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Offshore Hybrid Energy Systems




Offshore Wind Potential
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Key Challenges to Offshore Systems

* Cost reductions of offshore wind energy

* Expanded, just, and sustainable deployment

* Domestic supply chains, including ports and manufacturing

e Transmission development

* Cogeneration and storage applications

* Floating Offshore Wind Shot™: 70% reduction in levelized cost of energy (LCOE)
by 2035
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What is a hybrid energy system?

Hybrid Energy Systems

A broad universe that encompasses...

A wide variety of energy generation, storage, and conversion technologies
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The colocation and/or coordinated operations of energy technologies

A~ AE /( }\ &
: LN i )
¥ ¥ Ed [ ¥ | 4 3 o
colocated resources virtual power plant fully intergrated hybrid

Front-of-the-meter, behind-the-meter, microgrid, and off-grid applications
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bulk businesses homes industrial  microgrids remote stand-alone
grid facilities microgrids systems

Systems that provide a variety of energy and non-energy products
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What is a hybrid energy system?

Wind+Mechanical

PV-+Battery
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C.A. Murphy, A. Schleifer, K. Eurek, A taxonomy of systems that combine utility-scale renewable energy
and energy storage technologies, Renewable and Sustainable Energy Reviews, Volume 139, 2021, 110711,

ISSN 1364-0321, https://doi.org/10.1016/j.rser.2021.110711. — used with permission
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What is a hybrid energy system?
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C.A. Murphy, A. Schleifer, K. Eurek, A taxonomy of systems that combine utility-scale renewable energy
and energy storage technologies, Renewable and Sustainable Energy Reviews, Volume 139, 2021, 110711, NREL | 8
ISSN 1364-0321, https://doi.org/10.1016/j.rser.2021.110711. — used with permission
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What is a hybrid energy system?
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Coordinated operations
of constituent technologies

g \\ ” \_‘_

(4 (4
I\\t,/} ll\\_t/ :
Technology 1 Technology 2

AC Buses
™ 7™ 7™

r ™ T ™ T

I Y R Bulk Grid
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and energy storage technologies, Renewable and Sustainable Energy Reviews, Volume 139, 2021, 110711, NREL | 9
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What is a hybrid energy system?
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What renewable energy systems are being

considered for offshore hybrid installation?
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Image from NREL Laboratory Directed Research and Development funded project “Energy Clusters Offshore (ECO)” (see funding statement slide) NREL | 11



The types of energy systems that are most

complementary depend on the location.
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Used with permission from the author
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Inflation Reduction Act: Policy Considerations

Policy PTC * H, PTC **
% (S/kWh) | (S/kg-H,)

*  Three common scenarios:
— No Policy — Baseline
— Base — Lowest 100% value
— Max/Bonus — includes 5X and bonus

values No Policy O
*  Provision can be stacked 5 PTC 0 0.003 0.60
e Additional considerations: ase ' :
— Prevailing wage and apprenticeship (5X) Max PTC 0 0.015 3.00
— Domestic content bonus (10%)
— Energy Community bonus (10%) BOnUS PTC 0 0.0165 300
— Internal Revenue Code (IRC) Section 45Q
carbon capture, utilization, and storage Base ITC 6 0 0.60
(CCUS) credit
. “Base” $17/ton Max ITC 30 0 3.00
* Prevailing wage $85/ton Bonus ITC 40 0 3.00
* =1992 dollars ITC = investment tax credit
** =2022 dollars PTC = production tax credit

NREL | 13



Example Systems that Have Been or

Are Being Built

Integrated systems

FPP — Floating Power Plant
- Floating wind and wave
- Tested in-ocean.

W2Power — Enerocean
- Floating wind and wave
- Only wind tested in-ocean.

Note: All of these are in Europe or Asia.

Connected systems

Crosswind (Joint Venture)
- Anticipating operational 2023
- Primarily a wind farm
- Small scale hybrid (1 turbine)
- Fixed wind, floating solar, batteries,
and hydrogen.

Haiyang
- Existing wind farm

- Hybrid operational 2022
- Fixed wind, floating solar.

NREL | 14


https://www.floatingpowerplant.com/
https://enerocean.com/
https://www.crosswindhkn.nl/
https://oceansun.no/project/haiyang-offshore/

Floating Power Plant (FPP) Hybrid Floating Platform

FLOATING POWER PLANT

When energy is absorbed, The windturhine yaws
the wave height reduces, independently to face
securing easy and safe the wind
access for maintenance —
purpos =
R | The FPP platform passively
— . W to face the waves

https://reneweconomy.com.au/first-full-scale-hybrid-floating-wind-and-wave-energy-platform-bound-for-canary-islands/ NREL | 15



OceanSun — Haiyang Plant

NREL | 16

Used by permission



Crosswind

crosswiND €D
An intelligent wind farm

The wind doesn’t always blow consistently. So how can a wind farm provide electricity when there is little wind? CrossWind
and its partners are exploring five different innovations designed to address these challenges. Through these innovations an
offshore wind farm is capable of providing electricity, no matter the wind conditions.

