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Combinatorial thin film growth and structure

Thermodynamics of Al1−xGdxN

Polar wurtzite AlN-based alloy materials have exceptional optoelectronic and charge transport properties (e.g., Al1-xGaxN in LEDs and Al1-xScxN as a promising 
new ferroelectric1). Other cation substitutions include Ta3+, Cr3+, Er3+, Yb3+, and small amounts of Gd3+,2-6 but ionic size effects are a serious issue, and other 
variables affecting solubility are underexplored in this family, hampering development of new functional AlN-based alloys.
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Other Al1-xMxN alloys

• RF co-sputtering yields a composition gradient 
roughly Al0.87Gd0.13N – Al0.76Gd0.24N

• Highest previous via sputtering was x≈0.06, with 
phase separation to Gd above x≈0.16
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• The key to synthesizing Gd-rich wurtzite Al1−xGdxN alloys is accessing high Teff (3000–4000 K) under non-equilibrium conditions
• Using RF co-sputtering at Teff ≈ 4000 K, we have experimentally incorporated Gd3+ into wurtzite AlN up to x ≈ 0.25
• Universal trends: calculations reveal that bond ionicity is a key determinant of the solubility of large M3+ cations in wurtzite AlN 

• The ground state is wurtzite up to xc=0.82, and rocksalt is the ground state for x > xc
• Calculated Teff –composition phase diagram reveals a large miscibility gap at low Teff
• Higher Teff stabilizes higher Gd3+ solubility in wurtzite AlN

Combinatorial RF sputtering setup GIWAXS patterns and lab XRD at the wurtzite (0 0 2) peak

Calculated mixing enthalpies and Teff–composition 
phase diagrams of Al1−xTbxN and Al1−xPrxN alloys

• Trends in xc due to both size 
effects and M–N bond ionicity
• Al–N more polar/covalent
• More ionic M–N bonds allow easier 

incorporation

• TEM-EDS shows homogeneous Gd incorporation 
and negligible oxygen in both x=0.13 and x=0.24

• SAED confirms wurtzite structure
• Semi-oriented sample with columnar grains

• GIWAXS (SSRL 11-3) reveals phase-pure wurtzite 
crystal structure across the composition gradient

• Unit cell volume and c extracted from lab XRD of the   
(0 0 2) peak are consistent with Vegard’s law

DFT-computed (a) mixing enthalpies, (b) free energies, and (c) Teff –composition phase diagram

FFT

TEM EDS on Al0.76Gd0.22N and SAED analysis on 
Al0.87Gd0.13N 

Tb3+ Pr3+

Ion Radius χ Xc

Sc3+ 0.75 Å 1.36 0.55-0.641,3

Y3+ 0.9 Å 1.22 0.753

La3+ 1.03 Å 1.1 0.957

Pr3+ 0.99 Å 1.13 0.87
Gd3+ 0.94 Å 1.2 0.82
Tb3+ 0.92 Å 1.1 0.84
Yb3+ 0.87 Å 1.1 0.755

Al3+ 0.39 Å 1.61 –
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