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The progression of electrification in the building and transportation sectors brings new opportunities for energy 

decarbonization. With higher dependence on the grid power supply, the variation of the grid carbon emission in- 

tensity can be utilized to reduce the carbon emissions from the two sectors. Existing coordinated control methods 

for buildings with distributed energy resources (DERs) either consider electricity price or renewable energy gen- 

eration as the input signal, or adopt optimization in the decision-making, which is difficult to implement in the 

real-world environment. This paper aims to propose and validate an easy-to-deploy rule-based carbon responsive 

control framework that facilitates coordination between all-electric buildings and electric vehicles (EVs). The 

signals of the grid carbon emission intensity and the local photovoltaics (PV) generation are used for shifting the 

controllable loads. Extensive simulations were conducted using a model of an all-electric mixed-use community 

in a cold climate to validate the control performance with metrics such as emissions, energy consumption, peak 

demand, and EV end-of-day state-of-charge (SOC). Our study identifies that 4.5% to 27.1% of annual emission 

reduction can be achieved with limited impact on energy costs, peak demand, and thermal comfort. Additionally, 

up to 32.7% of EV emission reduction can be obtained if the EV owners reduce the target SOC by less than 21.2%. 
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. Introduction 

To combat climate change, research and technologies for decar-

onization are advancing rapidly all over the globe. In the United States,

he building and transportation sectors together accounted for 72% of

he total energy-related carbon dioxide ( CO 2 ) emissions in 2021 [1] .

lectrification in these two sectors provides new opportunities for re-

ucing carbon emissions. For instance, state and municipal building

odes in the United States [2] are beginning to require buildings to be-

ome all-electric. Moreover, electric vehicle (EV) penetration rates are

ising globally —nearly 10% of all cars sold worldwide in 2021 were

lectric [3] . 

Given the persistent electrification of new buildings and vehicles, a

igher dependence on the power grid is expected from the transporta-

ion and building sectors. Further, due to lasting changes in the grid

ower generation mix, the grid carbon emission intensity is fluctuating.

herefore, there is great potential to utilize time-varying grid carbon

mission intensity in building and EV load control. More specifically,

hifting building and EV charging loads from higher-intensity hours to

leaner hours in response to grid carbon intensity signals can reduce

arbon emissions and thus help achieve decarbonization goals. 

Existing research on emission reduction-driven control for build-

ngs or EVs is primarily focused on optimization-based methods, where
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ptimization techniques are used to design control strategies that

chieve desired system behavior while minimizing selected perfor-

ance metrics. Leerbeck et al. [4] developed a model predictive con-

rol (MPC) based heat pump controller for building space heating.

he control inputs include weather and CO 2 emission forecasts. Re-

ults showed that approximately 16% of CO 2 emission reduction was

chieved in well-insulated new buildings with floor heating systems.

asser et al. [5] studied building flexibility using MPC, where air-source

eat pumps for space heating and EVs were involved as controllable

oads. When carbon emissions were considered in the objective func-

ion, up to 21% of emissions were reduced compared to the baseline.

ixon et al. [6] investigated coordinated charging of EVs to reduce CO 2 
missions while absorbing excess wind generation. It was found that the

verage emissions rate of 35–56 g CO 2 ∕ km from traditional EV charging

an be reduced to 28–40 g CO 2 ∕ km by controlled charging. 

Some studies adopt reinforcement learning (RL) techniques in emis-

ion reduction related building control. Jeen et al. [7] proposed a prob-

bilistic emission-abating RL algorithm, which only requires a short pe-

iod of active training and does not need building-specific simulators or

ata a priori. In their experiments across three varied building energy

imulations, the proposed RL algorithm outperformed an existing rule-

ased controller and other popular RL baselines by as much as 31% in

erms of building emissions. 
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Table 1 

Summary of literature on building and EV emission reduction-driven control, revealing a focus on single buildings in building studies and larger scales in EV studies. 

The literature shows a lack of rule-based coordination at the community-scale level for buildings and EVs. 

Reference Objective Scale Control method Controlled system DERs 

[4] Emission reduction Building (house, office) MPC HVAC None 

[5] Emission and cost reduction, flexibility Building (multifamily) MPC HVAC, DHW, TES, EV PV, TES 

[ 12 ] Emission and cost reduction, thermal energy Building (apartment) MPC HVAC, DHW TES 

[ 13 ] Emission reduction Grid Optimization EV N/A 

[6] Emission reduction, less wind curtailment Grid Optimization EV Wind 

[ 14 ] Emission reduction Traffic analysis zone Optimization EV N/A 

[7] Emission reduction Building (mixed-use, office, seminar center) RL HVAC None 

[ 9 ] Emission, cost, and peak load reduction Building (residential) Rule-based HVAC, DHW TES 

[ 10 ] Emission reduction Community (residential) Rule-based HVAC, DHW, battery PV, battery, TES 

[ 11 ] Emission reduction Community (mixed-use) Rule-based EV None 

Proposed work Emission reduction Community (mixed-use) Rule-based HVAC, EV, battery PV, battery, TES 
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Despite the advancement of optimization-based building and EV con-

rollers in research, rule-based controllers are still the dominant con-

rollers used in most real-world applications in buildings and EV charg-

rs. This type of control strategy design typically involves defining a set

f rules or logical statements to determine the appropriate control ac-

ions for a given system state. When carefully designed, some rule-based

ontrollers perform comparably to optimization-based ones and become

ood alternatives [ 8 ]. Clauß [ 9 ] studied predictive rule-based control for

educing the CO 2 equivalent greenhouse gas emissions ( CO 2 𝑒𝑞. ). The heat

ump system for a Norwegian single-family detached house was con-

rolled with historical weather and CO 2 𝑒𝑞. emission data from 2015 as

nputs. They identified limited annual CO 2 𝑒𝑞. emission reductions due to

mall daily fluctuations in the Norwegian electricity grid CO 2 𝑒𝑞. intensi-

ies. In the authors’ previous publications, rule-based carbon responsive

ontrol frameworks were designed and applied to building heat pump

ystems [ 10 ] and EV charging loads [ 11 ], respectively. Up to 20.5% of

nnual household carbon emissions and 12.7% of EV charging emissions

ere achieved through the proposed control algorithms. 

