the ILR-dependent amount of clipped energy that can be recovered and used by the coupled battery;
- Represent the **shared costs associated with hybridization**, so cost savings are design-dependent
- Assume the battery component in a PVB hybrid receives 100% of the ITC value
- Capture **curtailment-reduction benefit** associated with charging batteries directly from renewable energy

Dimension	Option #1	Option #2	
PV and Battery Costs	Moderate reductions	Advanced reductions	
Power Sector Decarbonization Policies	Existing policies as of June 2021	95% reduction by 2035, 100% by 2050	
PV-Battery Availability	Not Available	Two technology options available	

The scenario matrix includes all perturbations of combining option #1 and option #2 for each dimension explored

17

All scenarios involve the widespread deployment of solar, wind, and storage technologies

Cumulative Installed Capacities Across No Hybrids Versions of Each Scenario

https://www.nrel.gov/docs/fy22osti/82046.pdf

PV-Battery hybrids primarily displace standalone PV and battery capacity

Hybrids represent a relatively small share of total PV and battery capacity

PVB hybrids account for 16-20% of DC-rated PV capacity Coupled (4hr) batteries largely displace standalone diurnal (4-6hr) storage

PV-Battery hybrids enable similar levels of solar generation with less transmission expansion and lower system costs

NREL | 21

Exploring Wind-PV Hybrid Deployment

Hourly resolution for
 PV:wind complementarity

2. Individual-site-resolution for spur-line costs and PV & wind capacity

Site spur-line
 capacities optimized
 in ReEDS

Wind and PV Deployment: No Hybrids

2040 zero-carbon systems

Brown et al. "Optimal design and deployment of wind-solar hybrids in low-carbon U.S. power system." In prep.

Wind and PV Deployment: With Hybrids

2040 zero-carbon systems

Wind Deployment in ERCOT: Minimal Shift with Hybridization

PV Deployment in ERCOT: Relocation to Wind Sites With Hybridization

How Much Hybrid Capacity is Deployed?

2040 zero-carbon system

Brown et al. "Optimal design and deployment of wind-solar hybrids in low-carbon U.S. power system." In prep.

 Most PV/wind capacity is **not** hybridized

 Still a significant amount of hybrids: 195 GW of POI capacity = 348 GW of nameplate PV + wind (versus 218 GW nameplate PV + wind at end of 2020) NREL | 27

What Value Does Hybridization Provide?

2040 zero-carbon ERCOT system

PV/wind deployment increases (but transmission costs matter more) \$2.5–12 billion in NPV of savings (0.6–2.8%) depending on spurline cost assumptions

20–30% decrease in spurline capacity [TW-miles]

Conclusions

- Clean generation: Clean electricity shares could increase substantially with IRA, ranging from 71% to 90% of total generation by 2030 (up from 50%-63% under no new policy)
- Renewable and storage deployment: the year-over-year deployment rate for wind, solar, and storage deployment rates could substantially exceed their historical annual maximum levels
- Fossil-CCS: IRA could drive 10s of GWs of retrofits of fossil generation capacity with carbon capture reaching 1%-8% of generation
- Emissions: decrease to 72% to 91% below 2005 emissions levels
- **Transmission**: barriers to new transmission could partially mitigate clean energy deployment and emissions benefits
- Hybrid Systems: hybrids can help accelerate wind and solar deployment in the face of transmission barriers, but they remain a relatively small share of total wind, PV, and storage capacity in all scenarios explored.
 - Storage-based hybrid systems can facilitate similar shares of variable renewable energy generation with smaller amounts of long-distance transmission capacity
 - Wind-PV hybrid systems can facilitate similar shares of variable renewable energy generation with smaller amounts of new interconnection capacity

Thank you.

www.nrel.gov

https://www.prel.gov/docs/fy23osti/85 NREL/PR-6A20-86122

Photo from iStock-627281636

Bulk-system costs decline (net of tax credits) by \$3 per MWh to \$6 per MWh (5%-13%)

IRA and BIL drive gross increases in investment, but net change in costs is negative driven by value of fuel savings and tax credits

Emissions reductions are associated with substantial avoided climate and health damages

- Avoided climate damages are estimated using SC-CO₂ values from Rennert et al. (2022):
 - "Preferred mean," 2% near-term discount rate: \$185 per t CO₂
 - 3% near-term discount rate: \$80 per t CO₂
- Avoided health damages associated with reduced mortality:
 - ACS study: \$45 billion-\$76 billion, cumulatively 2023-2030
 - H6C study: \$120 billion-\$190 billion, cumulatively 2023-2030

Scenario Design

Scenario Name	PV and Battery Costs	Power Sector Decarbonization Policies	PVB Hybrid
Reference ^a	Moderate reductions	Eviating realizing on of lung 2024	Unavailable
LowCost	Advanced reductions	Existing policies as of June 2021	
Decarb-ModCost	Moderate reductions	95% reduction by 2035, 100% by	
Decarb ^a	Advanced reductions	2050	
Reference With Hybrids	Moderate reductions	Evisting realizing on of lung 2024	Low-ILR PVB: Slightly oversized PV arrays (ILR = 1.4) and relatively small battery (BIR = 0.25)
LowCost With Hybrids	Advanced reductions	Existing policies as of June 2021	
Decarb-ModCost With Hybrids	Moderate reductions	95% reduction by 2035, 100% by	High-ILR PVB: Significantly oversized PV arrays (ILR = 2.2) and slightly larger battery (BIR = 0.5)
Decarb With Hybrids	Advanced reductions	2050	

PVB Hybrid Deployment

NREL | 35

ReEDS: Key Inputs

Existing & planned capacity

- Generation capacity: EIA National Energy Modeling System (NEMS)
 - Updated annually
- Transmission capacity:
 - Initial inter-zone transfer capacities from nodal GridView analysis (currently being updated)
 - New inter-zone lines tracked individually

→ Maintained or retired in order to minimize total system cost

ReEDS: Key Inputs

Technology cost & performance

+ Interconnection spur line costs, discussed later

ReEDS: Key Outputs

100

ReEDS: Key Outputs

Transmission additions

ReEDS: Key Outputs

