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Argonne FUSE RD&D

Overview
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Smart EVSE Capable of 3 “versions” of AC Charging
* Analog(J1772 PWM)
* Digital (1ISO 15118-2)
* Digital (Tesla SWCAN)
2 Proof of Concept Stations Deployed at Argonne
for Employee Use
Recently Demonstrated 1SO-15118-2 Charging

EVrest

-
i
4
1
L]

wn
@ Qs

)
vel(a)

Argonne *

EV Charge Reservation Mobile App

Allows EV Drivers the Ability to Reserve a
Specific Port/Station for Future Use
Integrates with ANL's OCPP CSMS Platform
to Enable Future Smart Charging Algorithm
Development and EV Charging Behavior
Research
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Smart Charge Scheduling

* SO 15118-2 and OCPP 2.0 based smart
charge scheduling demonstration

* Smart charge scheduling meets the needs of

all actors in the charging ecosystem

Developed a charge scheduler bridge

application to integrate non-1ISO-15118

vehicles into the charge scheduling platform
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Charge Scheduler Bridge g\é?u%?-\\\.

What is it and Why is it needed? U.S. Department of Energy
Charge Scheduler Bridge
 Middleware Application that Integrates with EVrest and the ISO 15118

Charge Scheduler to Schedule EV Charging on Behalf of non-ISO 15118
EV/EVSE < Reserve Time

B362-02B

* Needed to enable optimized charge scheduling for non-1SO 15118 EV/EVSE TN

Goal

e Work with any OCPP 1.6J station (integrated in EVrest)
e Work withany ACJ1772 EV




System Diagram

POC Demonstration Setup
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Smart Charging Messages
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EV Agent deployed on OptiQ EVSE
Communicates with EVrest (MySQL) and
Charge Scheduler via MQTT

< Reserve Time
B362-02B
915700 Sout Cats Averm.Lirvor. L, USH




EV AGENT EVs o=

U.S. Department of Energy

* 1 Agent per EVSE port deployed on platform

MySQL API T
{ ()

EV Agent

* Upon PEV plugin, Agent queries EVrest platform for any active
reservations (within 15 minutes) OCPP 1.6J
e Active Reservation? CSMS
1. Record the following for future use:
a) EVSE PortID
b) Reservation ID
c) Driver Vehicle ID
d) Reservation Start Time
e) Departure Time
f) Requested Electric Miles
2. Utilizing the Driver Vehicle ID, fetch the electric mile to kWH
conversion factor for that make/model of EV
3. Fetch the average peak power of this vehicle over the past
charging history




Negofiation
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EV Agent negotiates initial
charge schedule with the

Charge Charge Scheduler
Scheduler

054500 PM

Schedule is shared with OptiQ
OCPP Client

PEVI 2719%

Duty Cycle is changed by
OptiQ application following
the charge schedule
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2021 Porsche Taycan g\éfu%:%\ =

Scheduler Bridge Demo U.S. Department of Energy

= PEV Charge Scheduler

Requested Range: 75 miles R

EMS Prrax [ EMS Avaitable Pmax (] PEVI

Requested Energy: 33.75 kWh : v s
Reservation Start Time: 12:30 PM ”

Reservation End Time: 4:30 PM
Pred. Charge End Time: 4:30 PM
Pred. Energy: 27.08 kWh

Max Rate of Charge: 7.68 kW

Line Voltage: 240 Vrms Tﬁ

M C t 32 12:30:00 13:00:00 13:30:00 14:00:00 14:30:00 150000 15:30:00 16.00:00 18:30:00 17-00:00 17:30:00 180000 16:3000 10:00:00 19:30:00 20:15:00
X rrent: Arms
a u e ° NEW PMAX SCHEDULE
= =
PEV PEV ID EVSE ID Max Current Arrival Time Charge Start Time Charge End Int. [ Req. Energy Delta End Energy Flexibility

CLEAR PEVS

FLEXIBILITY RENEGOTIATE



2021 Porsche Taycan

Scheduler Bridge Demo

1M1:2909 =

Date April 12, 2023

Time

12:30 PM-4:20 PM

ion Type

03:55:04

03:53:52

Porsche Taycan Turbo 2021

EV Range Ad

14.88 mph

26.11 kWh

Pred. Energy: 27.08 kWh
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= 15118 EVSE

Actual Energy: 26.11 kWH

4/12/2023, 4:30:08 PM

Analog Charging

EV Charge Parameters Departure Time:

Session ID: Departure Time Provided Time Remaining:

BVCC ID: & MaxVoltage 0.02_ Req. Energy

BV MAC: 00:00:00-00:00:00 Rin Cureent 40 0.000

KWh
Max Current 0.0(: . & -
Curent Charging Schedule [] Achual Power
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OCPP State
Charging

153008 153534 154100 154627 155153 155720 160246 160813 161339 161906 167437 167959

Pilot State
State C2

' ' ' 1 ' ' '
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LT

Pilot Voltage

503
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557

Pilot Duty Cycle

53.09 %

Line Current:
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Line Voltage:
=0z

23688

7358 kW

31.45076848 Arms

2373527706 Vrms

Line Frequency: 60.00960154 Hz
oo
sas
Active Energy: 26.097 kWh
Reactive Power: -965.0071829 VAR
Apparent Power: 7458.362638 VA
Phase Angle: -6.740278445 °
Power Factor: 0.986516261
EVSED:  OptiQFtBD -~
Setpoint
Arms
Control Current
ﬂﬂ STOP
CLEAR PLOT CLEAR STATUS
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OptiQ 15118-2 Demonstration



OptiQ

Smart AC L2 EVSE Overview
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Revenue Grade AC Submeter
Uniqueness:
« Tesla SWCAN
 |SO-15118
o J1772 (PWM)

