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1. INTRODUCTION
 Accurately forecasting clouds in numerical weather prediction 

models is key to accurately predicting solar irradiance.

 However, validating cloud forecasts is challenging because this 
requires high-quality cloud-property observations at 
significantly high spatial and temporal resolution for long 
periods of time. 

 In this study, we evaluate ensemble cloud-mask forecasts from 
the WRF-Solar ensemble prediction system (WRF-Solar EPS) 
(Yang et al. 2021, 2022; Kim et al. 2021, 2022; Jiménez et al. 
2022; Alessandrini et al. 2023) using the high-resolution cloud 
data from the National Solar Radiation Database (NSRDB) 
(Sengupta et al. 2018). 

 Cloud-mask forecast of WRF-Solar EPS (9-km) is evaluated 
against NSRDB (2-km) based on two scenarios: 

 Consider the presence of any clouds from 2-km NSRDB 
domain (referred to as EMAll). 

 Use a minimum 50 % cloud fraction threshold to classify a 
pixel as cloudy (EMP50) => Because the NSRDB data is 
available at 2-km resolution, we can compute cloud fraction 
over the 9-km WRF-Solar EPS grid. 
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3. SPATIAL ANALYSIS (EMAll vs. EMP50)

2. APPROACH

4. ANALYSIS FOR DIFFERENT CLOUD TYPES

 Cloud-mask forecast of WRF-Solar EPS (9-km) is evaluated against high-
resolution NSRDB (2-km) through EMAll and EMP50 based on two 
scenarios.

 Cloud detection metrics are used to quantify and evaluate ensemble 
cloud mask forecasts from the WRF-Solar EPS.

 WRF-Solar EPS shows high mismatched cloud frequency in predicting 
thin clouds (27%–46%) and low-level clouds (19%–46%).
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Step 1. Calculate ∆GHI for each pixel:

∆𝐺𝐺𝐺𝐺𝐺𝐺= 𝐺𝐺𝐺𝐺𝐺𝐺𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐−𝑠𝑠𝑠𝑠𝑠𝑠 − 𝐺𝐺𝐺𝐺𝐺𝐺𝑐𝑐𝑐𝑐𝑐𝑐−𝑠𝑠𝑠𝑠𝑠𝑠

Step 2. Classify the pixel in to the two sky conditions 
satisfied with: 

Evaluation 
method Classification NSRDB9km 

(observation)
WRF-Solar EPS 

(prediction)

EMAll

Clear sky ∆𝐺𝐺𝐺𝐺𝐺𝐺 < 1.0 W/m2 > 50 % of ensemble members 
are: ∆𝐺𝐺𝐺𝐺𝐺𝐺 < 1.0 W/m2

Cloudy sky ∆𝐺𝐺𝐺𝐺𝐺𝐺 ≥ 1.0 W/m2 ≥ 50 % of ensemble members 
are: ∆𝐺𝐺𝐺𝐺𝐺𝐺 ≥ 1.0 W/m2

EMP50
Clear sky COD = 0 Same with EMAll

Cloudy sky COD > 0 Same with EMAll

9-km GHI: spatially averaged 2-km pixels
9-km cloud optical depth (COD): calculated based on 2-km cloud types  

Night times are excluded by SZA < 85°

Prediction
Observation WRF-Solar EPS

NSRDB
Scenario Clear sky Cloudy sky
Clear sky A B

Cloudy sky C D
Metric Calculation

Frequency of cloud for NSRDB 𝐹𝐹𝐹𝐹𝐹𝐹𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =
𝐹𝐹 + 𝐷𝐷

𝐴𝐴 + 𝐵𝐵 + 𝐹𝐹 + 𝐷𝐷
× 100%

Frequency of clouds for WRF-Solar 𝐹𝐹𝐹𝐹𝐹𝐹𝑊𝑊𝑁𝑁𝑊𝑊−𝑁𝑁𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐 =
𝐵𝐵 + 𝐷𝐷

