
APL Materials ARTICLE pubs.aip.org/aip/apm

Autonomous sputter synthesis of thin film
nitrides with composition controlled by Bayesian
optimization of optical plasma emission

Cite as: APL Mater. 11, 071119 (2023); doi: 10.1063/5.0159406
Submitted: 23 May 2023 • Accepted: 4 July 2023 •
Published Online: 21 July 2023

Davi M. Fébba,a) Kevin R. Talley, Kendal Johnson, Stephen Schaefer, Sage R. Bauers,
John S. Mangum, Rebecca W. Smaha, and Andriy Zakutayeva)

AFFILIATIONS
Materials Science Center, National Renewable Energy Laboratory (NREL), Golden, Colorado 80401, USA

a)Authors to whom correspondence should be addressed: Andriy.Zakutayev@nrel.gov and DaviMarcelo.Febba@nrel.gov

ABSTRACT
Autonomous experimentation has emerged as an efficient approach to accelerate the pace of material discovery. Although instruments for
autonomous synthesis have become popular in molecular and polymer science, solution processing of hybrid materials, and nanoparticles,
examples of autonomous tools for physical vapor deposition are scarce yet important for the semiconductor industry. Here, we report the
design and implementation of an autonomous workflow for sputter deposition of thin films with controlled composition, leveraging a highly
automated sputtering reactor custom-controlled by Python, optical emission spectroscopy (OES), and a Bayesian optimization algorithm.
We modeled film composition, measured by x-ray fluorescence, as a linear function of plasma emission lines monitored during co-sputtering
from elemental Zn and Ti targets in an N2 and Ar atmosphere. A Bayesian control algorithm, informed by OES, navigates the space of sputter-
ing power to fabricate films with user-defined compositions by minimizing the absolute error between desired and measured optical emission
signals. We validated our approach by autonomously fabricating ZnxTi1−xNy films that deviate from the targeted cation composition by a
relative ±3.5%, even for 15 nm thin films, demonstrating that the proposed approach can reliably synthesize thin films with a specific com-
position and minimal human interference. Moreover, the proposed method can be extended to more difficult synthesis experiments where
plasma intensity lines depend non-linearly on pressure, or the elemental sticking coefficients strongly depend on the substrate temperature.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0159406

I. INTRODUCTION

Advances in robotics, machine-learning, and data science
are driving progress in materials science through a data-driven
approach, considered the fourth scientific paradigm1 after experi-
mental, theoretical, and computational approaches. With the rise of
self-driving laboratories, the synthesis and characterization of mate-
rials can now be carried out with minimal human intervention and
at a faster pace due to the efficient exploration of vast spaces of
experimental variables by decision-making algorithms.2–6

Contrary to solution-processed hybrid materials, autonomous
synthesis of inorganic thin films by physical vapor deposition (PVD)
is rather scarce,4 especially in sputtering, despite its widespread
use in research and industry. Some of the few existing reports
of autonomous PVD include the synthesis and optimization of

SrRuO3
7,8 and TiN9 thin films prepared by molecular beam epi-

taxy (MBE). A report on Nb-doped TiO2
10 thin films prepared by

sputtering is so far the only work reporting a fully autonomous
closed-loop PVD synthesis instrument with in situ measurements
and feedback to a control algorithm.

Although these studies focused on the optimization of material
properties such as resistivity and crystallinity, precise control
of cation and anion composition in inorganic thin films is of
paramount importance. For example, it has been theoretically pre-
dicted11 and experimentally12 demonstrated that short-range order-
ing tunes the optical absorption edge in the long-range disordered
alloy (ZnSnN2)1−x(ZnO)2x at a very specific composition of x =
0.25. In addition, the resistivity and bandgap of ternary nitrides
and their alloys depend mostly on cation composition.13,14 Fur-
thermore, many promising oxynitrides were recently predicted to
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possess semiconductor electrical transport and ferroelectric polar-
ization properties similar to halide perovskites but with longer-term
stability.15 However, the specific O:N = 2:1 ratio required for these
properties is challenging to control during synthesis.16

In this context, we report the design and implementation of
an autonomous instrument for controlling the composition of thin
films with minimal human intervention, leveraging a highly auto-
mated sputtering reactor and optical emission spectroscopy (OES).
By fabricating ZnxTi1−xNy thin films with simultaneous monitoring
of optical emission lines from the sputtering of elemental targets,
we show that cation composition, spanning a wide range, can be
expressed as a function of plasma emission lines only.