Table 1 summarizes relevant literature on emission reduction-driven

ontrol work for buildings and EVs. From the table, we see that most

uilding emission control studies focus on single buildings, while EV re-

ated emission control considers a much larger scale, such as the grid or

raffic analysis zone. As previously mentioned, optimization is still the

ominant control method for emission reduction-driven control in the

iterature. Here, “optimization ” refers to unspecified optimization meth-

ds other than MPC and RL. Heating, ventilating, and air-conditioning

HVAC) systems and domestic hot water (DHW) systems are the most

ommon controlled systems in building emission control work. In terms

f distributed energy resources (DERs), some studies involve renewable

nergy generation such as photovoltaics (PV) and wind. Temporal ar-

itrage such as electric batteries and thermal energy storage (TES) are

lso considered in some cases. Here, TES mainly refers to the hot water

anks in building DHW systems. Note that unless listed in the “controlled

ystem ” column, the DERs here are not necessarily controlled. Based on

he literature review, there is a lack of rule-based community-scale coor-

ination of buildings and EVs in the current state of the art of emission

eduction control. 

In this work, we propose a rule-based control algorithm for coordi-

ating building loads and EV charging loads to decarbonize energy use,

ith the presence of PV generation and batteries. Note that because we

ocus on the operational stage of buildings, embodied carbon emissions

re not within the discussion scope of this work. Forecasts of the grid

arbon emission intensity are used as inputs for decision-making, where

e assume the input data are perfect forecasts. The control algorithm

as been validated on the model of an all-electric, mixed-use commu-

ity being constructed in Denver, Colorado, United States. Through the

imulation case study, the impact of the emission reduction control al-

orithm on energy use, costs, peak demand, thermal comfort, and DER

erformances will be discussed. This work aims to answer the following

esearch questions: 
2 
• How should we coordinate building loads with EV charging loads to

reduce operational carbon emissions through rule-based control? 

• What extra considerations need to take place if DERs such as PV and

batteries are present? 

• How does such emission reduction control affect energy use and

costs, peak demand, and occupant thermal comfort? 

The remainder of this paper is organized as follows:

ection 2 presents the overall workflow and the research methodology

f the proposed emission reduction control framework. Section 3 de-

cribes the case study community and the simulation inputs for the case

tudy. Section 4 discusses the simulation results with various metrics

uch as emissions, energy, cost, and thermal comfort along with a

ensitivity analysis. Section 5 concludes the work and recommends

uture topics for further study. 

. Methodology 

The overall workflow of this paper is shown in Fig. 1 . The com-

unity building energy models with EV loads are first built in the

RBANopt TM [15,16] modeling platform. In this community model,

he buildings are adapted from DOE prototypical building model 90.1-

009 templates, which were developed to reflect the energy efficiency

equirements of the ASHRAE Standard 90.1-2009 [17] in commercial

uildings. The EV loads are pre-generated EV charging profiles from

VI-Pro [18,19] . Details about the modeling of the community can

e found in reference [20] . Based on the community energy model,

Eopt TM [21] is then used to optimally size the DERs. Using the annual

uilding energy profiles simulated from Step 1, REopt optimizes the PV

nd battery sizes with mixed-integer linear programming based on as-

umptions about PV energy production, battery characteristics, equip-

ent costs, financing options, and incentives and tax credits, etc. It is

oted that the PV sizes in this work were designed to meet annual net

ero energy goals at each building level. 

Following Step 2, the control algorithms are then implemented with

penStudio TM measures and integrated into the URBANopt workflow.

wo different control measures, namely the baseline control and the

oordinated control are implemented separately. The detailed control

lgorithms will be introduced in the following subsections. Finally, an-

ual energy simulations are conducted and the results for the coordi-

ated control scenario are evaluated using selected metrics against the

aseline scenario. 

.1. Coordinated control 

The proposed coordinated control algorithm coordinates the build-

ng HVAC system, EV charging, and battery charging/discharging for

perational carbon emission reduction based on inputs of grid carbon

ntensities and local PV generation. The flowchart in Fig. 2 visualizes the

ecision-making process of the proposed rule-based controller, which re-

eats daily. Conceptually, it can be divided into net-load determination,
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Fig. 1. The workflow of this paper, which involves building community energy models with EV loads in URBANopt and optimizing the DERs using REopt. OpenStudio 

measures are then used to implement control algorithms, and annual energy simulations are conducted to evaluate the results of the coordinated control scenario 

against the baseline scenario. 
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mission reduction control rules, HVAC and EV control, battery control,

nd grid power calculation. 

The interconnection between each part of the control logic is de-

cribed as follows. Depending on whether the building uses electricity

rom the grid, the controller will adopt different strategies. If the build-

ng is using grid electricity (i.e., net-load is positive), emission reduction

ontrol rules will be implemented, adjusting the zone HVAC setpoints

nd EV charging loads according to the grid’s carbon intensity. The bat-

ery will only discharge when using grid electricity, and only if the grid

arbon intensity is high. On the other hand, if PV power generation can

over the total building load (i.e., net-load is negative), the building will

onsume PV energy first. In this case, the controller will adopt the same

ontrol actions as it does when the grid power is clean. Additionally in

his case, the battery will be charged using local PV energy after the

uilding loads are satisfied. The details for each part of the control are

escribed in the remainder of this subsection. 