𝐴𝐴 + 𝐵𝐵 + 𝐹𝐹 + 𝐷𝐷
× 100%

Probability of detection in clear sky 𝑃𝑃𝐹𝐹𝐷𝐷𝐹𝐹𝑃𝑃𝑃𝑃 =
𝐴𝐴

𝐴𝐴 + 𝐵𝐵
× 100%

Probability of detection in cloudy sky 𝑃𝑃𝐹𝐹𝐷𝐷𝐹𝐹𝑃𝑃𝐷𝐷 =
𝐷𝐷

𝐹𝐹 + 𝐷𝐷
× 100%

False alarm rate in clear sky 𝐹𝐹𝐴𝐴𝑃𝑃𝐹𝐹𝑃𝑃𝑃𝑃 =
𝐹𝐹

𝐴𝐴 + 𝐹𝐹
× 100%

False alarm rate in cloudy sky 𝐹𝐹𝐴𝐴𝑃𝑃𝐹𝐹𝑃𝑃𝐷𝐷 =
𝐵𝐵

𝐵𝐵 + 𝐷𝐷
× 100%

Hit rate 𝐺𝐺𝑃𝑃 =
𝐴𝐴 + 𝐷𝐷

𝐴𝐴 + 𝐵𝐵 + 𝐹𝐹 + 𝐷𝐷
× 100% 

(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 0 ≤ 𝐺𝐺𝑃𝑃 ≤ 100%)

Kuiper’s skill score 𝐾𝐾𝐾𝐾𝐾𝐾 =
𝐴𝐴 � 𝐷𝐷 − 𝐵𝐵 � 𝐹𝐹

𝐴𝐴 + 𝐵𝐵 � 𝐹𝐹 + 𝐷𝐷
× 100% 

(𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 − 100% ≤ 𝐾𝐾𝐾𝐾𝐾𝐾 ≤ 100%)

Mismatched cloud frequency 𝑀𝑀𝐹𝐹𝐹𝐹 =
𝑐𝑐

𝑐𝑐 + 𝑑𝑑
× 100%

2) Contingency table for NSRDB and WRF-Solar EPS and 
equations for cloud detection metrics (Yang et al. 2022)

1) Data-processing for two sky conditions

We used the metrics to quantify the performance of WRF-Solar EPS in forecasting cloud mask.

 By using EMAll, the low-resolution cloud masks from WRF-Solar EPS are 
directly evaluated against the cloud-resolving scale gridded observations 
from NSRDB. 

 In EMP50, we assume that scenes with < 50 % cloudiness from the 2-km 
NSRDB are clear scenes. Therefore, this evaluation method enables a fair 
comparison with WRF-Solar EPS resolved for a 9-km grid. 

False alarm rate (FAR) in clear-/cloud-sky calculated for each pixel in February and August 2018

February

EMAll

EMP50 August

 For EMAll, WRF-Solar EPS shows high 
FARCLRs and low FARCLDs for 
CONUS because a large portion of 
the cloud-free-pixels in WRF-Solar 
EPS is missed clouds (when directly 
comparing with 2-km NSRDB 
clouds).

 EMP50 does not penalize the FARCLR 
and FARCLD from WRF-Solar EPS. 
Especially, improved FARCLR by the 
EMP50 is reasonable given that the 
model usually represents clear-sky 
pixels with high accuracy. 

 A cloud-resolving scale model grid 
(1-4 km) might be required for 
future WRF-Solar EPS enhancements 
to resolve the biases in cloud 
occurrences resulting from the 
selected WRF configuration (from a 
point of view in EMAll), and EMP50 is 
needed in order to a fair comparison 
with the current 9-km WRF-Solar 
EPS.

Deep
ConvectiveCirrostratusCirrus

NimbostratusAltostratusAltocumulus

StratusStratocumulusCumulus

R1: OPD ≤ 3 
R2: 3 < OPD ≤ 20
R3: 20 < OPD

High level
clouds

Mid level
clouds

Low level
clouds

Thin Mid Thick

Mismatched cloud frequency (MCF, %)
 We used EMP50 and analyzed MCF classified in 

different cloud optical depth (COD) and cloud 
top height (CTH). 

 Given the MCF, WRF-Solar EPS provides accurate 
forecasts for high-level and thick clouds, 
whereas low-level and thin clouds cause 
difficulties in predicting cloud masks from the 
WRF-Solar EPS. 

 There are notable high MCF values for ‘Cumulus’ 
category in summer.

 This might be a result of the representation of 
shallow cumulus clouds using the Deng 
parameterization in WRF-Solar EPS. 

 But note that there are also difficulties in 
detecting thin and low-level clouds from 
satellite.

February August

5. SUMMARY


