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Recovering Critical Materials from Electronics

This poster presents on case studies showing opportunities
to recover critical materials through circularity and to
address the end of life challenge for plastics. It shows
examples of projects that are investigating the Circular
Economy and helping understand each sectors unique
challenges. It further lays out the methodology for the case
studies that could be used for other industry assessments.
Lastly, it demonstrates how the funded analysis tools can
be used in conjunction with each other to answer both
economic and environmental justice questions.

Relevance to IEDO/AMMTO

The analyses inform the development of secure, resilient,
diverse, and sustainable critical mineral and materials
supply chains that underpin clean energy transition, and
Net-Zero manufacturing goals.
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Recovering Critical Materials from NiMH Batteries
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Plastics and the Circular Economy

The plastic end-of-life challenge

How can we go from plastic
waste and virgin production to
. a circular plastic economy?
% )
Especially when there are so
many new plastic recycling and
management technologies? 3

Ellen Macsthur Foundation, The New
Plastics Economy: Rethinking the future
of plastcs and cataysing acton. 2017

Comparing closed-loop recycling options

+ Closed-loop recycling technologies are just one piece of
the plastic landscape. How can we compare plastic-to-x
options?
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Base metals:
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Precious metals:
Au, Ag, etc.
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With the increase demand of electronics, the associated E-waste stream has been growing. Over 50 Million tonnes
were produced around the globe in 2019 and U.S., within which 13 wt% were generated in the U S.1

Rare earth elements:
Nd, Y, etc.

__ Plastics
etc.

Global E-waste (Mt)
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© The electronics contains many critical material such as base and precious metals, REEs, and plastics, etc. The
sustainable recycling of these resource from E-wastes could have both environmental and economical benefits.

Key results: availabilities

o New processes for
resource supply.
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States, Nature Sustainabity, 6(1), 93-102.

o The involvement of virgin refining industry
could play a key role in recovering
resources from E-wastes

© Supply chain implications
o Policy recommendations

Leveraging two national ab tools (PV ICE —
NREL and RELOG - Argonne) we answer the
questons:

Solar Futures decarbonization targets will
require ambitious PV deployment

This deployment willincrease virgin material demands, some of which
are crtical and dependent on an already strained supply-chain
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What energy storage technologies are
emerging today?
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What are the research gaps and
how can we fill them?

What are the environmental impacts
of at-scale deployment?