Net-load determination To determine whether the building is using the

lectricity from the grid or the locally generated PV energy, the net-load

eeds to be calculated by subtracting the PV generation from the total

uilding load. Because the building load at the current timestep is not

nown before making the control decisions, here we use the load from

he last timestep for estimating the net-load ( 𝑃 𝑡 −1 
𝑙𝑜𝑎𝑑 

− 𝑃 𝑡 
𝑝𝑣 
) . If positive, it

eans the building is using the grid electricity, and the carbon emission

eduction control mechanism kicks in. Conversely, if negative, clean lo-

al PV energy is used, and we increase the HVAC and EV loads to enable

oad shifting to cleaner hours. This could also potentially increase the PV

elf-consumption rate. Here we note that using the building load from

he last timestep in the net-load calculation might lead to a discrepancy

etween the predicted and actual net-load. This, in some cases, will fur-

her lead to a frequent change of the sign of the net-load, and thus result

n controlled load fluctuations. Enlarging the control timestep as we did

n this paper or having a feedback loop can mitigate the problem. 

Based on the authors’ earlier study [ 10 ] where various emission re-

uction controllers were compared, enabling carbon net-metering will

esult in better control performance such as lower carbon emissions.

herefore, we introduce both energy and carbon net-metering in this

ork. This means for the PV energy exported back to the grid, the pro-

umer will obtain both energy and emission credits to offset its total

nergy usage and carbon emissions. 

Emission reduction control rules The emission reduction control takes

ffect when the building net-load is positive. It shifts the controllable

oads (i.e., HVAC and EV) to hours with lower carbon emission intensi-

ies based on the grid emission signals. To accomplish this, a common

ethod is to divide the carbon intensity data range into several regions,

here each region correlates with one type of control action [ 9 ]. In this

aper, we divide the carbon emission data range into three regions with

wo thresholds, the higher threshold (HT) and the lower threshold (LT).

etween the two thresholds, default HVAC system setpoints 𝑇 𝑠𝑒𝑡,𝑑𝑒𝑓𝑎𝑢𝑙𝑡 
3 
nd moderate EV load shifting will be implemented. When above the

T, less HVAC and EV loads will occur, and vice versa. The values of

he HT and LT are carefully selected through a sensitivity analysis in-

roduced in Section 4.1 . 

HVAC and EV control The HVAC system is controlled through zone

hermostat setpoint control. The default setpoints 𝑇 𝑠𝑒𝑡,𝑑𝑒𝑓𝑎𝑢𝑙𝑡 are the same

s those in the baseline. Below the LT, which is the clean zone, the

 𝑠𝑒𝑡,𝑐𝑙𝑒𝑎𝑛 will be implemented, and vice versa. To maintain occupant ther-

al comfort, we designed the 𝑇 𝑠𝑒𝑡,𝑐𝑙𝑒𝑎𝑛 to be 1 °C lower than the 𝑇 𝑠𝑒𝑡,𝑑𝑒𝑓𝑎𝑢𝑙𝑡 
or space cooling and 1 °C higher for space heating. For 𝑇 𝑠𝑒𝑡,𝑢𝑛𝑐𝑙𝑒𝑎𝑛 , it is

 °C above the 𝑇 𝑠𝑒𝑡,𝑑𝑒𝑓𝑎𝑢𝑙𝑡 for cooling and 1 ◦C below for heating. The

lean setpoints 𝑇 𝑠𝑒𝑡,𝑐𝑙𝑒𝑎𝑛 are also adopted when the building net-load is

egative and PV energy is used. 

The EV charging control adjusts the charging power 𝑃 𝑡 
𝑒𝑣 

through a

imilar algorithm. Because the EV loads in this work are modeled as

re-generated accumulated load profiles for each building instead of

rrival and departure events for each individual EV, we used the original

V load profiles as the baseline and shifted the loads based on them.

or the unclean hours (i.e., intensity higher than HT), zero EV charging

ower is dictated. We note that in the real world, standards will require a

inimum non-zero charging power to keep the charging process active.

he zero EV charging power here is assumed for simplification. For the

our that lies between the HT and LT, EV power is calculated using the

ollowing equation: 

 

𝑡 
𝑒𝑣 

= (1 − 

𝑒 𝑡 − 𝐿𝑇 

𝐻𝑇 − 𝐿𝑇 
) ∗ 𝑃 𝑡 

𝑜𝑟𝑖𝑔 
, (1)

here 𝑃 𝑡 
𝑜𝑟𝑖𝑔 

is the originally scheduled EV power in the baseline. The 𝑒 𝑡 

epresents the grid emission intensity at the current timestep 𝑡 , which

ies in between LT and HT. Therefore, this equation ensures that when

he carbon intensity is larger than LT, EV load will be curtailed. The

loser it is to HT (i.e., unclean), the smaller the EV power. 