Informed by OES measurements, a closed-loop control algo-
rithm with Bayesian optimization as its decision-making agent can
effectively optimize the power on each sputtering source to fabri-
cate thin films with a specific cation composition defined prior to
deposition with minimal human interference. Moreover, we show
that our model can accurately predict film composition regardless
of total power or gas flow as long as the OES signal is reproduced,
but re-calibration is needed if autonomous depositions are carried
out at chamber pressures different from those set during model
calibration.

II. OVERVIEW OF THE SPUTTERING INSTRUMENT
To enable the autonomous synthesis of thin films with con-

trolled composition, we recently designed and built a highly-
automated sputtering reactor. Equipped with four sputtering
sources (cathodes) and able to source bias to the substrate, this high-
vacuum (< 1 × 10−7 Torr) instrument allows the exploration of a
wide substrate temperature range, from cryogenic temperatures up
to 1000 ○C.

Figure 1 shows a high-level diagram of this system, depict-
ing sputtering sources, the distribution of process gases, and data
flow. Additional capabilities include control of gas mixing and dis-
tribution to key locations within the sputtering environment (such
as individual targets and the substrate), time-sequenced shutters,
and pressure control via positioning of the gate valve to the turbo
molecular pump.

The high degree of automation of this sputtering instrument
was accomplished by connecting all its sensors and actuators, such
as pressure gauges, power supplies, and pneumatic valves, to a
Graphite Edge controller (Red Lion Controls) that interfaces with
the user through a Human-Machine Interface (HMI), developed
with Crimson 3.1.

This approach allows the implementation of customized soft-
ware solutions and enables the user to execute complex pro-
grammable synthesis recipes, besides offering room for further
custom automation. Moreover, real-time deposition data of sputter-
ing parameters (such as power, voltage, pressure, and gas flow) are
recorded and loaded into a data warehouse.17

A unique feature of this reactor is that the Graphite Edge
controller supports the Open Platform Communications Unified
Architecture protocol (OPC UA), acting as a server. In this way, a
Python client can directly communicate with the controller through
the Python OPC UA libraries, effectively controlling all chamber
parameters.

FIG. 1. Diagram of the autonomous sputtering system, showing gas distribution,
sputtering sources, and data flow. A Python script controls all chamber parameters
by interacting with a Graphite Edge controller, and real-time deposition data are
recorded and stored in a data warehouse.

Therefore, Python libraries for machine learning and optimiza-
tion can be leveraged to control sputtering parameters in real-time,
which is usually not possible for chambers and accompanying sys-
tems available, making this instrument an excellent platform for
implementing an autonomous workflow for the synthesis of thin
films.

III. OPTICAL EMISSION SPECTROSCOPY
Optical emission spectroscopy (OES) is a passive optical diag-

nostic method that analyzes light emitted from excited atoms and
molecules in a plasma environment. Due to its simplicity and non-
intrusive aspect, it was one of the earliest techniques applied to the
analysis of sputtering plasma.18

The basic physical process in OES is the excitation of particles
by electron impact from level i to level j and decay into level k by
spontaneous emission with transition probability Ajk, resulting in a
line emission εjk with wavelength λ = hc/(Ej − Ek), where h is the
Planck’s constant, c is the speed of light, and Ej and Ek are the energy
levels of states j and k, respectively.

This wavelength is detected by the emission spectrometer and
is a fingerprint for the radiating particle,19 while line intensities are
proportional to the density of particles in the plasma.20 It has been
shown by previous studies that the intensity of emission lines mon-
itoring during sputtering can be connected to the resulting film
composition21,22 and material properties,23–25 besides being useful
for process control.26,27
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In glow discharge optical emission spectroscopy (GDOES), a
sample of interest acts as a cathode and is sputtered, usually with Ar.
By analyzing the emitted light with a spectrometer, the elemental
composition of the sample and depth profile analysis can be car-
ried out since the basic assumption is that the intensity of a certain
emission line of an element is a function of the concentration of this
element in the analyzed material.28

Since it is a comparative technique, it needs calibration:29 ref-
erence materials of known composition must be analyzed in order
to build a calibration function Iλ(X),M = f (cE,M), where X is the
element to be detected in the material M and Iλ(X) is the line inten-
sity at wavelength λ of the element X with concentration c in the
material M.

