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ARTICLE INFO ABSTRACT

Keywords: The progression of electrification in the building and transportation sectors brings new opportunities for energy
Decarbonization decarbonization. With higher dependence on the grid power supply, the variation of the grid carbon emission in-
Electrification tensity can be utilized to reduce the carbon emissions from the two sectors. Existing coordinated control methods
E;)eréttrr?i vehicle charging for buildings with distributed energy resources (DERs) either consider electricity price or renewable energy gen-
HVAC eration as the input signal, or adopt optimization in the decision-making, which is difficult to implement in the

real-world environment. This paper aims to propose and validate an easy-to-deploy rule-based carbon responsive
control framework that facilitates coordination between all-electric buildings and electric vehicles (EVs). The
signals of the grid carbon emission intensity and the local photovoltaics (PV) generation are used for shifting the
controllable loads. Extensive simulations were conducted using a model of an all-electric mixed-use community
in a cold climate to validate the control performance with metrics such as emissions, energy consumption, peak
demand, and EV end-of-day state-of-charge (SOC). Our study identifies that 4.5% to 27.1% of annual emission
reduction can be achieved with limited impact on energy costs, peak demand, and thermal comfort. Additionally,
up to 32.7% of EV emission reduction can be obtained if the EV owners reduce the target SOC by less than 21.2%.

All-electric community

1. Introduction

To combat climate change, research and technologies for decar-
bonization are advancing rapidly all over the globe. In the United States,
the building and transportation sectors together accounted for 72% of
the total energy-related carbon dioxide (CO,) emissions in 2021 [1].
Electrification in these two sectors provides new opportunities for re-
ducing carbon emissions. For instance, state and municipal building
codes in the United States [2] are beginning to require buildings to be-
come all-electric. Moreover, electric vehicle (EV) penetration rates are
rising globally—nearly 10% of all cars sold worldwide in 2021 were
electric [3].

Given the persistent electrification of new buildings and vehicles, a
higher dependence on the power grid is expected from the transporta-
tion and building sectors. Further, due to lasting changes in the grid
power generation mix, the grid carbon emission intensity is fluctuating.
Therefore, there is great potential to utilize time-varying grid carbon
emission intensity in building and EV load control. More specifically,
shifting building and EV charging loads from higher-intensity hours to
cleaner hours in response to grid carbon intensity signals can reduce
carbon emissions and thus help achieve decarbonization goals.

Existing research on emission reduction-driven control for build-
ings or EVs is primarily focused on optimization-based methods, where
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optimization techniques are used to design control strategies that
achieve desired system behavior while minimizing selected perfor-
mance metrics. Leerbeck et al. [4] developed a model predictive con-
trol (MPC) based heat pump controller for building space heating.
The control inputs include weather and CO, emission forecasts. Re-
sults showed that approximately 16% of CO, emission reduction was
achieved in well-insulated new buildings with floor heating systems.
Gasser et al. [5] studied building flexibility using MPC, where air-source
heat pumps for space heating and EVs were involved as controllable
loads. When carbon emissions were considered in the objective func-
tion, up to 21% of emissions were reduced compared to the baseline.
Dixon et al. [6] investigated coordinated charging of EVs to reduce CO,
emissions while absorbing excess wind generation. It was found that the
average emissions rate of 35-56 gCO, /km from traditional EV charging
can be reduced to 28-40 gCO,/km by controlled charging.

Some studies adopt reinforcement learning (RL) techniques in emis-
sion reduction related building control. Jeen et al. [7] proposed a prob-
abilistic emission-abating RL algorithm, which only requires a short pe-
riod of active training and does not need building-specific simulators or
data a priori. In their experiments across three varied building energy
simulations, the proposed RL algorithm outperformed an existing rule-
based controller and other popular RL baselines by as much as 31% in
terms of building emissions.
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Table 1
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Summary of literature on building and EV emission reduction-driven control, revealing a focus on single buildings in building studies and larger scales in EV studies.
The literature shows a lack of rule-based coordination at the community-scale level for buildings and EVs.

Reference Objective Scale Control method  Controlled system DERs

[4] Emission reduction Building (house, office) MPC HVAC None

[5] Emission and cost reduction, flexibility Building (multifamily) MPC HVAC, DHW, TES, EV PV, TES

[12] Emission and cost reduction, thermal energy ~ Building (apartment) MPC HVAC, DHW TES

[13] Emission reduction Grid Optimization EV N/A

[6] Emission reduction, less wind curtailment Grid Optimization EV Wind

[14] Emission reduction Traffic analysis zone Optimization EV N/A

[71 Emission reduction Building (mixed-use, office, seminar center) RL HVAC None

[9] Emission, cost, and peak load reduction Building (residential) Rule-based HVAC, DHW TES

[10] Emission reduction Community (residential) Rule-based HVAC, DHW, battery PV, battery, TES
[11] Emission reduction Community (mixed-use) Rule-based EV None

Proposed work Emission reduction Community (mixed-use) Rule-based HVAGC, EV, battery PV, battery, TES