For the clean hours (i.e., intensity lower than LT or net-load nega-

ive), a load compensation for the accumulated curtailed EV energy for

he day will be implemented. The power for curtailment compensation

s calculated by: 

 

𝑡 
𝑒𝑣 

= 𝑃 𝑡 
𝑜𝑟𝑖𝑔 

+ 

𝐸 

𝑡 
𝑐𝑢𝑟𝑡 

Δ𝑡 
, (2)

here 𝐸 

𝑡 
𝑐𝑢𝑟𝑡 

is the accumulated curtailed EV energy for the day until the

urrent timestep; Δ𝑡 is the control timestep. During the compensation,

he effective EV power 𝑃 𝑡 
𝑒𝑣 

is larger than the original power 𝑃 𝑡 
𝑜𝑟𝑖𝑔 

. In this

ay, the EV load is shifted from the unclean hours to the clean hours.

o mitigate the potential peak demand increase issue due to EV load

hifting, an upper limit for 𝑃 𝑡 
𝑒𝑣 

is set as the maximum charging power of

he EV charger, which varies with the building size. Additionally, when

he compensation is using PV energy, the effective EV load cannot be

reater than the absolute net-load value ( 𝑃 𝑡 
𝑝𝑣 

− 𝑃 𝑡 −1 
𝑙𝑜𝑎𝑑 

) to avoid flipping

igns of the net-load. 
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Fig. 2. The flowchart illustrates the decision-making process of the proposed coordinated control algorithm for building HVAC systems, EV charging, and battery 

charging/discharging based on grid carbon intensities and local PV generation. The process includes net-load determination, emission reduction control rules, HVAC 

and EV control, battery control, and grid power calculation. 
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At the end of each timestep, the total curtailed EV energy is updated

ith the following equation: 

 

𝑡 +1 
𝑐𝑢𝑟𝑡 

= 𝐸 

𝑡 
𝑐𝑢𝑟𝑡 

+ 𝑃 𝑡 
𝑐𝑢𝑟𝑡 

∗ Δ𝑡. (3)

onsidering the fact that the EVs parked at the same building change

ach day, we need to evaluate the EV charging control performance

n a daily basis. Therefore, at the starting operational hour 𝑡 𝑠𝑡𝑎𝑟𝑡 of the

uilding each day, the total curtailed EV energy of the day before will

e reset to zero. Further, the EV battery state of charge (SOC) at “the

nd of the day ” will be evaluated at one timestep before 𝑡 𝑠𝑡𝑎𝑟𝑡 . 

Battery control The battery will only be charged when there is surplus

V generation and the battery is not full. The battery charging power is

onstrained by the following equation: 

 

𝑡 
𝑏𝑎𝑡 

= min ( 𝑃 𝑡 
𝑝𝑣 

− 𝑃 𝑡 
𝑙𝑜𝑎𝑑 

, 𝑃 max 
𝑏𝑎𝑡 

, 𝐸 

max 
𝑏𝑎𝑡 

(1 − 𝑆𝑂𝐶 

𝑡 
𝑏𝑎𝑡 

)) , (4)

here 𝑃 max 
𝑏𝑎𝑡 

is the maximum battery charging power limit; 𝐸 

max 
𝑏𝑎𝑡 

is the

attery energy capacity; and 𝑆𝑂𝐶 

𝑡 
𝑏𝑎𝑡 

is the current battery SOC. The

uilding load at the current timestep 𝑃 𝑡 
𝑙𝑜𝑎𝑑 

is used because battery power

s calculated after the controllable loads are determined. The battery

ischarging only happens when the grid carbon intensity is higher than

T. In this case, the battery power will be used before the grid power

icks in. The battery discharging power is constrained by the following

quation: 

 

𝑡 
𝑏𝑎𝑡 

= − min ( 𝑃 𝑡 
𝑙𝑜𝑎𝑑 

− 𝑃 𝑡 
𝑝𝑣 
, 𝑃 max 

𝑏𝑎𝑡 
, 𝐸 

max 
𝑏𝑎𝑡 

( 𝑆 𝑂𝐶 

𝑡 
𝑏𝑎𝑡 

− 𝑆 𝑂𝐶 

min 
𝑏𝑎𝑡 

)) , (5)

here 𝑆𝑂𝐶 

min 
𝑏𝑎𝑡 

is the minimum allowed battery SOC. After the battery

ower is determined at each timestep, the battery energy is then updated

ith the following equation: 

 

𝑡 +1 
𝑏𝑎𝑡 

= 𝐸 

𝑡 
𝑏𝑎𝑡 

+ 𝑃 𝑡 
𝑏𝑎𝑡 

Δ𝑡. (6)

Grid power calculation Finally, the electric power draw from the grid

s calculated with the following power balance equation: 

 

𝑡 
𝑔𝑟𝑖𝑑 

= 𝑃 𝑡 
𝑙𝑜𝑎𝑑 

+ 𝑃 𝑡 
𝑏𝑎𝑡 

− 𝑃 𝑡 
𝑝𝑣 
, (7)

here a positive value indicates using electricity from the grid, and a

egative value indicates the backfeeding of electricity. 

.2. Baseline control 

The baseline control does not include any carbon reduction algo-

ithms. Instead, for the HVAC system, the default heating and cooling

hermostat setpoints are used. The EV loads adopt the original pre-

enerated load profiles as previously mentioned. The battery control

ses a default electricity price-driven control logic shown in Fig. 3 . Sim-

lar to the coordinated control, this flowchart repeats everyday for the

aseline scenario. 

