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Detect battery state using available 
information from cheap, rapid, scalable 

measurements.

Diagnosis
Anticipate future battery performance 

by synergizing lab data and online 
diagnostics.

Prediction
Extend battery lifetime or balance 
system utilization with degradation 

costs using predictive models.

Optimization

Challenges for battery monitoring and lifetime



Battery state diagnosis

P. Gasper, A. Schiek, K. Smith, Y. Shimonishi, S. Yoshida, 
“Predicting battery capacity from impedance at varying 
temperature and state of charge using machine-
learning.” Cell Reports Physical Science (2022) 3 101184.
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Battery health diagnostics

Lab-based capacity check
+ Accurate

- Slow
- Controlled conditions

Real-time impedance
+ Fast

- Uncontrolled conditions
- Measures resistance, not capacity
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Challenge: Resistance ≠ Capacity ≠ Health
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Challenge: Resistance is sensitive to everything  
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• Temperature
BOL 75% capacity
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Challenge: Resistance is sensitive to everything

• Temperature
• State-of-charge

BOL 75% capacity
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Challenge: Resistance is sensitive to everything

• Temperature
• State-of-charge
• Aging

-10 ℃, 50% SOC
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Visualizing high-dimensional data

Capacity variability

ML community has a variety of tools for reducing the dimensionality of data (images, 
spectra, …) that can help interpret the complexity of any given learning task.

Temperature variability

-10 ℃

0 ℃
10 ℃

25 ℃

≥30 ℃

Temperature estimation is likely much easier than capacity estimation.
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Constructing a 
machine-learning 
pipeline

A defined machine-learning 
pipeline improves replicability 
and allows for 
experimentation.
1. Split data according to your 

hypothesis
2. Engineer features based on 

real-world constraints, 
expert knowledge, ...

3. Choose model architecture
4. Evaluate absolute and 

relative statistical metrics

Input data

Feature 
engineering

• Normalization
• Selection
• Augmentation
• Generation

Data splitting

Train set

Model 
training

Test set
Validation set

Model 
testing

Model 
validation

Trained feature 
engineering and 

model parameters
Optimized 

hyperparameters

Fit statistics

If there’s not ‘enough’ 
data, can also cross-

validate or use multiple 
random splits
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1. Data splitting

• 6 of 32 cells held out for test set
• Hyperparameter optimization via 

hold-one-cell-out cross-validation 
on training set

Train/CV set Test set
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2. Feature engineering
Feature selection

• 1 or 2 frequencies: 
exhaustive search

• > 3 frequencies: 
algorithmic search

 

Train data
Test data
Train data (-10 °C)
Test data (-10 °C)
Train data (25 °C)
Test data (25 °C)
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Feature extraction
Statistical features 
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Domain knowledge
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3. Model architectures

Linear Gaussian process 
regression Random forest

y = xTβ + ε

Regularized via L1 
(ridge regression) or 
L2 (LASSO regression) 
norms added to loss

Minimize MSE loss

y = h(x)Tβ + f(x)

Basis 
function f(x) = GP(0, k(x,x’))

Covariance 
function

Maximize likelihood

Fairly well self-regulated

Bagged ensemble of 
boosted binary 
decision trees

Minimize MSE loss

Optimize forest size, leaf 
size, pruning rate via 

Bayesian hyperparameter 
optimization
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Results – Model architectures

Linear model performance varies widely based on features and regularization. GPR 
and RF models are better regularized but more likely to overfit.

Overfit Underfit

Well fit
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Results - Features

Selecting impedance from two frequencies is the most reliable strategy for predicting 
capacity from EIS. The frequencies selected matter.

1-frequency models 2-frequency models

100 Hz          102-103 Hz Low error plateau 100-102 Hz
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Models have varying systematic errors

GPR and Linear perform 
better than RF at middling 
temperatures

GPR and Linear perform 
worse than RF at higher 
temperatures
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Best model may be an ensemble

Model MAETest MaxAETest

Baseline 6.1% 12.0%

Linear (ridge) 2.3% 8.2%

GPR (25 Hz, 79 Hz) 2.0% 11.4%

RF (2 Hz, 500 Hz) 2.0% 11.3%

Ensemble 1.9% 7.2%
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Bonus – replication on other data sets
Zhang et al, “Identifying degradation patterns of lithium ion batteries from 
impedance spectroscopy using machine learning”, Nature Comms (2020) 11 1706.
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Conclusions

Machine-learning models can be used to predict battery 
capacity from EIS measurements recorded at unknown 
temperature and state-of-charge with about 2% average error.

Critical frequency regime for this cell is 100-102 Hz.

www.github.com/NREL/battery_capacity_from_eis
www.github.com/battery-data-commons/mrs-sp22-
tutorial/tree/main/predict_capacity_from_eis

http://www.github.com/NREL/battery_capacity_from_eis
http://www.github.com/battery-data-commons/mrs-sp22-tutorial/tree/main/predict_capacity_from_eis
http://www.github.com/battery-data-commons/mrs-sp22-tutorial/tree/main/predict_capacity_from_eis
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Thank you!
Paul.Gasper@nrel.gov
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