Despite the advancement of optimization-based building and EV con-
trollers in research, rule-based controllers are still the dominant con-
trollers used in most real-world applications in buildings and EV charg-
ers. This type of control strategy design typically involves defining a set
of rules or logical statements to determine the appropriate control ac-
tions for a given system state. When carefully designed, some rule-based
controllers perform comparably to optimization-based ones and become
good alternatives [8]. Clauf [9] studied predictive rule-based control for
reducing the CO, equivalent greenhouse gas emissions (CO,,, ). The heat
pump system for a Norwegian single-family detached house was con-
trolled with historical weather and CO,,, emission data from 2015 as
inputs. They identified limited annual CO,,, emission reductions due to
small daily fluctuations in the Norwegian electricity grid CO,,, intensi-
ties. In the authors’ previous publications, rule-based carbon responsive
control frameworks were designed and applied to building heat pump
systems [10] and EV charging loads [11], respectively. Up to 20.5% of
annual household carbon emissions and 12.7% of EV charging emissions
were achieved through the proposed control algorithms.

Table 1 summarizes relevant literature on emission reduction-driven
control work for buildings and EVs. From the table, we see that most
building emission control studies focus on single buildings, while EV re-
lated emission control considers a much larger scale, such as the grid or
traffic analysis zone. As previously mentioned, optimization is still the
dominant control method for emission reduction-driven control in the
literature. Here, “optimization” refers to unspecified optimization meth-
ods other than MPC and RL. Heating, ventilating, and air-conditioning
(HVACQ) systems and domestic hot water (DHW) systems are the most
common controlled systems in building emission control work. In terms
of distributed energy resources (DERs), some studies involve renewable
energy generation such as photovoltaics (PV) and wind. Temporal ar-
bitrage such as electric batteries and thermal energy storage (TES) are
also considered in some cases. Here, TES mainly refers to the hot water
tanks in building DHW systems. Note that unless listed in the “controlled
system” column, the DERs here are not necessarily controlled. Based on
the literature review, there is a lack of rule-based community-scale coor-
dination of buildings and EVs in the current state of the art of emission
reduction control.

In this work, we propose a rule-based control algorithm for coordi-
nating building loads and EV charging loads to decarbonize energy use,
with the presence of PV generation and batteries. Note that because we
focus on the operational stage of buildings, embodied carbon emissions
are not within the discussion scope of this work. Forecasts of the grid
carbon emission intensity are used as inputs for decision-making, where
we assume the input data are perfect forecasts. The control algorithm
has been validated on the model of an all-electric, mixed-use commu-
nity being constructed in Denver, Colorado, United States. Through the
simulation case study, the impact of the emission reduction control al-
gorithm on energy use, costs, peak demand, thermal comfort, and DER
performances will be discussed. This work aims to answer the following
research questions:

» How should we coordinate building loads with EV charging loads to
reduce operational carbon emissions through rule-based control?

» What extra considerations need to take place if DERs such as PV and
batteries are present?

» How does such emission reduction control affect energy use and
costs, peak demand, and occupant thermal comfort?

The remainder of this paper is organized as follows:
Section 2 presents the overall workflow and the research methodology
of the proposed emission reduction control framework. Section 3 de-
scribes the case study community and the simulation inputs for the case
study. Section 4 discusses the simulation results with various metrics
such as emissions, energy, cost, and thermal comfort along with a
sensitivity analysis. Section 5 concludes the work and recommends
future topics for further study.

2. Methodology

The overall workflow of this paper is shown in Fig. 1. The com-
munity building energy models with EV loads are first built in the
URBANopt™ [15,16] modeling platform. In this community model,
the buildings are adapted from DOE prototypical building model 90.1-
2009 templates, which were developed to reflect the energy efficiency
requirements of the ASHRAE Standard 90.1-2009 [17] in commercial
buildings. The EV loads are pre-generated EV charging profiles from
EVI-Pro [18,19]. Details about the modeling of the community can
be found in reference [20]. Based on the community energy model,
REopt™ [21] is then used to optimally size the DERs. Using the annual
building energy profiles simulated from Step 1, REopt optimizes the PV
and battery sizes with mixed-integer linear programming based on as-
sumptions about PV energy production, battery characteristics, equip-
ment costs, financing options, and incentives and tax credits, etc. It is
noted that the PV sizes in this work were designed to meet annual net
zero energy goals at each building level.

Following Step 2, the control algorithms are then implemented with
OpenStudio™ measures and integrated into the URBANopt workflow.
Two different control measures, namely the baseline control and the
coordinated control are implemented separately. The detailed control
algorithms will be introduced in the following subsections. Finally, an-
nual energy simulations are conducted and the results for the coordi-
nated control scenario are evaluated using selected metrics against the
baseline scenario.