At the beginning of each timestep, the net-load of the building

 𝑃 𝑡 
𝑙𝑜𝑎𝑑 

− 𝑃 𝑡 
𝑝𝑣 
) needs to be calculated. Because the total building load will

e known before the battery power post-processing, the building load

 

𝑡 
𝑙𝑜𝑎𝑑 

will be used for the net-load calculation. Similar to the coordinated

ontrol, the battery will only be charged when the net-load is negative

nd the battery is not full. A mathematical description of this logic is

hown in Eq. (4) . Given that the utility rate structure will have peak

emand charges, which typically make up a significant portion of en-

rgy bills, the battery discharging should help mitigate the peak build-

ng loads and thus reduce total energy bills. Therefore, the battery in

he baseline scenario only discharges when it is the peak hour for res-

dential buildings or peak month (i.e., months with a higher demand

harge) for commercial buildings. The same mathematical description

or battery discharging shown in Eq. (5) can be applied here. At the end

f the timestep, the grid power will be calculated through the power

alance in Eq. (7) . The battery SOC will be updated with Eq. (6) . 

.3. Evaluation metrics 

The performance of the emission reduction control is evaluated from

ultiple perspectives. First, annual operational carbon emissions from
5 
he total building loads, as well as those from the HVAC system and

Vs, are compared between the controlled scenario and the baseline.

he following equation calculates the annual operational emissions: 

 = 

𝑁 ∑

𝑡 =1 
𝑒 𝑡 

CO 2 
𝑃 𝑡 
𝑔𝑟𝑖𝑑 

Δ𝑡, (8)

here 𝑁 is the total number of simulation timesteps in a year, and 𝑒 𝑡 
CO 2 

epresents the marginal carbon intensity of the grid power generation

ix at each timestep. Carbon net-metering is considered in the calcu-

ation, meaning that the PV energy exported back to the grid brings in

oth renewable credits and carbon emissions offsetting benefits. 

The annual energy consumption and cost are calculated to facilitate

he analysis. Because energy net-metering is considered, both the gross

nnual building energy consumption and the net energy consumption

re evaluated. Eq. (9) defines the annual net energy consumption: 

 𝑛𝑒𝑡 = 

𝑁 ∑

𝑡 =1 
( 𝑃 𝑡 

𝑙𝑜𝑎𝑑 
− 𝑃 𝑡 

𝑝𝑣 
) Δ𝑡, (9)

here 𝑃 𝑡 
𝑙𝑜𝑎𝑑 

is the total building power demand at each timestep 𝑡 , and

 

𝑡 
𝑝𝑣 

is the PV generation at each timestep. Similar to the operational

missions calculation, the energy cost is obtained by multiplying the

ourly grid power with the corresponding time-of-use rate. The detailed

tility rate structure is introduced in Section 3 . 

The grid impact of the control is evaluated with the monthly peak de-

and as power distribution system planning is mainly dependent on the

egional peak demand. The impact on occupant thermal comfort is quan-

ified by the predicted mean vote (PMV) values of the building thermal

ones. According to ASHRAE Standard 55 [22] , it is calculated based on

he measured air velocity, air temperature, mean radiant temperature,

elative humidity, and the expected clothing level and metabolism rate

f the occupants. The calculated PMV values in the OpenStudio build-

ng models for each thermal zone are averaged for the whole building

valuation. 

Finally, selected DER performances are compared between the con-

rolled and baseline scenarios. The EV battery SOC is calculated to see

ow much the emission reduction control affects EV drivers’ need for a

ull battery at the end of the day. Because no arrival or departure events

re modeled in this work, the EV battery SOC at the timestep before 𝑡 𝑠𝑡𝑎𝑟𝑡 
n Fig. 2 is used instead. The PV self-consumption rate (SC) is expressed

ith the following equation: 

𝐶 𝑝𝑣 = 1 − 

∑𝑁 

𝑡 =1 𝑃 
𝑡 
𝑏𝑎𝑐𝑘 

Δ𝑡 
∑𝑁 

𝑡 =1 𝑃 
𝑡 
𝑝𝑣 
Δ𝑡 

, (10)

here 𝑃 𝑡 
𝑏𝑎𝑐𝑘 

is the backfeeding PV power, and 𝑃 𝑡 
𝑝𝑣 

is the total generated

V power. 

. Case study 

The performance of the proposed control algorithm is validated on

 model of a mixed-use community under construction in Denver, Col-

rado, United States. The region has a cold and dry climate and is clas-

ified as climate zone 5B according to ASHRAE Standard 169 [23] . The

lanned community will have 148 buildings, most of which are large

ommercial buildings. Figure 4 visualizes the community with color-

oded building types. The detailed building types include: 36 multifam-

ly, 23 office, 19 retail with food service, 15 office with retail, 14 strip

hopping mall, 12 stand-alone retail, 6 outpatient health care, 4 large

otel, and 3 middle school. The floor areas of those buildings range from

22 to 47,283 square meters. 

The community is designed to be all-electric except some natural

as usage in food service buildings for cooking. In terms of the HVAC

ystem type, air-source heat pumps are used in residential buildings.

ackaged rooftop heat pumps, packaged variable air volume (VAV) with

arallel fan-powered (PFP) boxes, or VAV chiller with PFP boxes are

sed in commercial buildings depending on the number of floors and
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Fig. 3. The default electricity price-driven 

control logic used for battery control in the 

baseline scenario. It calculates the net-load of 

the building at the beginning of each timestep 

to ensure the battery only charges with local 

PV energy. The battery only discharges dur- 

ing peak building loads to help reduce total 

energy bills. 
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oor area [24] . The water heating systems are also electric. In food

ervice buildings (i.e., restaurants), some natural gas usage remains for

he natural gas-fueled cooking equipment, which aligns with Denver’s

et Zero Energy (NZE) implementation plan [2] . The natural gas use is

mall compared to the electric loads and thus not included in the NZE

alculations. 

Electricity rates from local utility company Xcel Energy [25] are used

o calculate the energy costs and implement the battery control in the

aseline. Table 2 shows the rate structure for residential and commer-

ial buildings separately [26,27] . The renewable energy credit (REC)

epresents the payment from utilities for the surplus PV generation in

ustomer premises. 

