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1. INTRODUCTION 2. APPROACH

® Accurately forecasting clouds in numerical weather prediction 1) Data-processing for two sky conditions 2) Contingency table for NSRDB and WRF-Solar EPS and
models is key to accurately predicting solar irradiance. Step 1. Calculate Agy, for each pixel: equations for cloud detection metrics (Yang et al. 2022)
= However, validating cloud forecasts is challenging because this Prediction
o ; > Acrr=|GHIear—sky — GHlqy— . Tredicto -
requires high-quality cloud-property observations at onr= |GHlctear—sky all—sky Observation ~~__ WRF-Solar EPS
5|ng|f|cantIy. high spatial and temporal resolution for long Step 2. Classify the pixel in to the two sky conditions Scenario Clear sky Cloudy sky
periods of time. satisfied with: NSRDB Clear sky A B
: Night times are excluded by SZA < 85° Wl sy c : D
= In this study, we evaluate ensemble cloud-mask forecasts from Evaluation ¢ o o @ NSRDBy, WRE-Solar EPS Metric C
the WRF-Solar ensemble prediction system (WRF-Solar EPS) method (observation) (prediction) Frequency of cloud for NSRDB FOCuston = s X 100%
(Yang et al. 2021, 2022; Kim et al. 2021, 2022; Jiménez et al. Clearsky  Agy < 1.0 Wjmz > 50 % of ensemble men;bers Frequency of clouds for WRF-Solar FOCyar-car =1 ZH; —x100%
2022; Alessandrini et al. 2023) using the high-resolution cloud - are: gy < 1.0 Win oropabT of detecton mclomr <k e
data from the National Solar Radiation Database (NSRDB) Al = 50 % of ensemble members robability of detection in clear sky RS 7SI
, 2
(Sengupta et al. 2018). Cloudy sky  Agy; 2 1.0 W/m are: Mgy 2 1.0 W/im2 Probability of detection in cloudy sky PODCLD = Cib X 100%
~ _ _ . Clear sky CcoD=0 Same with EM, False alarm rate in clear sky FARCLR = X 100%
= Clogd mask forecast of WRF-Solar EPS (9 km) is evaluated EMps, Cloudy sky GoD>0 Same with EM.. A;L‘
against NSRDB (2-km) based on two scenarios: 9-km GHI: spatially averaged 2-km pixels False alarm rate in cloudy sky FARCLD = 7= x 100%
. 9-km cloud optical depth (COD): calculated based on 2-km cloud t
v" Consider the presence of any clouds from 2-km NSRDB m cloud optical depth (COD): calculated based on 2-km cloud types Hit rate HR :%x 100%
domain (referred to as EM,). = By using EM,, the low-resolution cloud masks from WRF-Solar EPS are (where 0 < HR < 100%)
directly evaluated against the cloud-resolving scale gridded observations Kuiver's skill s5=7 Ao D)*(B € 5% 100%
e o, . .. uiper's skill score A+B)-(C+D
v U.se a minimum 50 % cloud fraction threshold to cIa'55|fy a from NSRDB. i = R M)
pixel as cloudy (EM,5,) => Because the NSRDB data is = In EM,s5, We assume that scenes with < 50 % cloudiness from the 2-km Mismatched cloud frequency 7 = =2
available at 2-km resolution, we can compute cloud fraction NSRDB are clear scenes. Therefore, this evaluation method enables a fair et
over the 9-km WRF-Solar EPS grid. comparison with WRF-Solar EPS resolved for a 9-km grid. We used the metrics to quantify the performance of WRF-Solar EPS in forecasting cloud mask.
3. SPATIAL ANALYSIS (EM,;, vs. EM,,) 4. ANALYSIS FOR DIFFERENT CLOUD TYPES
False alarm rate (FAR) in clear-/cloud-sky calculated for each pixel in February and August 2018 Mismatched cloud frequency (MCF, %)

60 ®* We used EM,, and analyzed MCF classified in
different cloud optical depth (COD) and cloud
top height (CTH).

February

EM
All A
ugust .
¥ = AR = For EM,,, WRF-Solar EPS shows high High level

Cirrus

7km < CTH

0 Sy FARCLRs and low FARCLD:s f clouds
- — CONUSSbZ:au:;Na B p;rtci’;n of = Given the MCF, WRF-Solar EPS provides accurate
the cloud-free-pixels in WRF-Solar w0 forecasts for high-level ar}d thick clouds,
EPS is missed clouds (when directly £ whereas low-level and thin clouds cause
comparing with 2-km NSRDB Mid level o difficulties in predicting cloud masks from the
clouds). clouds 55 30 WRF-Solar EPS.
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= EM,, does not penalize the FARCLR
and FARCLD from WRF-Solar EPS.
Especially, improved FARCLR by the

= There are notable high MCF values for ‘Cumulus’
category in summer.

13
EMys, is reasonable given that the Low level w Stratocumulus Stratus 10 ® This might be a result of the representation of
model usually represents clear-sky clouds £ shallow cumulus clouds using the Deng

pixels with high accuracy.

parameterization in WRF-Solar EPS.

= A cloud-res.olving scale.model grid R1:OPD <3 z H = But note that there are also difficulties in
(1-4 km) might be required for R2:3<OPD <20 detecting thin and low-level clouds from
future WRF-Solar EPS enhancements R3: 20 < OPD tellit ¢
satellite.

to resolve the biases in cloud Thin Mid Thick

occurrences resulting from the
selected WRF configuration (from a
point of view in EM,,), and EM is 5 S U M MARY
needed in order to a fair comparison O
with the current 9-km WRF-Solar
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