2.1. Coordinated control

The proposed coordinated control algorithm coordinates the build-
ing HVAC system, EV charging, and battery charging/discharging for
operational carbon emission reduction based on inputs of grid carbon
intensities and local PV generation. The flowchart in Fig. 2 visualizes the
decision-making process of the proposed rule-based controller, which re-
peats daily. Conceptually, it can be divided into net-load determination,
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Fig. 1. The workflow of this paper, which involves building community energy models with EV loads in URBANopt and optimizing the DERs using REopt. OpenStudio
measures are then used to implement control algorithms, and annual energy simulations are conducted to evaluate the results of the coordinated control scenario

against the baseline scenario.

emission reduction control rules, HVAC and EV control, battery control,
and grid power calculation.

The interconnection between each part of the control logic is de-
scribed as follows. Depending on whether the building uses electricity
from the grid, the controller will adopt different strategies. If the build-
ing is using grid electricity (i.e., net-load is positive), emission reduction
control rules will be implemented, adjusting the zone HVAC setpoints
and EV charging loads according to the grid’s carbon intensity. The bat-
tery will only discharge when using grid electricity, and only if the grid
carbon intensity is high. On the other hand, if PV power generation can
cover the total building load (i.e., net-load is negative), the building will
consume PV energy first. In this case, the controller will adopt the same
control actions as it does when the grid power is clean. Additionally in
this case, the battery will be charged using local PV energy after the
building loads are satisfied. The details for each part of the control are
described in the remainder of this subsection.

Net-load determination To determine whether the building is using the
electricity from the grid or the locally generated PV energy, the net-load
needs to be calculated by subtracting the PV generation from the total
building load. Because the building load at the current timestep is not
known before making the control decisions, here we use the load from
the last timestep for estimating the net-load (P]‘O‘ab - P;U). If positive, it
means the building is using the grid electricity, and the carbon emission
reduction control mechanism kicks in. Conversely, if negative, clean lo-
cal PV energy is used, and we increase the HVAC and EV loads to enable
load shifting to cleaner hours. This could also potentially increase the PV
self-consumption rate. Here we note that using the building load from
the last timestep in the net-load calculation might lead to a discrepancy
between the predicted and actual net-load. This, in some cases, will fur-
ther lead to a frequent change of the sign of the net-load, and thus result
in controlled load fluctuations. Enlarging the control timestep as we did
in this paper or having a feedback loop can mitigate the problem.

Based on the authors’ earlier study [10] where various emission re-
duction controllers were compared, enabling carbon net-metering will
result in better control performance such as lower carbon emissions.
Therefore, we introduce both energy and carbon net-metering in this
work. This means for the PV energy exported back to the grid, the pro-
sumer will obtain both energy and emission credits to offset its total
energy usage and carbon emissions.

Emission reduction control rules The emission reduction control takes
effect when the building net-load is positive. It shifts the controllable
loads (i.e., HVAC and EV) to hours with lower carbon emission intensi-
ties based on the grid emission signals. To accomplish this, a common
method is to divide the carbon intensity data range into several regions,
where each region correlates with one type of control action [9]. In this
paper, we divide the carbon emission data range into three regions with
two thresholds, the higher threshold (HT) and the lower threshold (LT).
Between the two thresholds, default HVAC system setpoints Ty, e rquis

and moderate EV load shifting will be implemented. When above the
HT, less HVAC and EV loads will occur, and vice versa. The values of
the HT and LT are carefully selected through a sensitivity analysis in-
troduced in Section 4.1.

HVAC and EV control The HVAC system is controlled through zone
thermostat setpoint control. The default setpoints T, 4, 74, are the same
as those in the baseline. Below the LT, which is the clean zone, the
Tyt c1ean Will be implemented, and vice versa. To maintain occupant ther-
mal comfort, we designed the T, ,,, to be 1 °C lower than the T, 4, 7
for space cooling and 1 °C higher for space heating. For Ty, ,ican> it is
1 °C above the Ty, 4, 4 for cooling and 1°C below for heating. The
clean setpoints Ty, .., are also adopted when the building net-load is
negative and PV energy is used.

The EV charging control adjusts the charging power P;  through a
similar algorithm. Because the EV loads in this work are modeled as
pre-generated accumulated load profiles for each building instead of
arrival and departure events for each individual EV, we used the original
EV load profiles as the baseline and shifted the loads based on them.
For the unclean hours (i.e., intensity higher than HT), zero EV charging
power is dictated. We note that in the real world, standards will require a
minimum non-zero charging power to keep the charging process active.
The zero EV charging power here is assumed for simplification. For the
hour that lies between the HT and LT, EV power is calculated using the
following equation:

e —LT
Py= (= g ) * P M
where P;”.g is the originally scheduled EV power in the baseline. The ¢’

represents the grid emission intensity at the current timestep ¢, which
lies in between LT and HT. Therefore, this equation ensures that when
the carbon intensity is larger than LT, EV load will be curtailed. The
closer it is to HT (i.e., unclean), the smaller the EV power.