Configurable PHY interfaces:
* Wi-Fi, Ethernet, Cellular, or
PLC over mains

OCPP 1.6J to CSMS

Enables Smart Charge
Scheduling



Background

e |SO 15118-2 (non-TLS, EIM) SECC application with metering developed for SpEC Il module
e OCPP 1.6J client (non-TLS) also developed

e Tested with the following ISO 15118-2 AC enabled vehicles:

— 2021 Porsche Taycan
— 2015 Smart ED

EVs @
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e SOCis not provided or updated in ISO 15118-2 for AC charging

e 15118-2 ‘Pseudo’ Dynamic Controlled Charging can be accomplished by modulating the
“EVSEMaxCurrentLimit” signal in the ChargingStatusRes message. The frequency of the
ChargingStatusReqg/Res message is EV model dependent:

— 2015 Smart ED: ~10 sec

L gy v
=07-2022 16:23:40.891374
tatusReq:
Er Header SessionID=189 122 155 62 33 85 56 189
ingStatusRes:
Header SessionID=189 122 155 62 33 85 56 189

— 2021 Porsche Taycan: ~ 0.5 sec

e Smart Charge Scheduling
— 2015 Smart ED: Enabled without TLS

ResponseCode: 0
EVSENotification=0
EVSEMaxCurrentLimit=30
RCD=0
NotificationMaxDelay=0
-07-2022 16:23:41.425446
ingStatusReq:
Header SessionID=189 122 155 62 33 85 56 189
ingStatusRes:
Header SessionID=189 122 155 62 33 85 56 189

— 2021 Porsche Taycan: Enabled but seems to require TLS

ResponseCode: 0
EVSENotification=0
EVSEMaxCurrentLimit=30
RCD=0
NotificationMaxDelay=0

- m- ma——- - - - mammsman



Next Steps

e Tesla SWCAN AC EVSE application has been developed

e Integrate Tesla SWCAN emulation into existing OptiQ application

— Goalis for the single application to determine the “type” of EV that is connected and utilize the proper protocol

e Add TLS option to OptiQ application and test further with Taycan
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VGI/SCM Deep Dive Discussion:
Thank You May 18th 2 — 5 pm EDT

Jason D. Harper
jharper@anl.gov
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Gathering data, validating models, assembling _
tools/software Analyzing results and th&

Prototyping grid impact analysis on a results provide

utility’s service territory Disﬂ'lbuﬂcn feeder(s)
Selecting Regions baseline and
EV Integration Scenarios

Hosting Capacit
Grid Impact §




utility's service territory
Selecting Regions

=¥ 16 states (Selected

region: Virginia Updates: NREL and Dominion counsels

(o) o . .
‘@' / million customers are in discussion to complete
N )
Headquartered in Dominion’s cyber security clearance
Richmond, VA process

](; Expected feeders: >100
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» Grid model conversion process through NREL-DiTTo

. O i
B 8 Next steps
6 &g T —— - Collect distribution grid models including topological and
i LB Dt electrical characteristics of existing assets such as lines,

L ModelTanitieg U Feedee

transformers, loads and control devices from utility

oone - Transform utility dataset info OpenDSS models using DiTTo
i - DiTTo has been updated to prepare for anticipated

Diﬂilm . feeder models
??ﬁ;?igni‘éi? - Conduct an initial distribution grid baseline analysis
; through an in-house tool, DISCO
Opis?'mi - EV hosting capacity and placement will be evaluated for
_______ L.l the selected feeders, revealing how much additional
‘ load the grid can accommodate in terms of EVSE loads

>~ B8 |m)iDISCO; ‘ '
' OpenDSS : |

mmmmmmmmmmmmmmmmmmmmm
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NREL Grid Modeling Process Scal /3

U.S. Department of Energy

* Voltage and thermal limitation
» Thresholds can be customized depending

« Computing hosting capacity at scale
Performance on use cases

- ~ Parameters

* Provides a modular framework for — ;——|//>
distribution systems analysis

« Open-source Python application

« Can work on Laptop, standalone

Conducts EV hosting

) case load representations
capacity for N

e Planning models can be used with worst }

server, or HPC cluster to scale up /| umber of feeder A * Account for some uncertainties and
number of simulations .'“' ." U. er or reeaers BRICIIVICEN  assumptions
| | using the same
Citemal iterative process
controls
* Nodal/feeder section hosting capacity
* EV scenarios can be reflected in hosting
Compute EV Hosting capacity levels for circuit maps
_— Start DISCO Grid S Copacity pacity P
. pipeline '/, ~ \ simulqﬂons ™ capacity
Configure \( ' ﬁ-
‘\\\"L‘"i/ - Job Job )
. pardllelization 9 aggregation /
\-// \r_/ —
SQL database for

post-processing



Collect, prepare, condition input datasets from Dominion Energy

Convert into OpenDSS models
Verification and validation of feeder models
Baseline grid simulation (static and time-series)

Perform hosting capacity analysis for current grid conditions
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Duck Curve ——— Canyon Curve

California's duck curve hits record lows
Lowest minimum net load day each year in CAISO, 2015-2023

\
saturation “~._
f the duck” !

2023
9AM 12PM 3PM

inus ufility-scale wind and solar

/] | Evening

6PM

/

peak

9PM

12AM

M MeritOrder

Large scale integration of EVs into the power system: A

huge burden or part of the solutions?

= On April 21, 2023, California Energy Commission (CEC)
announced that California passed the 1.5 million
cumulative EV sales mark. California is now focused on
reaching the ambitious goal of 100% zero-emission new
passenger vehicle sales by 2035.

= Inthe US, the total number of electric vehicle is expected
to grow to over 26 million by 2030.