The grid carbon intensity data from the Cambium data set [28] are

sed in our case study. Cambium is based on modeled future scenarios
6 
f the U.S. electricity sector and provides forecast of future grid carbon

ntensities through 2050. More specifically, the 2022 hourly short-run

arginal carbon emission data from the Cambium 2021 Mid-case 95

y 2035 scenario for Denver’s local balancing authority is used in our

nalysis. This scenario assumes the CO 2 emissions in the U.S. power

ector decrease to 95% below 2005 levels by 2035 and are net zero by

050. The carbon intensity profile used in this work ranges from 0 to

991.7 kg/MWh, with a mean value of 983.5 kg/MWh. Figure A.1 plots

he 2022 annual grid carbon intensity profile. Under the same scenario,

he maximum carbon intensity drops to 948.0 kg/MWh, and the mean

alue drops to 278.8 kg/MWh for 2050. 

Typical meteorological year 3 (TMY3) data for the weather sta-

ion near Denver International Airport are used as the simulation

eather data. As mentioned above, EV charging load profiles are
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Table 2 

Local electric utility rates for residential and commercial customers, including fixed charge, energy 

charge, and demand charge. Energy net-metering is enabled. Table was first used in Wang et al. [20] . 

Item Residential rate Commercial rate 

Fixed charge ($/month) 5.58 39.3 

Energy charge ($/kWh) 0.03035 (off-peak); 0.04631 (on-peak) 0.040246 

Demand charge ($/kW) 12.33 (Oct.–May); 15.54 (Jun.–Sep.) 18.45 (Oct.–May); 22.47 (Jun.–Sep.) 

Net-metering Yes Yes 

REC payment ($/kWh) 0.005 

Excess PV payment ($/kWh) 0.011 

Fig. 4. Three-dimensional rendering map of the mixed-use case study commu- 

nity located in Denver, Colorado, United States. The community is planned to 

have 148 buildings, most of which are large commercial buildings. Figure was 

first used in Wang et al. [20] . 
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Fig. 5. The results of the sensitivity analysis, comparing the annual carbon 

emissions of nine combinations of low and high thresholds for the proposed 

coordinated control algorithm. The greener the color, the lower the emissions 

are. The plot reveals that the combinations of 10&90 to 30&70 perform simi- 

larly, with the combination of 20&80 outperforming the others in terms of EV 

and whole building total emissions. 
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re-generated by EVI-Pro and then input into the simulation framework.

igure A.2 plots the EV charging profiles for one selected building in

ach building type of the community. Annual energy simulations with

n hourly timestep for 2022 was conducted for two scenarios: baseline

cenario and controlled scenario. The baseline scenario is designed to

e NZE on an annual basis. 

. Results and discussion 

This section first presents the sensitivity analysis results to justify the

ontrol threshold selection in this paper. Then, we discuss the perfor-

ance of the proposed emission reduction control algorithm in terms of

ts annual emission reduction potential and the underlying energy con-

umption changes. Its impact on building energy costs, peak demand,

nd thermal comfort will then be evaluated. Finally, the DER perfor-

ances such as the EV battery SOC and PV self-consumption rate are

ompared between the baseline and the controlled scenario. 

.1. Sensitivity analysis 

The control rules in rule-based controllers need to be carefully de-

igned to yield the best control results. For the proposed emission reduc-

ion controller in this work, the rule design is essentially to choose the

ontrol threshold values of the HT and LT. More specifically, the values

re selected based on the grid carbon intensity input data. Because the

istributions and ranges of the input data vary, percentiles are used to

efine the thresholds. 

As shown in Fig. 5 , nine evenly distributed combinations of HTs and

Ts were investigated and the annual carbon emission results are com-

ared with the baseline. The sensitivity analysis was conducted using

en sample buildings (one from each type) randomly selected from the

ommunity to save computational effort. In the plot, the greener the

olor, the lower the emissions are. From the figure, the performance
7 
f the combinations from 10&90 to 30&70 do not change drastically,

hile the remaining combinations perform noticeably worse. Looking

t the detailed annual carbon emissions data, the HVAC system emis-

ions, excluding the baseline, are lowest when using the combination of

5&65. For the EV and whole building total emissions, the combination

f 20&80 outperforms the others. Therefore, we chose to implement the

T of the 20th percentile with the HT of the 80th percentile of the car-

on intensity data in the proposed rule-based controller. Note that this

ule design is dependent on the input carbon data distribution along

ith the building load profiles, and is thus not applicable to all cases.

owever, the methodology for conducting the sensitivity analysis can

e adopted by similar studies. 

.2. Annual carbon emissions 

The whole building annual emissions show significant decreases

anging from 4.5% to 27.1% across different buildings, which is pri-

arily attributed to the 10.9%–32.7% EV emission reduction. Figure 6

hows the distribution of building annual total emissions, net emissions,

nd the emissions from the HVAC systems and EVs through violin plots.

ach point in the plots represents the annual emissions of one building.

