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Electrode Microstructure and
Chemo-mechanical Cracking
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Cathode Composition: I
 Randomly-oriented grains L
* Anisotropic grain material properties 50 um Cryst'ai'""-
Nickel Manganese Cobalt orientation

(NMC) positive electrode

Time:0s

Charge Cycling:
* Li movement between electrodes causes
nonuniform grain expansion and contraction

Chemo-mechanical cracking:

Inhibited Li flow via tortuous diffusion path
Reduced battery life
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Governing Equations
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Electrochemistry Model
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Electrochemistry Boundary Condition (BC): Butler-Volmer Relation

 Lithium transport = intercalated lithium concentration [Li] /
n: outward pointing

i
BC: P Jrnk on Iy normal
« Solid-phase electrostatic potential 2> @y Cathode
. Particle
BC: | = —xk—Men, onTy
axk

e Butler-Volmer coupling 1

_ . agnF acnF Surface of particle
BC: t=1o [exp( RT ) — &Xp (_ RT )] on Iy I},: natural boundary

. Li
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Reproducing Kernel Particle Method (RKPM)
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Reproducing Kernel (RK) Approximation

RK Approximation: Shape Function Construction: ¥;(x)

Strategic Correction of Kernel Functions, ¢, :
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b(x) = M~ (x)H(0), where M(x) = YN H(x — x,) )HT (x — x)) ¢ (x — x))
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Formulating Linear Patch Test for Coupled Problem

Patch: [Li] Patch: @
 Considerations:
 Assume arbitrary linear fields: ‘
o [Li]P = ag+ a;x; + ayx,
e PP =q,+agx; +agx,

* Must design coupled BCs that satisfy governing equations.
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—
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W=
[Sv] e~ [=p) Go
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* Designing Mixed BCs (applied as Natural BCs)

. — 0[Li] Note: We recover the original governin
* BCuip ipyg = —Dij5 e only . ginal g
Xj equations once convergence is reached
d[Li]P (i.e. VD = P [Li]V*D = [Li]).
V+1 v+1 ,
= l[Li] = _Dk] Ox. ny + PP — D
]
: dPNMC Note: A mixed type boundary condition is
* BCsp: ip =—K n; onTl
P P 0x;j J h used (i.e. if solving for [Li], then V[Li]? and
0 PP ®P are used in the traction BC).
= iyt = —k——n; + [Li]P — [Li]"*?
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Patch: [Li]
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Implementing Linear Patch Test
for Coupled Problem

* Analytical Linear Fields:

Patch: [Li] Patch: ¢

N

[Li]P =54 2x; + 3x,
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dP =6 + 4x; + 2x, R SRR
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* Formulation passes coupled linear patch test. WSIRNARNA
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Introducing Weak and Strong Discontinuities to the
RK Approximation Space
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Kernel Function Modifications for Grain Boundaries: max|[tanh(dist), 0]

Case 1: Standard
RKPM

Smooth ¥
everywhere

Case 2: Scaling with
node on boundary

Weak discontinuity
introduced only for

LpBoundotry

Case 3: Scaling with

no node on boundary

Strong discontinuity

introduced only for

LpBoundary
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Multiple Grain Demonstration Problem
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10 Voronoi Grains with Anisotropic Diffusion

Grain Orientations:
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Microstructure  Deformed Configuration Damage
(colored by grain ID) (colored by grain ID)

High-damage

10 grains

20 grains
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Image-based Modeling
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From Pixels to Nodes _—
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Standard RKPM
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RKPM with Kernel Scaling
on Grain Boundaries
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Neural Network Enhanced Reproducing Kernel
Approximation
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Neural Network Enhanced Reproducing Kernel (NN-RK) Approximation

Solution decomposition

Neural network

u =u" +at NN NN NN
(NN) approximation 4 (X) = Z bp" (x; Wg) + bg":block-level NN approximation