= Key question: Is it possible to mitigate the potential
impacts of large-scale integration of EVs by leveraging its
controllability and flexibility?

30

EV's on the Road (Millions)

2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
Scurce: EEl (2022)



Overview of Rate Designs for EVs
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= Time-of-Use (TOU)
o TOU rates during the day are usually divided into peak, mid-
peak, and off-peak periods.
o It usually changes seasonally (e.g., summer vs. non-summer
months).

= Critical Peak Pricing (CPP)
o CPPis activated rarely, usually with fixed time periods
overlaid on top of either flat, block, or TOU rates.
o Generally used during periods of high electricity demand,
such as used for EV charging deferral.

= Demand Charge

o Rate based on the maximum demand of electricity.
o This maximum demand is measured over some period of
time, typically a month.

= Real Time Pricing (RTP)
o Hourly variated price signals that are updated daily.
o Usually based on day-ahead energy market clearing results.

Count of EV-Specific Rates by Status and Temporal Differentiation [1]

16
2
Piloted (n=55) 2
37

None Specified

0 W Other
Proposed (n=12 0
P ( ) M Hourly
4
5 MW Period
30 M Seasonal

Offered (n=136) 2
102
70

0 20 40 60 80 100 120

% TOU is the most dominant rate design adopted
by utilities for EV.

+* RTP has greater temporal flexibility, there are
some pilot programs for large commercial
customers.

How effective the TOU and RTP for EV
charging load control?

[1] Cappers, Peter, et al. "A Snapshot of EV-Specific Rate Designs Among US Investor-Owned Electric Utilities." (2023). u



Transactive-based EV Smart Charging Control
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Case Setup

Workplace charging scenario.

Each EV controls its own charging process to minimize the
charging cost under different rates.

100 EVs with different arrival and departure time.

Each EV has a random initial SOC (20%-60%).

EV battery size: 60 KWh.

Maximum charging power of EV: 9.6 KW.

Distribution system: Modified IEEE 13 bus feeder (3-phase
unbalanced system) with 1000 KW PV installment capacity.
The peak power of the distribution system can be greatly
increased by uncontrolled EV charging (start charging as soon
as possible).

—-=—- Base Load

2500 A —— Uncontrolled

Power (kW)
N
o
o
o

1500 4

SRR
L

"/
L )
1000 A “ oyf
‘."k',‘l"'e'\,'

00:00 08:00 16:00 00:00
Time (hh:mm)

Feeder-level net load variation during the day

646

.

611

652 680

Modified IEEE 13 bus feeder

1000 ~
800 -
600 -
400 A

Power (kW)

200 A
0

—— PV Power Variation

00:00

08:00 16:00
Time (hh:mm)

00:00

Power output variations of PVs

Probability
o =]
N w

o
S

0.0

1 Arrival Time
[ Departure Time

A0

00:00

T T
08:00 16:00
Time (hh:mm)

00:00

Arrival/departure distributions of EVs 8
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Time-of-use (TOU) based Smart Charging Control ScoloraTh
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= Control objective: Meet the energy needs of EVs prior to departure ] — Tourrice
while minimizing the total charging costs under the TOU price £07]
scheme. 5

% 0.10 A
0.05

=  Seasonal TOU rate in Colorado

0.00

» Seasonal variation: o _ o _ Time (hhimm) o o
a)  Summer months (June-September) TOU price scheme in Colorado (Xcel Energy)
b)  Non-summer months (October-May) —— Uncontrolled
>  Daily variation: - -
a)  On-peak: 3:00 P.M. to 7:00 P.M. on non-holiday weekdays £
only &)
b)  Mid-peak: 1:00 P.M. to 3:00 P.M. on non-holiday weekdays 20:' ™\
only 00:00 w0 T o 00:00
c)  Off-peak: All other hours Total EV charging( load variations
= A majority of electric vehicles will charge in the off-peak hours (i.e. 2500 A o

7 A.M.-3 P.M.), the total power of charging will decrease
significantly after 3 P.M.

~N
o
o
o

Power (kW)
=
v
o
o

1000 A

= However, since the workplace charging dwell period coincides with oo — — =

off-peak hours, the charging load shifting effect is not significant. Feeder power variations during the day
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Real-time Pricing (RTP) based Smart Charging Control Sl
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= Control objective: Meet the energy needs of EVs prior to 035

—— TOU Price
0.30

departure while minimizing the total charging costs under the | eame price L
under the RT pricing scheme (hour-to-hour variations based on g 0201 ﬂ

@ 0.15 4

the day-ahead locational marginal prices from PJM ). S — ]

0.05

($/KWh

ic

0.00 T T
00:00 08:00 16:00 00:00

= Due to the real-time price scheme, the majority of EVs tend to RT Vs Toﬂm;“r“’i""cmé scheme
charge during low-price periods in order to minimize charging
COStS. 1000 —— Uncontrolled

— TOU
e RT

(=)} el
(=3 o
o o

L L

Power (kW)
&
(=3
=}

=  EV charging loads have great temporal flexibility and dynamic
pricing scheme can effectively shift the EV charging loads to T
less-demanding periods. 00:00 08100 1600 %0:00

Time (hh:mm)

Total EV charging load variations

N

o

o
L

o

=  The real-time pricing scheme updated on a daily basis in order . oo
to reflect the current power supply and demand conditions - iy
more accurately than the seasonal time-of-use (TOU) pricing ;
system.

00:00 08:00 16:00 00:00
Time (hh:mm)

Feeder power variations during the day



Transactive-based Grid-aware Smart Charging Control
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= Control objective: Meet the energy needs of EVs prior to
departure while minimizing the total charging costs under
the TOU and RT pricing schemes without violating
distribution system operation constraints.

= Distribution system nodal voltage constraints (0.95-1.05
p.u.) and line flow constraints are considered.