For the clean hours (i.e., intensity lower than LT or net-load nega-
tive), a load compensation for the accumulated curtailed EV energy for
the day will be implemented. The power for curtailment compensation
is calculated by:

E!
_ 1 curt
Pefu - Porig + At @
where E! , is the accumulated curtailed EV energy for the day until the

current timestep; At is the control timestep. During the compensation,
the effective EV power P/ is larger than the original power Po’”.g. In this
way, the EV load is shifted from the unclean hours to the clean hours.
To mitigate the potential peak demand increase issue due to EV load
shifting, an upper limit for P!/ is set as the maximum charging power of
the EV charger, which varies with the building size. Additionally, when
the compensation is using PV energy, the effective EV load cannot be
greater than the absolute net-load value (P;U - PI’(;IL) to avoid flipping
signs of the net-load.
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Fig. 2. The flowchart illustrates the decision-making process of the proposed coordinated control algorithm for building HVAC systems, EV charging, and battery
charging/discharging based on grid carbon intensities and local PV generation. The process includes net-load determination, emission reduction control rules, HVAC

and EV control, battery control, and grid power calculation.
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At the end of each timestep, the total curtailed EV energy is updated
with the following equation:

EYL = Fl 4 Pl s At 3)

curt curt curt

Considering the fact that the EVs parked at the same building change
each day, we need to evaluate the EV charging control performance
on a daily basis. Therefore, at the starting operational hour ¢,,,,, of the
building each day, the total curtailed EV energy of the day before will
be reset to zero. Further, the EV battery state of charge (SOC) at “the
end of the day” will be evaluated at one timestep before 7.

Battery control The battery will only be charged when there is surplus
PV generation and the battery is not full. The battery charging power is
constrained by the following equation:

P! oo PR EMX(] — SOC] ). @)

t
0y load> ~ bat > "~ bat

= min(P[;L, -
where P is the maximum battery charging power limit; E;%* is the
battery energy capacity; and SOC;  is the current battery SOC. The
building load at the current timestep P, _, is used because battery power
is calculated after the controllable loads are determined. The battery
discharging only happens when the grid carbon intensity is higher than
HT. In this case, the battery power will be used before the grid power
kicks in. The battery discharging power is constrained by the following
equation:

P, =—min(P,

bat — oad ~

Pl Pix ER(SOC;, — SOCm™M), )

0>~ bat * " bat at bat

where SOCl?;it“ is the minimum allowed battery SOC. After the battery
power is determined at each timestep, the battery energy is then updated
with the following equation:

t+1 _ ot t
Ebat - Ebat + PbatAt' ©)

Grid power calculation Finally, the electric power draw from the grid
is calculated with the following power balance equation:

_Pt

t
P load

3 !
grid — + Pbar - va’ @)
where a positive value indicates using electricity from the grid, and a

negative value indicates the backfeeding of electricity.

2.2. Baseline control

The baseline control does not include any carbon reduction algo-
rithms. Instead, for the HVAC system, the default heating and cooling
thermostat setpoints are used. The EV loads adopt the original pre-
generated load profiles as previously mentioned. The battery control
uses a default electricity price-driven control logic shown in Fig. 3. Sim-
ilar to the coordinated control, this flowchart repeats everyday for the
baseline scenario.

At the beginning of each timestep, the net-load of the building
(P[’O wd = P,:U) needs to be calculated. Because the total building load will
be known before the battery power post-processing, the building load
P/ ., Will be used for the net-load calculation. Similar to the coordinated
control, the battery will only be charged when the net-load is negative
and the battery is not full. A mathematical description of this logic is
shown in Eq. (4). Given that the utility rate structure will have peak
demand charges, which typically make up a significant portion of en-
ergy bills, the battery discharging should help mitigate the peak build-
ing loads and thus reduce total energy bills. Therefore, the battery in
the baseline scenario only discharges when it is the peak hour for res-
idential buildings or peak month (i.e., months with a higher demand
charge) for commercial buildings. The same mathematical description
for battery discharging shown in Eq. (5) can be applied here. At the end
of the timestep, the grid power will be calculated through the power
balance in Eq. (7). The battery SOC will be updated with Eq. (6).

2.3. Evaluation metrics

The performance of the emission reduction control is evaluated from
multiple perspectives. First, annual operational carbon emissions from

Advances in Applied Energy 10 (2023) 100139

the total building loads, as well as those from the HVAC system and
EVs, are compared between the controlled scenario and the baseline.
The following equation calculates the annual operational emissions:

N
C =Y eto, Pl A, ®)
t=1

where N is the total number of simulation timesteps in a year, and e’co2
represents the marginal carbon intensity of the grid power generation
mix at each timestep. Carbon net-metering is considered in the calcu-
lation, meaning that the PV energy exported back to the grid brings in
both renewable credits and carbon emissions offsetting benefits.

The annual energy consumption and cost are calculated to facilitate
the analysis. Because energy net-metering is considered, both the gross
annual building energy consumption and the net energy consumption
are evaluated. Eq. (9) defines the annual net energy consumption:

N
Eper = 2 (Pl — Ph) AL ©)
=1
where P/ . is the total building power demand at each timestep ¢, and
oa

P;U is the PV generation at each timestep. Similar to the operational
emissions calculation, the energy cost is obtained by multiplying the
hourly grid power with the corresponding time-of-use rate. The detailed
utility rate structure is introduced in Section 3.