n the upper left plot, more buildings are distributed in the lower half of

he violin for the controlled scenario and the maximum emissions value

rops from over 7000 tons/year to over 6000 tons/year. More drasti-

ally, in the upper right plot where carbon net-metering is considered,

 long tail of the violin for the controlled scenario is seen. This is caused

y more PV backfeeding into the grid, which considerably offsets the

nnual carbon emissions in some buildings. Comparing the emissions

rom the controlled loads, we see more prominent emission reductions

n the EVs than the HVAC systems, potentially due to the HVAC energy

ncreases explained in the following paragraph. Overall, the application

f the proposed emission reduction control algorithm has led to a sig-

ificant whole building emission reduction. The directly controllable

oads (i.e., EVs) perform better than thermostatically controllable loads

TCLs) (i.e., HVAC system). The emission reduction from TCLs can be

nhanced by adding thermal energy storage, which will be a topic for

ur follow-on work. 
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Fig. 6. Violin plots of the distribution of building annual total emissions, net 

emissions, and emissions from HVAC systems and EVs. Each point in the plots 

represents the annual emissions of one building. The application of the proposed 

emission reduction control algorithm has led to a significant whole building 

emission reduction, with more prominent emission reductions in the EVs than 

the HVAC systems. 
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Fig. 7. Violin plots of the distribution of building annual energy consumption, 

including total, net, EV, and HVAC energy. The figure highlights that shifting 

loads to lower carbon intensity hours can lead to effective emission reductions, 

which further indicates that not only the total energy consumption matters but 

also when it is consumed. 

Fig. 8. Violin plots of annual total energy costs and contributing components 

including the energy charge, demand charge, and PV credit. The energy charge 

shows a larger reduction than the demand charge and PV credit, with an average 

reduction of 7.5%. The total energy cost decreases by 0.7%, suggesting that the 

proposed controller is economically feasible. 

e  

l  

s

The analysis of the annual energy results in Fig. 7 proves that not

nly does the total energy consumption matter, but also when it is con-

umed matters. From the figure, we notice very similar distributions

etween the emissions and energy. Further, the NZE design of the base-

ine scenario makes its distribution violin a horizontal line in the up-

er right plot. On average, there are 1.0% total energy reductions with

1.9% EV energy reductions. The HVAC energy increases by 5.0% on

verage, potentially because of the emission reduction-driven objective

f the control algorithm and the standby heat losses of TCLs. Similar

ndings are discussed in Wang et al. [ 10 ]. However, for any of the load

ypes, the proportions of the energy changes are smaller than those of

heir emission changes. This showcases that the shifting of the loads to-

ard lower carbon intensity hours can effectively bring about emission

eductions, as when the energy is consumed matters. 

.3. Impact of the coordinated control 

.3.1. Energy costs 

The annual total energy cost remains almost the same with a slight

ecrease of 0.7% after the application of the controller. This suggests

hat no roadblock for the adoption of the proposed controller will arise

rom an economic perspective. From Fig. 8 , we see a larger change in the

nergy charge than in the demand charge and PV credit. More specif-

cally, the annual average energy charge is reduced by 7.5% on aver-

ge, which is more significant than the annual total energy reduction of

.0%. This indicates that there are more peak hour energy consumption

eductions than off-peak hours. This is attributable to the general align-

ent between peak hours and high carbon intensities of the grid. The

verage demand charge increases moderately by 1.2%; this can be ex-

lained by the peak demand increases discussed in the following subsec-

ion. The average PV credit decreases by 2.7%, which implies more PV

elf-consumption induced by the control algorithm. More details about

he PV self-consumption rate will be discussed in Section 4.4.2 . It is

oted that although more backfeeding is seen in the controlled scenario,

he PV credit is mostly affected by the REC payment in Table 2 and the
8 
xcess PV payment only accounts for a small portion. Therefore, the

ower right plot of Fig. 8 shows a similar distribution between the two

cenarios. 
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Fig. 9. Boxplots of monthly peak demand by building type. Each point in the 

boxes represents the average peak demand value of one month from the corre- 

sponding building type. The figure indicates that the emission reduction-driven 

battery control performs less satisfactorily than the price-driven control in low- 

ering peak demands and demand charges. 

Fig. 10. Color plots of annual average zone mean PMV values per building be- 

fore and after the implementation of the emission reduction control. Each color 

block represents one building. The emission reduction control has slightly low- 

ered the community average PMV value by 0.02, indicating a slightly colder 

indoor environment, but the adoption of the control will not impact the occu- 

pants’ thermal comfort with the design parameters proposed in this work. 
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Fig. 11. Histogram of annual average EV end-of-day SOC for the coordinated 

control scenario. The baseline EV SOC is considered to be 1 (i.e., fully charged). 

The plot reveals that the EV SOC values for all buildings fall within the range of 

0.790.97, with a community mean value of 0.88. The results also suggest that 

the emission reduction control can strike a balance between the EV range and 

environmental impact. 

l  

a  

t  

o  

w

4

4

 

t  

e  

g  

c  

i  

i  

E  

S  

c  

e  

o  

r  

t

4

 

d  

l  

6  

t  

m  

W  

e  

l  

i  

g  

c  

T  

P

.3.2. Peak demand 

The community-level average monthly peak demand values reflect

he impact of the different battery control strategies in the baseline and

he controlled scenario. Figure 9 is the boxplot of monthly peak de-

and by building type. Each point in the boxes represents the average

eak demand value for one month within the corresponding building

ype. From the figure, we see both peak demand increases and decreases

cross building types with no explicit trend. By analyzing the data, we

otice an overall trend of peak demand decrease in winter and increase

n summer. This can be attributed to the fact that the price-driven bat-

ery control in the baseline scenario helps reduce the peak demand in the

eak season (i.e., June–September) effectively. However, the emission

eduction-driven battery control only discharges the battery when the

rid intensity is high, which happens less frequently in summer due to

he high PV generation in summer. The seasonal variations of peak de-

ands also lead to the rise of demand charges in the controlled scenario

s the utility summer demand charge is higher than winter. To summa-

ize, the emission-driven battery control performs less satisfactorily than

he price-driven control in lowering peak demands and demand charges.