IV. CALIBRATION
Optical emission spectroscopy can measure film composition

after a calibration procedure is performed, which consists of find-
ing a relation between the intensity of emission lines of interest and
film composition, which must be measured by a direct technique. In
this section, we will discuss each part of this procedure: fabrication
of thin films and composition measurement by energy dispersive
X-ray fluorescence (EDXRF), OES characterization, and establish-
ing a connection between EDXRF and OES measurements through
an analytical function.

A. Thin film fabrication
To demonstrate autonomous synthesis of thin films with con-

trolled composition, ZnxTi1−xNy was considered a validation case as
it has been successfully synthesized by our group13 in the sputtering
instrument described in Sec. II. In this work, we assume nitro-
gen composition will fall on the TiN—ZnTiN2—Zn3N2 tie lines,
although it is not explicitly measured since the cation composition
is our focus.

We fabricated thin films on glass substrates (2 × 2 in.2 Corning
Eagle XG Glass). Before each deposition, the chamber was evacuated
at pressures lower than 1×10−7 Torr after transferring the substrate
from a load lock chamber. Two-inch diameter Zn (99.99% purity)
and Ti (99.995% purity) elemental targets were excited by radio-
frequency (RF) sputtering sources. Common to all depositions, the
chamber pressure was set at 10 mTorr after introducing 20 sccm of
Ar adjacent to each sputtering source (40 sccm total) and 20 sccm of
N2 adjacent to the substrate gas inlet.

Depositions lasted between 45–120 min, always after a pre-
sputtering step of 30 min with the substrate shutter closed to clean
the surface of the targets, and no substrate heating or cooling was
applied. The substrate was rotated during deposition to grow films
with a homogeneous composition. Figure 2(a) shows a sample of
zinc titanium nitride fabricated by this process.

Several depositions were carried out with varying powers
applied to each target. The resulting films spanned a wide compo-
sition, expressed as the average of Zn/(Zn + Ti) (at. %) in Fig. 2(b),
obtained by EDXRF measurements taken at 44 distinct spots on the
film [Fig. 2(a)] with a Fischerscope X-ray XDV EDXRF instrument
and accompanying WinFTM analysis software. The average thick-
ness, estimated from EDXRF (calibrated with ellipsometry measure-
ments13), was between (18.0±0.2) nm and (110.0±0.3) nm for all

FIG. 2. (a) Picture of a sample fabricated on a 2 × 2 in.2 glass substrate, with
approximate positions of EDXRF measurements. Diagonal striations are from a
cotton cloth underneath the substrate. (b) Average cation composition as a function
of power ratio on Zn and Ti targets, obtained from EDXRF measurements across
44 points on the film. (c) Example of an EDXRF spectrum measured at a single
spot, showing Zn and Ti Kα spectral lines used for composition analysis and a Fe
line from the substrate.

depositions. Uncertainty in composition and thickness was taken as
two times the standard uncertainty, i.e., 2 s/

√
n, where s is the stan-

dard deviation of 44 measurements (n), resulting in a confidence
interval (C.I.) of ∼95%.

The range of power applied to each sputtering source takes into
account the maximum power allowed on each 2 in target as well as
the minimum required to sustain a plasma. Therefore, powers rang-
ing from 12 to 30 W and 50 to 140 W for the Zn and Ti targets,
respectively, resulted in samples with an average composition span-
ning the range 53%–98%, as summarized in Fig. 2. Although it could
be possible to obtain cation compositions below 50% Zn/(Zn + Ti)
(at. %), the power on the Zn target would be too small, below 12 W,
which would seem to result in films with irreproducible composition
for the same chamber conditions. On the other hand, the power on
the Ti target would be at a maximum of 150 W and could not be
increased without risking damage to the target.

