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Detect battery state using available 
information from cheap, rapid, scalable 

measurements.

Diagnosis
Anticipate future battery performance 

by synergizing lab data and online 
diagnostics.

Prediction
Extend battery lifetime or balance 
system utilization with degradation 

costs using predictive models.

Optimization

Challenges for battery monitoring and lifetime



Battery health prediction

Gasper et al (2021), JES 168 020502
Gasper et al (2022), JES 169 080518
Attia et al (2022), JES 169 060517

Data in this section shared by TUM:
Naumann et al (2018), J. Energy Storage 17 153-169
Naumann et al (2020), J. Power Sources 451 227666 
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The challenge for accurate battery life prediction

1 − exp(𝑐𝑐 � 𝑁𝑁)
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Variability in fade rate → 
larger variability in lifetime

Marginal difference in fit quality → 
5-year difference in predicted life

Uncertainty of the rate Uncertainty of the trajectory
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The challenge for accurate battery life prediction
Wide variety of calendar and cycle aging trends make identification of parsimonious expressions difficult
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The challenge for accurate battery life prediction
There’s no clear ‘best practice’ from literature, i.e., each fitting problem is unique.
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The challenge for accurate battery life prediction
There’s no clear ‘best practice’ from literature, i.e., each fitting problem is unique.
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Split the data into additive or competitive states
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Fitting calendar fade – Bilevel optimization

Local parameter
(stress dependent)

Global parameter
(cell dependent)
Outer optimization loop

Inner optimization loop
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Fitting calendar fade – Symbolic regression
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Results - Calendar

ML-assisted model 
identification fits all test 
cases more accurately than 
the expert model.

Fit at extreme values of 
temperature and SOC is 
much improved.
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Fitting cycling break-in fade



NREL    |    13

Fitting long-term cycling fade
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Results - Cycling

ML-assisted model 
identification fits all test 
cases more accurately than 
the expert model.

Fit at extreme values of 
DOD and CRate is much 
improved.

Expert

ML-assisted
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Predicting degradation during dynamic use

Invert Linearize Accumulate

t0, t1, ……
            …….. tn-1, tn

SEI growth rate is not 
dependent on time passed, but 
rather on current SEI thickness

Degradation per day or per 
cycle can be linearized
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Predicting degradation during dynamic use
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Incorporation into techno-economic simulation 
(SimSES)

Credit: Nils Collath, Holger Hesse, Andreas Jossen
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Incorporation into electrochemical models

Aging data

Diagnostics
LLI

LAMPE
LAMNE

Machine-learn degradation 
trajectory models

Predict cell voltage response 
throughout lifetime

Dual-tank 
model
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Optimization algorithms

1. Bi-level (nested) optimization
– Local parameters correspond to unique behaviors of each cell 
– Global parameters correspond to behaviors shared by all cells

2. Symbolic regression [2,3]
– Algorithmically generate descriptors from input features
– Find optimal subset of descriptors using LASSO regularization
– Both linear and multiplicative models are searched

𝑞𝑞 = 1 −  𝛽𝛽1𝑡𝑡0.5

Local
Global 

(assumed constant)

𝑌𝑌 = 𝛽𝛽0 + 𝛽𝛽1𝑋𝑋1 + 𝛽𝛽2𝑋𝑋2 + ⋯ 𝑒𝑒xp log 𝑌𝑌 = 𝑒𝑒𝑒𝑒𝑒𝑒 𝛽𝛽0 + 𝛽𝛽1𝑋𝑋1 + 𝛽𝛽2 log 𝑋𝑋2 + ⋯
𝑌𝑌 = 𝑒𝑒𝑒𝑒𝑒𝑒 𝛽𝛽0 𝑒𝑒𝑒𝑒𝑒𝑒 𝛽𝛽1𝑋𝑋1 � 𝑋𝑋2

𝛽𝛽2 � ⋯
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Symbolic regression overview

Linear
𝑌𝑌 = 𝛽𝛽0 + 𝛽𝛽1𝑋𝑋1 + 𝛽𝛽2𝑋𝑋2 + ⋯

Multiplicative
𝑒𝑒xp log 𝑌𝑌 = 𝑒𝑒𝑒𝑒𝑒𝑒 𝛽𝛽0 + 𝛽𝛽1𝑋𝑋1 + 𝛽𝛽2 log 𝑋𝑋2 + ⋯

𝑌𝑌 = 𝑒𝑒𝑒𝑒𝑒𝑒 𝛽𝛽0 𝑒𝑒𝑒𝑒𝑒𝑒 𝛽𝛽1𝑋𝑋1 � 𝑋𝑋2
𝛽𝛽2 � ⋯

A:      T
B: SOC

A:           {T, T2}
B: {SOC, SOC2}

A:           {T, T2}
B: {SOC, SOC2}
C:  {SOC/T2,…}

2: Apply operators to 
generate new features

3: Search for the subset of 
features that model the data 

(regularization)

1: Input features

𝑌𝑌 = 𝛽𝛽0 + 𝛽𝛽1SOC + 𝛽𝛽2SOC/T2 + ⋯

Feature matrix is very 
wide, with many highly 

correlated features

This search has combinatorial 
complexity: 

(1000 choose 5) = 8∙1012

https://doi.org/10.1103/PhysRevMaterials.2.083802
SISSO: Ouyang et. al.:

Fortran, Matlab, Python [1, sklearn: 2]

https://doi.org/10.1103/PhysRevMaterials.2.083802
https://github.com/rouyang2017/SISSO
https://github.com/NREL/SISSORegressor_MATLAB
https://github.com/NREL/SISSORegressor_MATLAB
https://github.com/Matgenix/pysisso


1

2

3

4

5

6

7

8

9

10

11

12

N-1

N

…
..

Feature 
library

nNonzeroCoeff 
subsets = 4

5 15
Iter 1

Iter 2

Iter 3

Iter 4

nFeaturesPerSisIter 
features in each subset = 2

5

Output 
models

1D:

15

9
2D:

5

15

9

3D:

4D:

5

9

15

7

1 9

4 75

53 7

Iteration 1 feature selection is 
done based on correlation ranking 
to target

Iteration >1 feature selection is 
done based on correlation ranking 
to residuals from prior iteration
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