1. Addressing the wake effect

‘\
5\‘5
The wake effect describes how wind can slow o = |
after hitting o turbine, affecting those situated 5. Research and integration o ‘
further afield. CrossWind is looking at ways of CrassWindis looking at apportunitiss to integrate 4
using reaktime data to reduce this acrass the these innavations within the wind farm We have Y
entire wind farm commissionad further ressarch to assess its f |
feasibility. Our aim isto halp the warld build i
intelligent wind farms that can align supply with
demand of renewable energy and to further power
the transitioninto a lowercarbon futura

3. Floating solar energy

What about times whan there is simply not
encugh wind to turn a turbine? CrassWind
and its partners are experimenting with
flaating solar panels that could sit alongside
the wind turbines and help to delivermare

i ]
&

consistent energy ‘:‘_‘-:
S~
S,
S
2. Intelligent wind turbines 1 e ) —y ~ Baseload power hub
Cross\Wind A;llnd llt.'. partners ure{floring a 4. Storing energy
range of technologies that can help wind o7 :
turbines in a range of conditions Using real- a & NN Yo Siotayeats S gy {n Tinsegt

low demand to supply itin times when demand
15 high? CrassWind'and its partners are
explating energy storage solutions of batteries
and even a hydrogen plant on site that

time data, intelligent wind turbines can
respond to changing conditions within
seconds and help to kesp stability across the

energy grid praduces, stores and converts hydrogen flom
- slectricityto power, v .
i k. ¢ : ’ Augus2022°
) o » 4 Y = F 1} v & ‘. o - - &

‘ ) NREL
Used by permission !



Crosswind

CROSSW/IND

From wind farm to integrated energy plant

Pilot scale

@ Seawater desalinator €} Hydrogen storage
€ Electrolyser © Fuel cell/hydrogen offtaker
@ Pump ' Battery

Copyright of Shell International BV.

Used by permission

August 2022
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How will these systems be connected?

TX iz
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Gulf of Mexico

https://www.energy.gov/sites/default/files/2022-09/offshore-wind-market-report-2022-v2.pdf
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How will these systems be connected?
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How will these systems be connected?
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How will these systems be connected?
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How will these systems be connected?
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How will these systems be connected?
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Example Offshore Hybrid Energy System

Wind + hydrogen production + hydrogen storage



Systems to Consider in Design

Electricity Electricity
Generation Transport

Hydrogen Hydrogen
Production Storage

Desalination

Hydrogen
Transport
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Photo from Lyfted Media for Dominion Energy — NREL image gallery image 72357
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Graphic by John Frenzl, NREL
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Photo from Siemens AG — NREL image gallery image 27865

Electricity Transport

Bend Stiffeners

NC Buoyancy Modules
o
3
> - Dynamic Power Cable
Touchdown Protection
//,
In-line Stress Termination - A

Static Power Cable o

A -

lllustration by Joshua Bauer, NREL — NREL image gallery image 66313

Photo by Deb Lastowka, NREL — NREL image gallery image 54474



Desalination

Photo by Warren Gretz/NREL — NREL image gallery

image 12519 NREL | 29




Hydrogen Production

NREL | 30



Hydrogen Transport

Photo by Dennis Schroeder, NREL —
NREL image gallery image 40033

Hydrogen Blending as a Pathway Toward U.S. Decarbonization NREL | 31
Jan. 24,2023, Photo from Natasha Nguyen, Contact media relations


https://www.nrel.gov/news/index.html#contacts

Hydrogen Storage

Photo by Werner Slocum, NREL — NREL image gallery image 6636 Photo from Creative Commons, licensed under CC BY-SA-NC



https://www.iybssd2022.org/easac-commentary-on-hydrogen-and-synthetic-fuels/
https://creativecommons.org/licenses/by-nc-sa/3.0/

Physical Scenarios

Scenario

E
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HVDC = high-voltage direct current
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Example 700-MW Offshore H, Plant

(a) Onshore plant (b) Offshaore plant
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Note: Not for engineering design. These figures are only intended to show relative size and general location

X o . NREL | 34
Generic size, size not calculated for actual plant.



Example 700-MW Offshore H, Plant

(a) Onshore plant
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Example 700-MW Offshore H, Plant

(a) Onshore plant
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Example 700-MW Offshore H, Plant

(a) Onshore plant
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* Generic size, size not calculated for actual plant.
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Where will offshore hybrid energy systems likely be

built in the United States?

These are preliminary results for DOE funded by HFTO and WETO
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Preliminary Results

Configuration 1
HVDC electrical

transmission to shore with

H; production onshore

Configuration 2

(Centralized offshore H,
production transmitted to
shore via pipeline
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Conclusion




Key Takeaways for Offshore Hybrids Systems

There is significant interest in offshore hybrid systems as we
target our offshore wind deployment goals, Floating Offshore
Wind Shot™, and offshore hydrogen/fuel production.

Offshore hybrid energy systems can maximize the use of offshore
infrastructure, and minimize the risk of transmission build out.

Offshore hybrid systems usually include large areas and will likely
be on the scale of gigawatts per lease area.

The Inflation Reduction Act will drive near-term investment.

NREL | 41



Research Question Areas

* |Improved hybrid system design
* Cost reductions
e Operational improvements
* Environmental benefits
* Powerto X
e Grid services
* Hazard prevention and protection
e Adversarial hazards (cyber and physical)
* Natural hazards
e Connections between natural and adversarial hazards

NREL | 42



NREL Hybrid Capabilities and Tools

Integration and
Optimization

The REopt® techno-
economic decision

support platform is used
by NREL researchers to

optimize energy

systems for buildings,

campuses,
communities,

microgrids, and more.

© REOpt

Renewable Energy

SAM

The System
Advisor Model
(SAM) is a free
techno-
economic
software model
that facilitates
decision making
for people in the
renewable
energy industry.

ReEDs

NREL designed the
Regional Energy
Deployment
System (ReEDS) to
simulate electricity
sector investment
decisions based
on system
constraints and
demands for
energy and
ancillary services.

HOPP

The Hybrid
Optimization and
Performance
Platform (HOPP) is
a software tool
(part of the NREL
suite of systems
engineering tools)
that enables
detailed analysis
and optimization
of hybrid power
plants down to the

component level. e | 43
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