B. Plasma monitoring
To enable in-vacuum plasma monitoring with OES in our sput-

tering system, 2 in. stainless steel chimneys were specially adapted to
accommodate 90○ collimators with a 3○ acceptance angle, as shown
in Fig. 3(a), each monitoring the glow discharge just above the target.

During each deposition, optical emission spectra from each tar-
get were independently recorded by a multi-channel Plasus Emicon
MC spectrometer between 195 and 1105 nm, avoiding signal inter-
ference during co-sputtering. A useful feature of this setup is that
each collimator is equipped with a coating-protection device con-
sisting of a quartz plate and a capillary cartridge to avoid deposition
of sputtered material on the collimator optics.

Each spectrometer integration time was set to 50 ms, and 10
spectra were collected and averaged to increase the signal-to-noise
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FIG. 3. (a) Internal view of the process chamber, showing 2 in. chimneys adapted
to accommodate 90○ collimators to collect emission spectra from each sputter-
ing source. (b) Optical emission spectra from Zn and Ti targets sputtered with Ar
between 250 and 600 nm, where most of the Ti I and Zn I lines are found. Increase
of Zn I (c) and Ti I (d) emission lines for increasing sputtering power on each target.

ratio, amounting to a total recording time of about 500 ms per
spectrum. Background OES spectra were collected before igniting
the plasma on the sputtering sources and then subtracted from all
subsequent measurements.

Spectrum measurement and signal processing were carried out
with the Plasus Emicon MC software that accompanies the spec-
trometer, while analysis of emission lines was accomplished with the
Specline software, which has an extensive database of spectral lines
for atoms, ions, and molecules and features automated line detection
based on the elements of interest.

To detect non-overlapping Ti and Zn lines that are sensitive
to changes in sputtering power, the Ti and Zn targets were initially
sputtered with Ar at 10 mTorr by injecting 20 sccm of Ar through a
gas inlet adjacent to each sputtering source. Figure 3(b) shows that
a Zn I line at 307.5 nm and Ti I lines between 496 and 510 nm
are suitable choices since they do not show any overlap and are
intense enough to be detected with the aforementioned spectrometer
acquisition settings.

Moreover, these lines are also sensitive to changes in power,
as shown in Figs. 3(c) and 3(d). However, to avoid inaccurate signal
evaluation due to broadening and peak shift, common in OES analy-
sis,30 the integral under the emission signal was taken instead of line
intensities. For simplicity, we will refer to this integral as intensity
only.

Therefore, to incorporate information from both sputtering
targets into the analysis, the normalized ratio was taken, as given
by the following equation Eq. (1)

IOES =
IZn

IZn + ITi
, IZn = ∫

310

306
I dλ, ITi = ∫

510

496
I dλ, (1)

where I is the intensity of the optical emission signal monitored by
independent channels over each target. Then, considering that IOES
was observed to be stable over time, the median of IOES was taken
between signal stabilization—10 min from plasma ignition—and the
end of deposition, so that a single OES parameter characterizes the
plasma environment.

C. Analytical function
In GDOES, the goal is initially to find a calibration function:

a model that describes emission lines as a function of elemental
composition in reference samples of known composition.29 Then, to
characterize samples of unknown composition, this calibration func-
tion is mathematically inverted, and the resulting model is called the
analytical function. By measuring the intensity of a specific line of
element X, its composition in a material M can be obtained.31

Therefore, in our approach, we establish an analytical function
through the calibration procedure, i.e., fabricating samples and mea-
suring their composition with EDXRF, and then finding a model to
express film composition as a function of the normalized ratio of
intensity of emission lines given by Eq. (1). Figure 4 shows that a
simple linear relation between IOES and composition was obtained,
with R2 = 0.995, a root mean square error of 1.0 × 10−2, and a
maximum residual of 2.1 percentage points.

All depositions and OES measurements taken to find this ana-
lytical function were carried out on different days, spanning several
weeks, including many sources of random changes, such as vent-
ing the chamber to perform routine maintenance work, inspection
of the collimators for possible coating, and so on. Therefore, the
analytical function incorporates all these changes that occurred over
time, making the model more robust against these sources of noise.
However, for future experiments, all the steps for the calibration pro-
cedure can be completed in about one day to avoid these sources of
noise.