= The voltage violations can be mitigated using the grid-
aware smart charging control.

» The maximum charging power of EVs in this case is
greatly limited by the grid operation constraints (lower
voltage limit).

= The interactions between the grid operator and EV SCM
system are critical for large-scale vehicle grid integration.

1000 A
—— Uncontrolled

— RT
—— RT with network constraints

800

600 -

Power (kW)

400 1

200 1

0

00:00 08:00 16:00 00:00
Time (hh:mm)

Total EV charging power during the day

Feeder minimum voltage variations during the day

n

% 093 { — Phasec “voltage violatio

==+ Lower Limit

00:00 08:00 16:00 00:00
Time (hh:mm)}

RTP without network constraints

0.99

g. (pu)
o
&

M

o o

g g
=
=
"

095 eessssssassscassansassassassasaasnanscntsnntassnssnssnsnarnsansnnrnnsannaannanabea Ve A s
—— Phase A

Minimum Voltage Ma

0941 —— PhaseB

0934 — Phase C
=+ Lower Limit

0.92 T T
00:00 08:00 16:00 00:00

Time (hh:mm)

RTP with network constraints




Conclusion and Next Steps Sealen
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Conclusion:
= Due toits simplicity, time-of-use (TOU) is still the most dominant rate design adopted by utility
companies. However, herding behavior can also cause unexpected peak load.

=  While real-time pricing (RTP) provides greater temporal flexibility, it is still in its pilot phase for
large commercial customers. The main challenge for RTP is the lack of corresponding metering
infrastructure.

= By leveraging the flexibility potential of controlled EVs, the challenges of operating a high
renewable penetration power system can be mitigated.

Next Steps:

= |nvestigate the RTP applications for EV depot or fleet operators.

= Assess the feasibility of EV aggregators and fleet operators participating in the energy market.
= |dentify the bottlenecks of large-scale EV integration by integrating mobility analysis and more

realistic grid models.
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= The HELICS (Hierarchical Engine for Large scale Infrastructure Co-Simulation) co-
simulation framework facilitates communication and synchronization between
the federates.
= The following three entities are co-simulated in the following framework:
o Caldera: High-fidelity EV charging models
o OpenDSS: Distribution system power flow calculation

power flow node
o Control Module: Control the charging behaviors of EVs using Caldera or n—
1 1 Modz:zs\;ﬁzacrgitrols PEV Charging (P & Q)
custom deflned SCM Strategles. for each power flow node

Control
Federate

Custom PEV charge
controls

OpenDSS

Federate
Power Flow Model

. DER Statws
High Level
* NodeID NSRDB
Controls * PV Power
(New Aggregator) Storage Power * Storage SOC
PEvPcTSr:::i. s * Storage node ID iradiance
- ar ime -
«  Park End Time Charge Schedule Power setpoint after t+1 Data
< ParkStart S0C * EVSEID )
« Park End SOC * Power setpoint New Charge Profile o s
«  Vehicle Type [BEV100,etc) after t+1 + Node ID Building Status
Geo-spatial Mapping «  Charger Type (L1,12, etc) e End SOC at t+1 * No-de- D DER
* Building Load . .
- Simulation
Serial Processing ~ vrms for each power flow node
EVI Pro {csv fille) Caldera Open DSS
Vehicle Travel PEV Charge Power Flow
and Infrastructure Models and Controls PEV Charging {P&Q) for each power Model

flow node

Conventional
Vehide Data and Utility load and distribution m
Scenario Inputs system operational data
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Medium & Heavy Duty

Vehicle Charging Analysis
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Projected light-duty charging energy
« For EVs@Scale, EV charging demands One week of fravel, September 2040, Richmond, VA
must be determined across vehicle
segments to understand the energy
requirements and smart charge
management opportunities

« Year 1 of the FUSE project charging
analysis focused on light-duty vehicles
(LDV)

— QOutputs included passenger EV charging
datasets

NS ®pewell

e Year2isfocused on medium and
heavy duty vehicles (M/HDV)

(® mapbx
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1. Trip Data Acquisition & 4. Simulate EV Charging Demand

PreproceSSIng EV charging is simulated for travel itineraries considering (1)

Representative regional travel data is joined with EV adoption assumptions; (2) charging behaviors and

geographically determined locational characteristics obtained location-specific EVSE  availability; (3) charger type
from multiple data sources. assumptions.

2. EV Adoption Modeling

For a given analysis year (2040), assign PEVs to charging 5. Generate Location—SpeCifiC =Y

locations by vehicle model (battery size, efficiency, & max kW .
acceptance required for simulation). Load PrOﬂles

Charging demand for a given analysis year (2040) is assigned
to specific locations (i.e., land parcels) by location type.

3. Determine Travel Itineraries

Use telematics data to form travel itineraries for each vehicle
type. For less depot-centric travel, travel itineraries must be
synthesized since telematics data typically lacks a persistent
vehicle identifier.
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M/HDV weight class and vocation breakdowns

Population Fuel Use, Diesel Gallon Equivalent
million
Class_Body Vehicles % Cumul % Class_Body DGE
1| |8 Sleeper Cab 1,305,953 14.4% 14.4% 1| |8 Sleeper Cab 19,021 45.1% 45.1%
2| |8 DayCab 1,091,019 12.0% 26.4% 2| 8 _DayCab 9,469 22.4% 67.5%
3| |3_Pickup 029,805 10.2% 36.6% 3| |7_DayCab 1,460 3.5% 71.0%
4| |7 Bus, school 451,361 5.0% 41.6% 4| |8 Bus, nonschool 1,227 2.9% 73.9%
5/ |3 _Van 366,297 4,0% 45.6% 5| |3_Pickup 1,219 2.9% 76.8%
6| |6 Specialty Hauling 274,335 3.0% 48.6% 6| 8 _Dump 971 2.3% 79.1%
7| |8 _Dump 272,703 3.0% 51.6% 7| | 7_Bus, school 755 1.8% 80.9%
8| |4 Specialty Hauling 266,238 2.9% 54.6% 8 6_BoxTruck 567 1.3% 82.2%
9| |6 _Box Truck 262,879 2.9% 57.4% 9| |8 _Refuse 454 1.1% 83.3%
10, |7 _Day Cab 212,937 2.3% 50.8% 10| 7_Box Truck 432 1.0% 84.3%