B=1
Nk
Block-level NN NN I
. . bB (X W) = ¢KB(Y(X WB) WKB)p(X WKB) NK: the number of
approximation
K=1 \ ]\ ) NN kernels per block
Smooth solution approximation wo, Y
" (X) ~ uRK (X) = Z Y, (X)d, NN Kernel function captures NN Polynomial introduces
_ * Location and orientation of * Monomial completeness
% il localization for further accuracy
* Shape of solution
W transition
* W": NN weight set controlling « WP’: NN monomial coefficient set
the location and orientation of
the kernel.
«  W?: NN weight set controlling * The NN control parameters W%, W?,
the shape of transition. and W” are automatically determined
Neural Network (NN) Enrichment via loss function minimization.

u"(x) = u"N(X) = X7 b (X; W)

6. Baek, J., J.S. Chen, K. Susuki. 2022. “A neural network-enhanced reproducing kernel particle method for modeling strain D
[ ] 1’1
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Block-Level Neural Network Architecture

Parametrization sub-block

A block-level neural network is a modified deep neural network
with increased interpretability.

NN kernel sub-block
A

A
' 4 \ '4 \
Intermediate Int diat
Input layer ntermediate
(Shysicgl output layer output layer
coordinate) (parametric (NN kernels)
coordinate) Output layer
(Block-level NN
5 S A approx.)
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> N
5%
St
=}
s 2

%

Neuron with tanh
activation

%,

Parameterized
coordinate y
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Neuron with parametric
softplus activation

< L

6. Baek, J., J.S. Chen, K. Susuki. 2022. “A neural network-enhanced reproducing kernel particle method for modeling strain

Polynomial sub-block
Polynomial
weights
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NN Kernel Function Controlled by W*
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tanh activation
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6. Baek, J., J.S. Chen, K. Susuki. 2022. “A neural network-enhanced reproducing kernel particle method for modeling strain
localization.” Int J Numer Methods Eng 123(18): 4422-4454.
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NN Kernel Function

#(y; Wis) = ﬂqs(zl(y, el p)

Regularized step functions

Regularized Step
~ Function 1 1
¢(zi; b)) = S(Zi + 5:&) - S<Zi - E;ﬁ‘)

Where z; = (D' (y =) /c;, i=

' S(z;B) = %log(l + eP7)
(parametric softplus function)
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Neural Network Kernel Function Controlled by W*

NN Control Parameter y
Domain of influence
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Convergence Performance for Function Evaluation:
(1) Influence of the Number of Neurons (Nyr)
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Convergence Performance for Function Evaluation:
(2) Influence of the number of NN Blocks (Ng)

fRK + fNN fRK fNN

Ny=1 ‘ ' I;

Average rate of convergence: 3.578
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L, error norm

Number of neurons Nyp = 32
Number of NN kernel per block Ny = 4
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Damage Evolution

—-_ 1
minIl = —j gmy* +yY~da+ Bj n2dQ + 1ebe
2Jq 2Jg * 256 RK particles (16X16) are used with
Uy Damage __K ot e 512 RK coefficients.
=0 —amage 1 K+p R=EYT oY * 3 NN blocks are used with 540 total
1 unknown weights and biases.
Yt == Ntre)? + usitef * Visibility criteria with diffraction is
% applied to the RK shape functions around
Uy Y~ = EA((trgi)Z —(trg;)?) + ue; g the area of pre-existing crack.
=0
VA T A v e () = max(0,-)
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Mixed-mode Fracture of a Doubly
Notched Crack Branching
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Conclusions and Future Work
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Conclusions:

A coupled linear patch test was designed and passed for the electrochemical model.

Through kernel function scaling and strategic RK node placement, weak and strong
discontinuities along grain boundaries were introduced in a flexible manner.

Image-based modeling techniques were leveraged for realistic model construction.

NN enhancement increased localization accuracy in homogeneous materials
without extensive model refinement.

Future Work:
* Input non-rectangular exterior geometries to fully-coupled simulation.
 Extend NN-RK damage capture to heterogeneous electrode materials.
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