FIG. 4. Linear fit of Zn/(Zn + Ti) (at.%) in ZnxTi1−xNy as a function of OES signal
(a) and corresponding residuals (b), expressed as percentage points (p.p).
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V. CONTROL ALGORITHM
An autonomous closed-loop control system leveraging the high

degree of automation of our sputtering reactor was implemented
using Python. The flowchart in Fig. 5 summarizes the workflow. At
its core, a Bayesian optimization algorithm, implemented with the
scikit-optimize (skopt)32 package, controls the radio frequency sput-
tering power on elemental targets (Zn and Ti, in this study) and,
informed by OES measurements, explores the 2D-space of power
applied on the targets until a user-defined OES signal (IOES) that
corresponds to a specific film composition is obtained.

The goal of the optimization algorithm is to minimize an objec-
tive function, which in this case is the absolute error between the
measured IOES and the user-defined IOES (setpoint), given by the
following equation:

objective = ∣Icurrent
OES − Isetpoint

OES ∣, (2)

where Icurrent
OES = median(IOES) over the last 10 s of data to filter out

measurement noise.
A Gaussian process was employed as a surrogate model for the

unknown function that models Eq. (2) as a function of the sputtering
powers on the targets. The Radial Basis Function (squared-
exponential) was used as the kernel, with its hyperparameters
optimized at each optimization loop by scikit.

After loading the substrate into the chamber, the only step
requiring human intervention is to define start-up optimization and
chamber parameters, such as process pressure, gas flows, and power
on each target, and to specify the desired OES signal (setpoint).

FIG. 5. Flowchart of the autonomous sputtering workflow. After automatic chamber
start-up, a Bayesian optimization algorithm controls the sputtering powers based
on the analysis of optical emission signals from each target. The only step requiring
human intervention is to set up the initial chamber and optimization parameters.

Upon setting these initial parameters, the control algorithm initially
checks for high vacuum conditions in the sputtering chamber. If this
condition is satisfied, an automatic routine ignites the plasma on
each sputtering source, adds reactive gas (N2) through the substrate
gas inlet, and controls the chamber pressure.

A countdown for OES signal stabilization begins, and after
it completes, the Bayesian optimization loop starts. Starting with
an arbitrary pair of sputtering powers on the two targets set dur-
ing start-up, the optimization algorithm checks if IOES is stable by
verifying it is within a maximum allowed deviation of 3 % from
its median over the last 10 s of data. Then, if the signal is sta-
ble, it measures Icurrent

OES and calculates the objective function given
by Eq. (2).

If the objective is higher than a tolerance criterion, a Gaussian
process is then fitted to the data, and the point where the Expected
Improvement (EI) acquisition function is maximized is then sug-
gested as the next sampling point within a search space. A new pair
of sputtering powers is then set on the RF power supplies connected
to the sputtering sources and adjusted by a ramp procedure at a rate
of 2 W s−1 (user-defined) to avoid plasma destabilization due to fast
changes in power.

The algorithm then waits for signal stabilization and takes
another Icurrent

OES measurement. This whole process—OES analysis,
evaluation of the objective function, Gaussian regression, sampling
the next point—continues until convergence is achieved (i.e., the
objective function falls below a tolerance criterion) or a maximum
number of iterations is reached, as depicted in Fig. 5. If the con-
vergence criterion is satisfied, the substrate shutter is automatically
opened, and deposition starts.

Although the sputtering powers could be controlled by a more
conventional Proportional-Integral-Derivative (PID) approach33 to
minimize the objective function, human tuning of PID parameters
to control the growth variables represents a serious bottleneck for
an autonomous framework, especially if more variables must be con-
trolled, hindering scalability and maintainability since the re-tuning
of these parameters is often needed. Conversely, a control method
based on Bayesian optimization eliminates these issues by efficiently
sampling the search space and refining the surrogate model in a
data-driven approach. Our knowledge about the likely objective
function improves as more data are observed.34

Note that this optimization problem is a degenerate one: sev-
eral sets of power levels can lead to the same OES signal. As we
will discuss later in Sec. VI B, our approach of taking the first
set of powers for which the algorithm finds convergence does not
lead to any detriment in the prediction results since, as long as the
desired OES signal is obtained, the composition will not significantly
change.