Estimates by NREL from analysis of 2013 IHS Polk vehicle registrations, the 2002 Vehicle Inventory and Use Survey, 2018 data from the American Public Transportation
Association, Federal Highway Administration data, and other data sources
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In our M/HD EV model, adoption varies by class and vocation Scales~ e

U.S. Department of Energy

e In our adoption scenario, local and regional travel
vehicles electrify more rapidly than long-haul

TEMPO is an all-inclusive transport demand model that

Weight Class projects household-level vehicle ownership and technology L
Segment Light-Medium Medium Heavy choices based on heterogeneous consumer preferences
- considering socio-demographics, technology attributes,
Local (<100 miles) 52% 42% 33% geography, and population-specific multi-day mobility and
. travel requirements.
Regional (100-249) 66% 59% 30% https://nrel.gov/transportation/tempo-model
Long-Haul (>250) 17% 42% 17%
{] L] (] L] L] 4
* The first stage of our analysis will focus on vehicles with 2 4
. oo . Charging Levels: ﬁg%
fravel patterns amenable to rapid electrification: DCFC (350kW-MW-+) |En-Route  °©

Z

- Local or regional travel patterns

— Consistent depot from which vehicle operates each day
— Relatively long dwell times

Inspired by National Research Council. Overcoming barriers to deployment of
plug-in eledric vehides. National Academies Press, 2015.


https://www.nrel.gov/transportation/tempo-model.html
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Our M/HD analysis began with vocation prioritization Scolecﬁ}

U.S. Department of Energy

« We have begun analysis on transit buses

 We will use Geotab to identify other vocations
that may have appropriate travel patterns, such
as:
— Local delivery vans

« Stable depot location and duty cycle

e Several manufacturers have market-ready or on-
market EV options

— School buses
« Stable depotlocation and long depot dwell times

» Clean School Bus program funding




Our transit bus system analysis will use GTFS data

Transit system characteristics: relatively fixed routes and
timetables, depot and terminal locations are known

« Obtained General Transit Feed Specification (GTFS) data
for the Richmond region, working on charging demand
analysis for fransit buses

TomTom Trained
road RouteE bus

) ol ’ INTERMEDIA
network models

Ma Tri
P RouteE p
ﬂlﬂtchln energy

RESULT

PROCESSING

Route shapes

Trip sequence _ _ !
Bus daily Charging Charging

itinerary strategies Demand

Stop times Database

Depot and on-

route chﬂrging

facilities

E\'s©®___
Scaleg M e

U.S. Department of Energy

452 [P

4514

4504

4.49 4 .

448

Routes

S . - ~ _ Géo|
5 W"“r /,—_'w.-:r - g/ Ty ."4‘-'
—B8.645 —8.640 —8.635 —8.630 —8.625 —8.620 —8.615 —-8.610 —8.605

GTFS Data for Richmond Region e
Fleet size: 157

Num of routes: 45

Daily VMT per vehicle: 184 miles

4.47
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Long-dwell locations and times can be seen in Richmond with Geotab Scalexs~ e

U.S. Department of Energy

Long-dwell locations Long-dwell time periods
Class 2-5, dwell longer than 9 hours, Class 2-5, dwell longer than 9 hours,
local travel vehicles, 9/12/2021 local travel vehicles, 9/12/2021

BAM

12PM

Yehicle dwell start time

6PM

2 83 164 12AM EPM 12AM

ot ki) B
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Next steps SCCI|&¢/_\.\}.

U.S. Department of Energy

« Build travel itineraries and identify charge locations for
depot-centric, long-dwell M/HD vehicles

* Use identified “hotspots” to inform feeder selection

 Develop 2040 vehicle archetypes for each vocation of M/HD
vehicle



EVis @

Scalegc N e

Broad regional analysis

Manoj Kumar Cebol Sundarrajan

Research Software developer
Vehicle Grid Integration Group
ldaho National Laboratory

May 18, 2023
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Smart charge management limitations SCO|Q¢/"$\

U.S. Department of Energy

e Smart Charge Management strategies are developed to improve the
impact of EV charging on the grid.

e But they must be based on the conditions of a particular grid at a
particular time.
When is the best time to charge EVs?
It depends.
Depends on what?
Which way the wind blows...
And your regions: Wind deployment, Solar deployment, Air

Conditioning load, Electric Heat, Existing load shape (residential,

commercial, industrial), the current season, the daily weather,
and many other characteristics



Regional Characteristics

Renewable Generation Adoption
* Solar
* Wind
* Inland
e Offshore
Electrical Demand
Summer Peaking
* High AC Loads
*  Winter Peaking
* Small City
* Rural Region
* Large City

E\'s©
Scole_c\.}\.

U.S. Department of Energy

Transportation
* Port City with Drayage
Major Highway
* Insmalllightly loadec
Significant truck traffig]

S
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Regional Characteristics Matrix

E\'s©

SCGI&R.}.