.3.3. Thermal comfort 

There are negligible changes to the thermal comfort of the building

ccupants after the implementation of the emission reduction control.

s mentioned above, the thermal comfort is evaluated by PMV values in

his work. Figure 10 plots the annual average zone mean PMV values per

uilding for the baseline and the controlled scenario. Each color block

n the plot represents one building. Given that all the PMV values lie

ithin the range of − 0.5–0.3, it is neither too hot nor too cold regardless

f the control method. On average, the emission reduction control has
9 
owered the community average PMV value by 0.02, which indicates

 slightly colder indoor environment. Generally, it is safe to say that

he adoption of the emission reduction control will not affect building

ccupants’ thermal comfort with the design parameters proposed in this

ork. 

.4. DER performances 

.4.1. EV battery SOC 

A certain amount of EV battery end-of-day SOC reduction was no-

iced, which lies in a reasonable range. The EV SOC reduction is as

xpected because of the curtailment of EV charging power when the

rid carbon intensity is higher than the LT. Given the limited number of

lean hours throughout a day and the EV charging power upper limit,

t is plausible that not all curtailed EV energy will be compensated dur-

ng the same day. Figure 11 shows the histogram of the annual average

V end-of-day SOC for the controlled scenario. From the figure, the EV

OC values for all buildings lie within the range of 0.79–0.97 with a

ommunity mean value of 0.88. Considering the EV emission reduction

ffect, 2.6% to 21.2% of EV SOC reduction results in 10.9% to 32.7%

f EV emission reductions. This result demonstrates that the emission

eduction control can help achieve a balance between the EV range and

he environmental impact. 

.4.2. PV self-consumption rate 

The PV self-consumption rate is increased in the controlled scenario

ue to the higher HVAC and EV charging loads when the building net-

oad is negative. Based on Fig. 12 , there exists an average increase of

.0% PV self-consumption rate after the adoption of the emission reduc-

ion control. In some buildings, a decrease of up to 0.9% is seen, while in

ost buildings, the self-consumption rate is increased by up to 21.2%.

e note that this does not conflict with the negative net emissions and

nergy values in Figs. 6 and 7 , as the self-consumption rate is calcu-

ated in proportion to the annual total PV generation ( Eq. (10) ). Build-

ngs with larger amounts of backfeeding also tend to have higher PV

eneration. In summary, through the emission reduction control, more

lean energy is consumed locally rather than being fed back to the grid.

his reduces transmission and distribution losses and supports higher

V penetration in the distribution grid. 
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Fig. 12. Boxplots of the annual average PV self-consumption rate per building. 

Each point in the box represents one building. The plot shows an overall increase 

in PV self-consumption rate with a maximum increase of 21.2%, indicating that 

the emission reduction control leads to more local consumption of clean energy, 

supporting higher PV penetration in the distribution grid. 
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Fig. A.1. The 2022 annual grid carbon intensity profile used in the study, rang- 

ing from 0 to 2991.7 kg/MWh, with a mean value of 983.5 kg/MWh. The max- 

imum carbon intensity drops to 948.0 kg/MWh, and the mean value drops to 

278.8 kg/MWh for 2050 under the same scenario. 

Fig. A.2. EV profiles for one building of each building type of the community 

on three summer days (one weekday and two weekends). The x -axis represents 

the time in hour, and the y -axis represents the power (kW) of the EV charger. It 

can be seen that after a buildings normal operation hours, much less EV charging 

power occur. 
. Conclusion 

In this work, we propose a rule-based coordinated control of EV

harging and HVAC systems for reducing carbon emissions in all-electric

uildings. Local PV generation is included in the control design as one

f the control inputs. Behind-the-meter batteries are involved to en-

ance load shifting. Grid carbon intensity data is used as the main deci-

ion variable to facilitate threshold-based load shifting to lower emis-

ion rate hours. A case study of a mixed-use community under con-

truction in Denver, Colorado, United States, is conducted to evaluate

he control performance. The goal of this research is to fill the gap

f lacking easy-to-implement community-scale coordination of build-

ngs and EVs in the current state of the art of emission reduction

ontrol. 

Through analysis of the simulation results, we identified 4.5% to

7.1% of annual whole building emission decreases, where a large por-

ion is attributed to the 10.9%–32.7% EV emission reductions. The

VAC system emission increases by 3.6% annually while its energy in-

rease is 5.0% on average. The cross-comparison between energy and

mission shows that not only does the total energy consumption matter,

ut also when the energy is consumed matters. 

In terms of the impact of adopting the emission reduction con-

rol, the annual total energy cost remains almost the same, with a

light decrease of 0.7% after the application of the controller. The

ommunity average monthly peak demand values generally increase

n summer and decrease in winter, which reflects that the emission-

riven battery control performs less satisfactorily than the price-driven

ontrol in lowering peak demands and demand charges. Changes

o the thermal comfort of the building occupants are negligible af-

er the control implementation. EV battery end-of-day SOC reduc-

ions of 2.6% to 21.2% are noticed, which balance between the EV

ange and the environmental impact of EV charging. The PV self-

onsumption rate is increased in the controlled scenario due to the

igher HVAC and EV charging loads when the building net-load is

egative. 

The limitation of this work is not including more controllable loads

nd DERs into the control framework. Further, the control only targets

ne objective of emission reductions, with limited consideration of low-

ring peak demands. This is also a common limitation of general rule-

ased controllers. Lastly, perfect forecasts of the grid carbon emission in-

ensity data are assumed. Future work will involve addressing the noted

imitations, such as the integration of thermal energy storage. 
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