VI. RESULTS
A. Validation

To validate the proposed approach, the aim was to fabricate
films with a specific composition, defined prior to deposition: 75%,
95%, 65%, and 85% Zn/(Zn + Ti) (at. %), denoted as validation runs
1, 2, 3, and 4, respectively, in Table I. Zn-rich conditions were cho-
sen due to irreproducible OES measurements and film composition
obtained at low powers on the Zn target, as previously mentioned,
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TABLE I. Results of the validation experiments, with relative errors between predicted
and actual film composition, expressed as Zn/(Zn + Ti) (at. %) and averaged across
44 distinct spots on the substrate.

Run Goal (%) Predicted (%) Actual (%) Prediction error (%)

1 75 75.0 76.9 ± 0.4 −2.5
2 95 95.3 92.2 ± 0.1 3.4
3 65 64.6 65.5 ± 0.3 −1.4
4 85 85.3 86.3 ± 0.6 −1.2

and the search range for the Bayesian algorithm was set as 50–150 W
for the Ti target and 13–45 W for the Zn target.

For these experiments, the sputtering chamber was kept at
10 mTorr by adding 20 sccm of Ar through each sputtering source
and 20 sccm of N2 through the substrate, as in the calibration pro-
cedure. We then set 10 min as the initial stabilization window after
automatic plasma ignition, which was reduced to 2 min after ramp-
ing the power on the sputtering sources during the optimization
loop.

After chamber start-up with arbitrary sputtering powers, the
control system adjusts the powers to obtain OES signals that would
result in films with the desired composition. The algorithm was
allowed to run for up to 30 iterations, and the convergence threshold
was set as 6 × 10−3, which was found to guarantee convergence and
resulted in a good trade-off between convergence time and accuracy
of the predicted film composition.

Figure 6(a) shows the evolution of the emission signal as a func-
tion of time while the Bayesian optimization algorithm searches for
the best set of powers to achieve the desired setpoint signal. After

convergence is achieved, the OES signal is stable over time until the
deposition ends.

Although convergence was fast for Runs 1 and 2, as shown
in Fig. 6(b), with only 5 and 3 iterations needed for convergence,
respectively, the algorithm sometimes needs more iterations due
to its stochastic nature, as seen for Run 3, which took 17 itera-
tions. Nonetheless, the algorithm was able to achieve convergence
for all four validation runs. Moreover, Figs. 6(c)–6(f) show the val-
ues of sputtering powers explored by the Bayesian optimization
algorithm and the resulting objective function for all the validation
runs.

To verify whether the resulting films had the targeted compo-
sitions, EDXRF measurements were carried out across 44 spots on
the substrate, and the average value was taken as the film composi-
tion, as previously discussed. Since the algorithm had a convergence
threshold for the OES signal taken as the optimum (convergence
happens when objective ≤ 6 × 10−3), we report the predicted com-
position, i.e., the composition predicted from the analytical function
from Fig. 4 based on the OES measurement taken at the last iter-
ation of the optimization routine. The average film thickness was
(26.7±0.2) nm, (141.6±0.4) nm, (41.6±0.3) nm, and (15.4±0.2) nm
for samples 1, 2, 3, and 4, respectively.

Prediction errors, calculated as (predicted/actual − 1), express
the relative error between predicted and actual film composition. As
shown in Table I, the proposed approach was able to autonomously
fabricate thin films with compositions within 3.5 % of the desired
value. As more depositions are carried out with simultaneous plasma
monitoring, the resulting OES signal and film composition can
be retrofitted into the analytical function to improve its accu-
racy in predicting film composition. Other routes of improvement
include the fabrication of thicker films for higher precision EDXRF

FIG. 6. Optimization results for four validation runs. OES signal as a function of time (a), while the Bayesian optimization algorithm searches for the optimal sputtering powers.
The convergence plot (b) shows the evolution of the minimum of the objective function, while (c)–(f) show the sputtering powers visited by the algorithm for each validation
run, with colors representing the value of the objective function.
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measurements, waiting a longer time for OES signal stabilization
after a new power set is suggested by the algorithm, and reducing the
convergence criterion from 6 × 10−3, at the expense of convergence
time.