U.S. Department of Energy

El Paso Electric AT Dominion
Characteristics ERCOT Coast Evergy ISO (ISNE) -
(EPE) Energy
Vermont

High Solar X X X
Inland Wind X X X
Offshore Wind X X X
X X
X X
X X X
X X
Large Seaport X X
Large Airport X X
Pass-Through Truck Traffic X X
International Truck Traffic X X

Renewable generation adoption — Green
Electrical demand —
Transportation — Blue
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Computational modelling approach SCOl&C’\.\}\

U.S. Department of Energy

modelling generated charge events from the charging behavior models

— The Caldera Grid software tool generated power profiles by applying SCM
strategies on the charge events

* Input stage e Ir_1|:1u_t _SLagg_
— Eleven Light-Duty vehicle classes were used I" Vehicle Population Classes \1
~ Charging behavior models were derived from purchased WEJO itinerary data for | Charge Beh.avior MOC!EIS :

the Virginia region : EV Adoption scenario I
_ _ _ _ | Energy Allocation !
— LD EV adoption scenario for 2040 was modeled using TEMPO tool with 50% EV ! :
adoption rate S
| | - = == - - -4 Modelling Stage
— Two energy allocation scenarios were used R - BN
* home dominant (Home : 60%, Work : 10%, Public : 30%) : !
e work dominant (Home : 20%, Work : 50%, Public : 30%) :
* Modelling stage :
— The Caldera Charging Decision Module (CDM) software tool using stochastic : Charge Events
I
I
I
I

Sy

e Output stage e _

,
— Time series load profiles were used in post-processing for analysis - =-=-====-—~- —Ql'ltggt—sl:alg-ex

Load Profiles



Park Start

SCM strategies

Solar TOU-Random

— EVs prefer to randomly distribute charging in the
TOU window

— Updated Time of Use (TOU) period from nighttime
to daytime.

Time-of-Use

| |

Park End

\ J
|

Randomize charge-time
within overlap period.

E\s@
Scoletfx.\}.

U.S. Department of Energy

e Solar Centralized Aggregator

— Centralized strategy shifts EV charging within
vehicle dwell to minimize feeder peak

— New objective function to maximize charging
following solar curve.

Load with uncontrolled
EV charging

/

Optimized curve
shifts EV charging to
fill in the valley

/

Baseline load
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Home-dominant — El Paso summer SCO|Q¢/"$\

U.S. Department of Energy

« Both solar TOU random and solar centralized aggregator strategies struggled

to shift charging towards the solar period due to most cars only charging at
home at night.

EPE, Summer home-dominant TOU random EPE, Summer home-dominant centralized aggregator

2500 o 2500 ; P S S
P ~
~ -
//
2000 + 2000 4 //
TOU Random 2 Cent. Agg.
—— uncontrolled = 1500 s 1500 1 \/// —— uncontrolled
——— TOU_random_night = = ~— centralized
—— TOU_random_solar o T = centralized_solar
solar % % solar
~—— non-EV demand & 1000 & 1000 ——— non-EV demand
demand minus solar demand minus solar
solar time TOU
night time TOU
5’00 T mo o
- o
0 A 0 A
T T T T T T T T T T
4] 6 12 18 24 4] 6 12 18 24

simulation_time (hrs) simulation_time (hrs)
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Work Dominant — El Paso summer Scolet/\.x\

U.S. Department of Energy

A significant amount of charging shifted from nighttime to daytime due to EVs

charging at work, but the charging peak does not coincide with the solar
peak.

« Both solar TOU random and solar centralized aggregator strategies were able
to shift charging towards the solar peak.

EPE, Summer work-dominant TOU random EPE, Summer work-dominant centralized aggregator

2500 - 2500 ~ B S
\_‘ ,-/ \'\_‘l
~ // =
7~
2000 + 2000 + _,/'
/
Fa
TOU Random W Cent. Agg.
—— uncontrolled s 1500 = 1500 \// —— uncontrolled
ww TOU_random_night = = —— centralized
—— TOU_random_solar 5 b —— centralized_solar
olar g g solar
——— non-EV demand 2 1000 4 2 1000 + ~——— non-EV demand
demand minus so lar demand minus solar
solar time TOU
night time TOU
04 0
T T T T T T T T T T
0 6 12 18 24 0 5] 12 18 24

simulation_time (hrs) simulation_time (hrs)
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Next steps SCG|Q¢/"\.}

U.S. Department of Energy

 Medium- and Heavy-Duty Vehicle (MHDV) charging
behaviors will be added to the charging behavior models.

« SCM will be updated for regions with other renewable sources
such as wind generation.

- Agent-based simulations will be studied to understand the
impacts of charge scheduling and stationary energy storage
(SES).
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WhO Are We?

A membership
organization Wé’

Staff of ~50

S
LAY

No Advocacy —501c3 ,

Ny

J

Founded in 1992

.

Unbiased

Rese arch, Education,
Collabora tion
and Standards

Technology Agnostic

Local, State and
National Focus

Smart Electric
Power Alliance

. " \’_ i
| L
| R .

-

.

I

—




Membership

SEPA1s a membership organization comprised of utilities, technology

solution providers, regulators, and other stakeholders.