The grid impact of the control is evaluated with the monthly peak de-
mand as power distribution system planning is mainly dependent on the
regional peak demand. The impact on occupant thermal comfort is quan-
tified by the predicted mean vote (PMV) values of the building thermal
zones. According to ASHRAE Standard 55 [22], it is calculated based on
the measured air velocity, air temperature, mean radiant temperature,
relative humidity, and the expected clothing level and metabolism rate
of the occupants. The calculated PMV values in the OpenStudio build-
ing models for each thermal zone are averaged for the whole building
evaluation.

Finally, selected DER performances are compared between the con-
trolled and baseline scenarios. The EV battery SOC is calculated to see
how much the emission reduction control affects EV drivers’ need for a
full battery at the end of the day. Because no arrival or departure events
are modeled in this work, the EV battery SOC at the timestep before 7.,
in Fig. 2 is used instead. The PV self-consumption rate (SC) is expressed
with the following equation:

N pt
_ Zr:l Pback At

SC,, =1
pv N ’
i1 Pi, At

(10
where P,  is the backfeeding PV power, and P;;u is the total generated
PV power.

3. Case study

The performance of the proposed control algorithm is validated on
a model of a mixed-use community under construction in Denver, Col-
orado, United States. The region has a cold and dry climate and is clas-
sified as climate zone 5B according to ASHRAE Standard 169 [23]. The
planned community will have 148 buildings, most of which are large
commercial buildings. Figure 4 visualizes the community with color-
coded building types. The detailed building types include: 36 multifam-
ily, 23 office, 19 retail with food service, 15 office with retail, 14 strip
shopping mall, 12 stand-alone retail, 6 outpatient health care, 4 large
hotel, and 3 middle school. The floor areas of those buildings range from
222 to 47,283 square meters.

The community is designed to be all-electric except some natural
gas usage in food service buildings for cooking. In terms of the HVAC
system type, air-source heat pumps are used in residential buildings.
Packaged rooftop heat pumps, packaged variable air volume (VAV) with
parallel fan-powered (PFP) boxes, or VAV chiller with PFP boxes are
used in commercial buildings depending on the number of floors and
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Fig. 3. The default electricity price-driven
control logic used for battery control in the
baseline scenario. It calculates the net-load of
the building at the beginning of each timestep
to ensure the battery only charges with local
PV energy. The battery only discharges dur-
ing peak building loads to help reduce total
energy bills.

No
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Charge battery

Update battery SOC

Calculate grid power based
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floor area [24]. The water heating systems are also electric. In food
service buildings (i.e., restaurants), some natural gas usage remains for
the natural gas-fueled cooking equipment, which aligns with Denver’s
Net Zero Energy (NZE) implementation plan [2]. The natural gas use is
small compared to the electric loads and thus not included in the NZE
calculations.

Electricity rates from local utility company Xcel Energy [25] are used
to calculate the energy costs and implement the battery control in the
baseline. Table 2 shows the rate structure for residential and commer-
cial buildings separately [26,27]. The renewable energy credit (REC)
represents the payment from utilities for the surplus PV generation in
customer premises.

The grid carbon intensity data from the Cambium data set [28] are
used in our case study. Cambium is based on modeled future scenarios

C] Net-load determination
C] Battery control

() other

of the U.S. electricity sector and provides forecast of future grid carbon
intensities through 2050. More specifically, the 2022 hourly short-run
marginal carbon emission data from the Cambium 2021 Mid-case 95
by 2035 scenario for Denver’s local balancing authority is used in our
analysis. This scenario assumes the CO, emissions in the U.S. power
sector decrease to 95% below 2005 levels by 2035 and are net zero by
2050. The carbon intensity profile used in this work ranges from 0 to
2991.7 kg/MWh, with a mean value of 983.5 kg/MWHh. Figure A.1 plots
the 2022 annual grid carbon intensity profile. Under the same scenario,
the maximum carbon intensity drops to 948.0 kg/MWh, and the mean
value drops to 278.8 kg/MWh for 2050.

Typical meteorological year 3 (TMY3) data for the weather sta-
tion near Denver International Airport are used as the simulation
weather data. As mentioned above, EV charging load profiles are
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Table 2

Advances in Applied Energy 10 (2023) 100139

Local electric utility rates for residential and commercial customers, including fixed charge, energy
charge, and demand charge. Energy net-metering is enabled. Table was first used in Wang et al. [20].