B. Degeneracy: Total power effects
We studied if degeneracy would have any adverse effects on

the prediction results. As previously mentioned, the optimization
problem of finding the optimal set of sputtering powers to achieve
a desired OES signal is a degenerate one: several sets of powers may
result in the same signal.

For this study, we varied the power applied to each target for
three independent depositions while keeping IOES ≈ 0.902 [dashed
line on Fig. 7(a)], which corresponds to 75% Zn/(Zn + Ti) (at. %)
[dashed line on Fig. 7(b)] according to the analytical function.
The chamber pressure was set at 10 mTorr by adding 20 sccm of
Ar through gas inlets adjacent to each sputtering source (total of
40 sccm) and 20 sccm of N2 adjacent to the substrate, as summa-
rized in Table II (samples 1, 2, and 3). Figure 7(a) shows that it was
possible to reproduce the desired OES signal for three different sets
of power levels, with a maximum deviation of 3.3 × 10−3 between
the desired IOES and the median of IOES taken from 10 min to
the end of the deposition. As seen in Fig. 7(b), the film com-
position did not show any significant changes, even though the
powers on both targets changed. Prediction errors between actual
and predicted composition (given by the analytical function from
Fig. 4 based on the median of the OES signal between 10 min and
the end of each deposition) were −3.8%, 1.7%, and −3.3%,
respectively.

Therefore, this degeneracy caused by simultaneously opti-
mizing two power supplies does not constitute an issue as long
as the OES signal can be reproduced since the prediction errors
are of the same order as those found for the validation exper-
iments shown in Table I. However, other film properties may
change, such as morphology and crystallinity, but since we are
only optimizing for composition, these side effects are out of scope
here.

TABLE II. Different total powers and gas flows of Ar and N2 do not cause large rel-
ative errors when predicting film composition based on emission signals, contrary to
changes in the chamber pressure, which invalidate the analytical function obtained
during calibration.

Sample Zn (W) Ti (W) Ar (sccm) N2 (sccm) mTorr Error (%)

1 15 115 40 20 10 −3.8
2 17 145 40 20 10 1.7
3 13 101 40 20 10 −3.3
4 15 115 30 10 10 −2.9
5 15 115 20 15 10 −0.4
6 15 115 40 20 5 −30.0
7 15 115 40 20 15 11.7

C. Effects of chamber pressure and gas flow
We also investigated the effects of chamber pressure and gas

flow on the OES signal and the accuracy of the analytical func-
tion (Fig. 4) for predicting film composition. For this purpose, we
fabricated films at different total flows of Ar and N2 and at lower
(5 mTorr) and higher pressures (15 mTorr), as summarized in
Table II, while keeping constant the set of sputtering powers that
the algorithm found in the validation experiments for a film with
75% Zn/(Zn + Ti) (at. %): 115 and 15 W on the Ti and Zn targets,
respectively.

As shown in Fig. 7(a)—samples 1, 4, and 5—the optical emis-
sion signal IOES did not show significant changes for different gas
flows with a constant pressure set at 10 mTorr. For these sam-
ples, predicting film composition by feeding IOES into the analytical
function (Fig. 4) results in small prediction errors, expressed as
the relative error between actual and predicted composition, as
demonstrated in Table II.

Therefore, the proposed approach can still produce reliable
results for different gas flows, but only if the chamber pressure is
equal to that set during the calibration step; decreasing the pressure
to 5 mTorr resulted in a significant drop in the emission signal with
an uncorrelated increase of Zn in the film [Fig. 7(b)—sample 6].