500

408

400 A
Total Mem bers Of utilities with carbon-free

or net-zero emissions goals 300 —

200 -

100 +
35

0 -

Ot U.S. custom er Of ufility com missions B Government/Non-profit Education m Public Power Utilities

accounts served m Cooperative Utilities ® Investor-owned Utilities
m Other Utilities Corporations

El: Smart Electric
[ |
| |

3 | sepapower.org Power Alliance



What We Do

We Accelerate the Transform ation to a Carbon Free Energy System through:

EDUCATION FACILITATION CREATION

Raise awareness Drive collaborative Develop and deliver
of practical and problem solving strategies and guidance
actionab le solutions our members can use

El: Smart Electric
[ |
| |

4 | sepapower.org Power Alliance



EE 5 Smart Electric
[ |

[ |
= Power Alliance
[ | |

Utility Activities

Staff, Plans, Programs

Transportation
Electrification Planning
Framework




HH ssmt - Smart Electric
A spectrum of utility engagement 227" Power Alliance
Eassive & Supporting Role Utility Role in Planning for Transportation Electrification Active & Leading Roli

Dedicated TE Teams

Collaboration w/Local Municipalities

Strategic
Er;}ﬂgrammatic EVSE Interconnections EWSE Incentives for Multiple Market Segmenits
isC. -
CaptﬂrﬁﬂataonE\fSE CBA for EW/EVSE Utility Programs
Unltyietions Pt Ledoes i Utility-Owned EVSE for Fleet, MUDs,
Workplace Charging, etc.
Make-Ready Services
EVSE as a Service
Must Do Should Do Could Do
Low Engagement Level of Utility Engagement with the End-Use Customer High Engagement

Source: Smart Electric Power Alliance, 2021

For additional information on the role of the utility in TE strategic planning see SEPA's report, Utility Best Practices for EV Infrastructure Deployment.

SEPA | Electrification 14




Managing EV load

Figure 1. Using Dynamic EV Managed Charging to Optimize Charging Behavior

T
(98]
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] | 3
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E ’IO' M
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7
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1 2 3 4 5 6 4 8 9 10 1 12 18 14 15 16 17 18 19 20 2
Hour Ending

B Unmanaged EV Charging [l Optimized EV Charging — Charge Management Signal
Source: Data and charts provided by WeaveGrid, Inc.
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EEEEN .
Passive (behavior) and Active (direct control =L Bower Allanc
mums - Power Alliance
HEEN
Passive Active
Relies on customer behavior to affect Relies on dispatch signals originating from
charging patterns. For example, EV time- a utility or aggregator to be sent to a
of-use rates provide predetermined price vehicle or charger to adjust the time
signals to customers to influence when and/or rate of charge (both load
they choose to charge their vehicles curtailment and load increase)

Source: “A Comprehensive Guide to Electric Vehicle Managed Charging” (SEPA, 2019)



Residential charging is inherently flexible...

B Parked Time [} Time to Charge 50 Miles

Home Charging F

Workplace Charging

Retail / Convenience

DC Fast

Fleet Charging | | IT DEPENDS

Hours

9 | sepapower.org Power Alliance

El: Smart Electric
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...and has become more flexible in the new world
of hybrid working

Earli lug-i
arlier plug-in
15+

time
L

DEIayedunplug O 2 1 273 4 5 678910 M 127123 4 5°6°7°8"9 10 1

AM AM AM AM AM AM AM AM AM AM AM AM PM PM PM PM PM PM PM PM PM PM PM PM

L]
t I m e Source: ev.energy, 2021

‘ Figure 15. EV Unplug Times of Residential Customers
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Multi-Level Optimization: Bulk and Distribution

Figure 2. lllustrative Example of How Time-of-Use Optimization at the Bulk System Level can Create Overload Figure 3. lllustrative Example of How Multi-Layer Optimization can Co-optimize for Bulk System Time-of-Use

Situations at the Distribution Transformer Level

Signals and Distribution Level Constraints and Maintain Driver Charging Needs
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Source: Data and charts provided by WeaveGrid, Inc.
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M Home Lload MPHEY 1 MMEV2 MEV3 EV4 EV5 Transformer Rating
Source: Data and charts provided by WeaveGrid, Inc.

Smart Electric
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Smart Electric
Power Alliance

State of the Industry

e Survey results from 51 utilities with managed charging The State Of

program s Managed Charging

e Recom mendations for program design, rollout, iNn 2021
implementation, and evolution

e Six utility-led case studies and one customer fleet
November 2021

initiated managed charging program.
e FEarly observations of the impacts of COVID on EV
charging
e Trends in EVSE and Network Service Providers (NSP) e
e Appendix containing a comprehensive guide to utility
~chargepoin+ () 7 openADR

LLLLLL HEE

managed charging program s, EVSEvendors and NSP

rovid ers \l/
P’ ZICF energytub  ELFTF ne




Planning for managed charging is universal

Figure 7. Utility Outlook on Implementing New

Managed Charging Programs

123

10+

Most utilities without a program

today plan to implement soon

Number of Utilities
(o]

01 | |
Within Within Within In more
the next the next the next than
year 1-2 years  3-5years 5 years

N=31.
Source: SEPA, 2021

13 | sepapower.org Power Alliance
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Utilities are moving to capture greater benefits

AMI, ADMS, DRMS 4
@ Continuous Load Control

@ Demand Response Event Incentive

Grid/Utility
Infrastructure @cvTouU

@® Wholehome TOU

Level 2 Charger Rebate

No Additional | @ @ Participation Incentive
Requirments

Customer Utility Benefit  Utility Control
Behavioral Changes Over Assets

Source: SEPA, 2021

14 | sepapower.org Power Alliance
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Passive 2 Event Based - Continuous

c
R
=]
s Vehicle to Grid
'E (Grid Services)

Continuous
Management
(Active)

Event-Based DR
(Active)
Vehicle to Home
(Customer Resiliency)

. Vehicle to
TOU Rates A
(Passive) Critical Load

(Customer Resiliency)

Increasing Level of Opt

Time
M Vanaged Charging [ Bidirectional Managed Charging (V2X)

Source: SEPA, 2021



Interest across customer segment

100% -

91% Is this feasible?
84%

68% 69%

Percentage of Utilities

Residential Public Workplace Fleet Multi-family Transit
M Current Programs [l Interested Sectors

N=50

Source: SEPA, 2021

Smart Electric

Power Alliance

EEEE
16 | sepapower.org E:.'