Item Residential rate Commercial rate

Fixed charge ($/month) 5.58 39.3

Energy charge ($/kWh) 0.03035 (off-peak); 0.04631 (on-peak)  0.040246

Demand charge ($/kW) 12.33 (Oct.-May); 15.54 (Jun.-Sep.) 18.45 (Oct.-May); 22.47 (Jun.-Sep.)
Net-metering Yes Yes

REC payment ($/kWh) 0.005

Excess PV payment ($/kWh) 0.011

[ Residental | Offce Restaurant
i Vixed Use
W e Mall

School | Hoseiel

Latitude: 39.812
Longitude: -104.783

Surface elevation: 1650 ft

Fig. 4. Three-dimensional rendering map of the mixed-use case study commu-
nity located in Denver, Colorado, United States. The community is planned to
have 148 buildings, most of which are large commercial buildings. Figure was
first used in Wang et al. [20].

pre-generated by EVI-Pro and then input into the simulation framework.
Figure A.2 plots the EV charging profiles for one selected building in
each building type of the community. Annual energy simulations with
an hourly timestep for 2022 was conducted for two scenarios: baseline
scenario and controlled scenario. The baseline scenario is designed to
be NZE on an annual basis.

4. Results and discussion

This section first presents the sensitivity analysis results to justify the
control threshold selection in this paper. Then, we discuss the perfor-
mance of the proposed emission reduction control algorithm in terms of
its annual emission reduction potential and the underlying energy con-
sumption changes. Its impact on building energy costs, peak demand,
and thermal comfort will then be evaluated. Finally, the DER perfor-
mances such as the EV battery SOC and PV self-consumption rate are
compared between the baseline and the controlled scenario.

4.1. Sensitivity analysis

The control rules in rule-based controllers need to be carefully de-
signed to yield the best control results. For the proposed emission reduc-
tion controller in this work, the rule design is essentially to choose the
control threshold values of the HT and LT. More specifically, the values
are selected based on the grid carbon intensity input data. Because the
distributions and ranges of the input data vary, percentiles are used to
define the thresholds.

As shown in Fig. 5, nine evenly distributed combinations of HTs and
LTs were investigated and the annual carbon emission results are com-
pared with the baseline. The sensitivity analysis was conducted using
ten sample buildings (one from each type) randomly selected from the
community to save computational effort. In the plot, the greener the
color, the lower the emissions are. From the figure, the performance

Baseline  5&95 10&90 15885 20880 25875 30&70 35865 40860 45855

HVAC emissions

4721 4851 4846 4840 4834 4825 4822 4823 4825
(ton/year)

EV emissions|

3612 | 3548 | 3539 | 3524 | 3560 | 3612 | 3665 | 3894 | 4031
(ton/year)|

Total emissions|

8471 8399 8385 8364 8394 8437 8487 8716 8856
(net-metered, ton/year)|

Total emissions

<1138 | 1224 | 1231 | 1254 | 1222 | -1179 | -1120 -894 754
(non-net-metered, ton/year)|

Fig. 5. The results of the sensitivity analysis, comparing the annual carbon
emissions of nine combinations of low and high thresholds for the proposed
coordinated control algorithm. The greener the color, the lower the emissions
are. The plot reveals that the combinations of 10&90 to 30&70 perform simi-
larly, with the combination of 20&80 outperforming the others in terms of EV
and whole building total emissions.

of the combinations from 10&90 to 30&70 do not change drastically,
while the remaining combinations perform noticeably worse. Looking
at the detailed annual carbon emissions data, the HVAC system emis-
sions, excluding the baseline, are lowest when using the combination of
35&65. For the EV and whole building total emissions, the combination
of 20&80 outperforms the others. Therefore, we chose to implement the
LT of the 20th percentile with the HT of the 80th percentile of the car-
bon intensity data in the proposed rule-based controller. Note that this
rule design is dependent on the input carbon data distribution along
with the building load profiles, and is thus not applicable to all cases.
However, the methodology for conducting the sensitivity analysis can
be adopted by similar studies.

4.2. Annual carbon emissions

The whole building annual emissions show significant decreases
ranging from 4.5% to 27.1% across different buildings, which is pri-
marily attributed to the 10.9%-32.7% EV emission reduction. Figure 6
shows the distribution of building annual total emissions, net emissions,
and the emissions from the HVAC systems and EVs through violin plots.
Each point in the plots represents the annual emissions of one building.
In the upper left plot, more buildings are distributed in the lower half of
the violin for the controlled scenario and the maximum emissions value
drops from over 7000 tons/year to over 6000 tons/year. More drasti-
cally, in the upper right plot where carbon net-metering is considered,
a long tail of the violin for the controlled scenario is seen. This is caused
by more PV backfeeding into the grid, which considerably offsets the
annual carbon emissions in some buildings. Comparing the emissions
from the controlled loads, we see more prominent emission reductions
in the EVs than the HVAC systems, potentially due to the HVAC energy
increases explained in the following paragraph. Overall, the application
of the proposed emission reduction control algorithm has led to a sig-
nificant whole building emission reduction. The directly controllable
loads (i.e., EVs) perform better than thermostatically controllable loads
(TCLs) (i.e., HVAC system). The emission reduction from TCLs can be
enhanced by adding thermal energy storage, which will be a topic for
our follow-on work.
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Fig. 6. Violin plots of the distribution of building annual total emissions, net
emissions, and emissions from HVAC systems and EVs. Each point in the plots
represents the annual emissions of one building. The application of the proposed
emission reduction control algorithm has led to a significant whole building
emission reduction, with more prominent emission reductions in the EVs than
the HVAC systems.