FIG. 7. Effects of total power (samples 1, 2, and 3), gas flow (samples 1, 4, and 5), and pressure (samples 6 and 7) on the OES signal (a) and film composition measured by
EDXRF (b). Diamond edges and notches denote the 95% C.I. for the mean (center of gray diamonds) and median (red dash) in the notched box plots, respectively.
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If the analytical function were still valid for this case, 58.8%
Zn/(Zn + Ti) would be observed in the film, according to the
observed emission signal. Figure 7(b) shows that the composition
of Zn/(Zn + Ti) in the resulting film was 84%, thus invalidating the
analytical function for depositions at pressures lower than that of the
calibration procedure.

If this were an autonomous deposition with a desired 75%
of Zn/(Zn + Ti) in the film, the algorithm would try to converge
to the setpoint signal of 0.902 by increasing the power on Zn,
decreasing the power on Ti or both, leading to an even higher per-
centage of Zn in the film, although the desired OES signal would be
achieved.

Higher pressures lead to the same effect: increasing the pressure
to 15 mTorr resulted in a shift of the emission signal toward a higher
value (Fig. 7—sample 7), with an uncorrelated decrease in Zn/(Zn
+ Ti) (at.%) in the film to 72.4%. Although a higher pressure did not
cause significant changes in actual composition, the predicted com-
position from the analytical function in Fig. 4 was 80.9%, resulting in
a relative error close to 12%, too large for the purpose of controlling
film composition. Again, if this were an autonomous deposition, the
algorithm would try to reduce the emission signal, which would lead
to even higher prediction errors.

VII. DISCUSSION
The effects of chamber pressure on the resulting film composi-

tion and OES signal (Fig. 7) can be explained by two effects:20 at low
pressures, the mean free path of the sputtered atoms increases since
they do not experience a significant amount of collisions with Ar
atoms and do not accumulate in the discharge, reducing the intensity
of the emission signal.

On the other hand, the substrate is also sputtered by energetic
particles, and lighter atoms (Ti, in this case) are preferentially resput-
tered from the film, which explains the higher Zn/(Zn + Ti) ratio in
the film fabricated at low pressure, even though gas flows and pow-
ers were the same as for sample 1. In contrast, this phenomenon is
reduced at higher pressures, explaining the decreased Zn/(Zn + Ti)
ratio at 15 mTorr.

Any effects at the substrate are thus not taken into account, and
substrate temperature can also cause large errors in the prediction
results since the substrate heating can result in different film com-
positions even though the plasma conditions are the same. In this
way, the variation caused by substrate effects constitutes a hindrance
since several film compositions could be obtained for the same OES
signal, contrary to the previously discussed degeneracy caused by
total power.

Nonetheless, the proposed approach is useful for the
autonomous synthesis of thin films with user-defined compositions.
Taking advantage of a short calibration procedure and an auto-
mated deposition setup, several analytical functions can be quickly
obtained for different pressures and substrate temperatures, making
it possible to explore chamber conditions for which film quality is
enhanced.

Finally, to further improve the acceleration provided by the
synthesis of thin films with controlled composition, future work will
focus on developing calibration procedures that are independent of
chamber conditions and geometry.

VIII. CONCLUSION
We report the design and implementation of an autonomous

instrument for sputter synthesis of thin films with controlled cation
composition in a highly automated reactor that interfaces with
Python scripts. After a calibration procedure to correlate actual film
composition, measured by ex-situ energy dispersive X-ray fluores-
cence (EDXRF) and in situ optical emission spectroscopy (OES)
data obtained during the RF sputtering of elemental targets, we
showed that a linear function can predict composition based solely
on plasma emission lines.

Informed by real-time OES measurements, a Bayesian opti-
mization algorithm optimized the RF power applied to sputtering
sources to synthesize films with a user-defined composition. As a
case study, our instrument fabricated ZnxTi1−xNy thin films target-
ing x = 0.65, 0.75, 0.85, and 0.95. EDXRF measurements showed that
the proposed approach resulted in films with x = 0.65, 0.77, 0.86, and
0.92, thus in good agreement with the targeted composition.

However, for accurate results, it is crucial to maintain the
chamber pressure at the level set during calibration, as any vari-
ations in this parameter can shift the optical emission signal with
uncorrelated changes in the final film composition, leading to sub-
stantial inaccuracies. Conversely, changes in relative gas flows and
total sputtering power do not seem to increase the prediction errors
if the chamber pressure can be kept at a constant level.
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