The analysis of the annual energy results in Fig. 7 proves that not
only does the total energy consumption matter, but also when it is con-
sumed matters. From the figure, we notice very similar distributions
between the emissions and energy. Further, the NZE design of the base-
line scenario makes its distribution violin a horizontal line in the up-
per right plot. On average, there are 1.0% total energy reductions with
11.9% EV energy reductions. The HVAC energy increases by 5.0% on
average, potentially because of the emission reduction-driven objective
of the control algorithm and the standby heat losses of TCLs. Similar
findings are discussed in Wang et al. [10]. However, for any of the load
types, the proportions of the energy changes are smaller than those of
their emission changes. This showcases that the shifting of the loads to-
ward lower carbon intensity hours can effectively bring about emission
reductions, as when the energy is consumed matters.

4.3. Impact of the coordinated control

4.3.1. Energy costs

The annual total energy cost remains almost the same with a slight
decrease of 0.7% after the application of the controller. This suggests
that no roadblock for the adoption of the proposed controller will arise
from an economic perspective. From Fig. 8, we see a larger change in the
energy charge than in the demand charge and PV credit. More specif-
ically, the annual average energy charge is reduced by 7.5% on aver-
age, which is more significant than the annual total energy reduction of
1.0%. This indicates that there are more peak hour energy consumption
reductions than off-peak hours. This is attributable to the general align-
ment between peak hours and high carbon intensities of the grid. The
average demand charge increases moderately by 1.2%; this can be ex-
plained by the peak demand increases discussed in the following subsec-
tion. The average PV credit decreases by 2.7%, which implies more PV
self-consumption induced by the control algorithm. More details about
the PV self-consumption rate will be discussed in Section 4.4.2. It is
noted that although more backfeeding is seen in the controlled scenario,
the PV credit is mostly affected by the REC payment in Table 2 and the
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Fig. 8. Violin plots of annual total energy costs and contributing components
including the energy charge, demand charge, and PV credit. The energy charge
shows a larger reduction than the demand charge and PV credit, with an average
reduction of 7.5%. The total energy cost decreases by 0.7%, suggesting that the
proposed controller is economically feasible.

excess PV payment only accounts for a small portion. Therefore, the
lower right plot of Fig. 8 shows a similar distribution between the two
scenarios.
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Fig. 9. Boxplots of monthly peak demand by building type. Each point in the
boxes represents the average peak demand value of one month from the corre-
sponding building type. The figure indicates that the emission reduction-driven
battery control performs less satisfactorily than the price-driven control in low-
ering peak demands and demand charges.
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Fig. 10. Color plots of annual average zone mean PMV values per building be-
fore and after the implementation of the emission reduction control. Each color
block represents one building. The emission reduction control has slightly low-
ered the community average PMV value by 0.02, indicating a slightly colder
indoor environment, but the adoption of the control will not impact the occu-
pants’ thermal comfort with the design parameters proposed in this work.

-0.5

4.3.2. Peak demand

The community-level average monthly peak demand values reflect
the impact of the different battery control strategies in the baseline and
the controlled scenario. Figure 9 is the boxplot of monthly peak de-
mand by building type. Each point in the boxes represents the average
peak demand value for one month within the corresponding building
type. From the figure, we see both peak demand increases and decreases
across building types with no explicit trend. By analyzing the data, we
notice an overall trend of peak demand decrease in winter and increase
in summer. This can be attributed to the fact that the price-driven bat-
tery control in the baseline scenario helps reduce the peak demand in the
peak season (i.e., June-September) effectively. However, the emission
reduction-driven battery control only discharges the battery when the
grid intensity is high, which happens less frequently in summer due to
the high PV generation in summer. The seasonal variations of peak de-
mands also lead to the rise of demand charges in the controlled scenario
as the utility summer demand charge is higher than winter. To summa-
rize, the emission-driven battery control performs less satisfactorily than
the price-driven control in lowering peak demands and demand charges.

4.3.3. Thermal comfort

There are negligible changes to the thermal comfort of the building
occupants after the implementation of the emission reduction control.
As mentioned above, the thermal comfort is evaluated by PMV values in
this work. Figure 10 plots the annual average zone mean PMV values per
building for the baseline and the controlled scenario. Each color block
in the plot represents one building. Given that all the PMV values lie
within the range of —0.5-0.3, it is neither too hot nor too cold regardless
of the control method. On average, the emission reduction control has
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Fig. 11. Histogram of annual average EV end-of-day SOC for the coordinated
control scenario. The baseline EV SOC is considered to be 1 (i.e., fully charged).
The plot reveals that the EV SOC values for all buildings fall within the range of
0.790.97, with a community mean value of 0.88. The results also suggest that
the emission reduction control can strike a balance between the EV range and
environmental impact.

lowered the community average PMV value by 0.02, which indicates
a slightly colder indoor environment. Generally, it is safe to say that
the adoption of the emission reduction control will not affect building
occupants’ thermal comfort with the design parameters proposed in this
work.

4.4. DER performances

4.4.1. EV battery SOC

A certain amount of EV battery end-of-day SOC reduction was no-
ticed, which lies in a reasonable range. The EV SOC reduction is as
expected because of the curtailment of EV charging power when the
grid carbon intensity is higher than the LT. Given the limited number of
clean hours throughout a day and the EV charging power upper limit,
it is plausible that not all curtailed EV energy will be compensated dur-
ing the same day. Figure 11 shows the histogram of the annual average
EV end-of-day SOC for the controlled scenario. From the figure, the EV
SOC values for all buildings lie within the range of 0.79-0.97 with a
community mean value of 0.88. Considering the EV emission reduction
effect, 2.6% to 21.2% of EV SOC reduction results in 10.9% to 32.7%
of EV emission reductions. This result demonstrates that the emission
reduction control can help achieve a balance between the EV range and
the environmental impact.

4.4.2. PV self-consumption rate

The PV self-consumption rate is increased in the controlled scenario
due to the higher HVAC and EV charging loads when the building net-
load is negative. Based on Fig. 12, there exists an average increase of
6.0% PV self-consumption rate after the adoption of the emission reduc-
tion control. In some buildings, a decrease of up to 0.9% is seen, while in
most buildings, the self-consumption rate is increased by up to 21.2%.
We note that this does not conflict with the negative net emissions and
energy values in Figs. 6 and 7, as the self-consumption rate is calcu-
lated in proportion to the annual total PV generation (Eq. (10)). Build-
ings with larger amounts of backfeeding also tend to have higher PV
generation. In summary, through the emission reduction control, more
clean energy is consumed locally rather than being fed back to the grid.
This reduces transmission and distribution losses and supports higher
PV penetration in the distribution grid.
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Fig. 12. Boxplots of the annual average PV self-consumption rate per building.
Each point in the box represents one building. The plot shows an overall increase
in PV self-consumption rate with a maximum increase of 21.2%, indicating that
the emission reduction control leads to more local consumption of clean energy,
supporting higher PV penetration in the distribution grid.

5. Conclusion

In this work, we propose a rule-based coordinated control of EV
charging and HVAC systems for reducing carbon emissions in all-electric
buildings. Local PV generation is included in the control design as one
of the control inputs. Behind-the-meter batteries are involved to en-
hance load shifting. Grid carbon intensity data is used as the main deci-
sion variable to facilitate threshold-based load shifting to lower emis-
sion rate hours. A case study of a mixed-use community under con-
struction in Denver, Colorado, United States, is conducted to evaluate
the control performance. The goal of this research is to fill the gap
of lacking easy-to-implement community-scale coordination of build-
ings and EVs in the current state of the art of emission reduction
control.

Through analysis of the simulation results, we identified 4.5% to
27.1% of annual whole building emission decreases, where a large por-
tion is attributed to the 10.9%-32.7% EV emission reductions. The
HVAC system emission increases by 3.6% annually while its energy in-
crease is 5.0% on average. The cross-comparison between energy and
emission shows that not only does the total energy consumption matter,
but also when the energy is consumed matters.

In terms of the impact of adopting the emission reduction con-
trol, the annual total energy cost remains almost the same, with a
slight decrease of 0.7% after the application of the controller. The
community average monthly peak demand values generally increase
in summer and decrease in winter, which reflects that the emission-
driven battery control performs less satisfactorily than the price-driven
control in lowering peak demands and demand charges. Changes
to the thermal comfort of the building occupants are negligible af-
ter the control implementation. EV battery end-of-day SOC reduc-
tions of 2.6% to 21.2% are noticed, which balance between the EV
range and the environmental impact of EV charging. The PV self-
consumption rate is increased in the controlled scenario due to the
higher HVAC and EV charging loads when the building net-load is
negative.

The limitation of this work is not including more controllable loads
and DERs into the control framework. Further, the control only targets
one objective of emission reductions, with limited consideration of low-
ering peak demands. This is also a common limitation of general rule-
based controllers. Lastly, perfect forecasts of the grid carbon emission in-
tensity data are assumed. Future work will involve addressing the noted
limitations, such as the integration of thermal energy storage.
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Appendix A
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Fig. A.1. The 2022 annual grid carbon intensity profile used in the study, rang-
ing from 0 to 2991.7 kg/MWh, with a mean value of 983.5 kg/MWh. The max-
imum carbon intensity drops to 948.0 kg/MWh, and the mean value drops to
278.8 kg/MWh for 2050 under the same scenario.
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Fig. A.2. EV profiles for one building of each building type of the community
on three summer days (one weekday and two weekends). The x-axis represents
the time in hour, and the y-axis represents the power (kW) of the EV charger. It
can be seen that after a buildings normal operation hours, much less EV charging
power occur.
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