Smart Electric
Power Alliance

Guide for Program Design

To assist utilities in their efforts, SEPA recently Managed Charging

published a report entitled, Managed Charging

Incentive Design: Guide to Utility Developm ent. Incentlve DESIgn

e Six-step managed charging program design process

e Detailed case study featuring Baltimore Gas and
Electric (BGE) and Potom ac Electric Power Holdings
(PHI)

e Analysis of forty managed charging programs and

October 2021

insights from twenty utility intervie ws

e Actionable recommendations



https://sepapower.org/resource/managed-charging-incentive-design/

Participation uncertainty is high £EE21 Smart Electric
Uncertainty Around EV Customer Participation 60%

( $=\\ Limited Info on Program Design

Uncertainty Around the
N Availability of EVs to Manage

Other

Lack of Staffing Resources to Develop a Program

Regulatory and Policy Limitations

Limited Managed Charging
Equipment Vendor Options

Lack of Internal Utility Support 6%

to Develop a Program

T T T T T 1
0 10% 20% 30% 40% 50% 60%
N=48. Note: Utilities selected all that applied.
Source: SEPA, 2021
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Rebates, or enrolment and participation

Rebate

Enrollment

Participation

Rebate + Enrollment

Rebate + Participation

Rebate + Enrollment
+ Participation

Program Incentive Structure

Enrollment + Participation

EVTOU Only

I I
10 15 20 25
Number of Programs Offering Incentive

B Without EV TOU Rate [l With EV TOU Rate

Source: Smart Electric Power Alliance, 2021.
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Incentive offered in year one (average)

The median charger rebate for residential program participants

Rebate Enroliment Participation Rebate Rebate Rebate Enrollment
+ Enrollment  + Participation + Enrollment  + Participation
+ Participation

E $1,000 - with a single-family home is $600.
S _
€0 i
5L o0 $825
<9 (2 Programs)
8% 6004
Y- $600
o (1 Program)
Bo 400 PEELEL] -
%f, (21 Programs) _ 5459 5 PS4058 )
= o0 (1 Program) (3 Programs
2E  200- $98 $298
<35 (2 Programs) (9 Programs)
0
-
° 0+
£
=

Type of Incentive Structure
Source: Smart Electric Power Alliance, 2021.
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Vehicle to Grid (V2G, V2H, V2L) — getting closer

GMC Hummer EVs Power Station Generator
onboard bi-directional charger can export 25 amps

of AC current.

* Rivian has also highlighted their Vehicle to Load
and Vehicle to Vehicle Charging

Ford Intelligent Power can use the
truck to power homes during high-
cost, peak-energy hours.

From 2022 onwards, new electric vehicle models
Ford is also teaming up with Sunrun, from VW will support bi-directional charging.
to facilitate easy installation of the 80-
amp Ford Charge Station Pro and
home PV system. Hyundai, Kia and Lucid all have future vehicles that the companies say will
include this capability.
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V2L, V2H, and V2G — the X in V2X Matters

Behind Utility
Customer Side of
Meter Meter

s

T

&: * *
DfD‘DL
[ 1

Does not require utility notification

V2H Capable (includes V2L Capabilities)

Likely requires utility notification

V2L Capable ODD;D“
I
1
1
I
I
I

V2G Capable (includes V2L & V2H Capabilities)
Reguires Interconnection Agreement

Source: SEPA, 2022

Customer-centric Pathways to V2X Adoption



. HEEN -
Stages of Mass Market Adoption of V2X =i Bower Alliance
A
V2G: Aggregation B v2G: Grid Services
of Fleet EVs for for Personal Vehicles

Grid Services

B V2B: Peak Shaving
& Demand Charging
Reductions

Increasing Level of
Implementation Complexity

1
|
|
e
|
|
|
1
1
|
- V2H: Customer Resiliency
1
|
|
|
1
1
|
|
|
1
|

V2L: Customer Resiliency
!VZV: Charging Rescue

»>

Time
M Fleet Adoption M Personal Vehicle Adoption | Commercial Implementation  § Pilot Stage of Implementation
Source: SEPA, 2022



Panel

Current State of Managed Charging:
Progress, Barriers, & Solutions

OCPP
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-
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Speakers
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Joachim Lohse
CEO & Founder

Ampcontrol is a charging management
software for electric vehicle optimization. The
Al-powered software uses real-time data to

make automated EV charging decisions.

www.ampcontrol.io



http://www.ampcontrol.io/

How customers use Ampcontrol

Ensure high charger
uptime

o>

Reduce charging
costs

N

Monitor fleet
availability

=/\=



Managed Charging
today:

What is possible?



Unmanaged Charging Leads to High Costs

High Peak

Power Demand

=/\=

Electric Load (kW)

Vehicle Charges

on-peak

off-peak

mid-peak

mid-peak

off-peak

Energy Price

11 pm

1lam

Trucks on road

Trucks at depot/idle time

3am

New trip



Unmanaged Charging Leads to High Costs

Unused Potential

High Peak on-peak
Power Demand
=
5 .
S mid-peak TGRS
s
-l
9]
= ff-peak
£ off-peak o
<@
(NN
6 am 3 pm 9 pm 11 pm lam 3am
::..[:- I
CTTTT) T T | .
© ©) ©) © ©)
Trucks on road Trucks at depot/idle time New trip

=/\=



Optimized Charging Reduces Charging Costs

w/o smart
charging

High Peak
Power
Demand
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Reminder: How does OCPP work?
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1ol

Client

Server

Handshake (HTTP Upgrade)

Bidirectional Messages

Open and persistent connection

One side closes channel

Connection closed

1 Initial connection start always by client

2 Server provides “handshake”

3 Both sides can send messages

4 Both sides can close the connection



EV charger receives charging profiles via OCPP’s setChargingProfile.req

The optimization software creates individual charging profiles. OCPP chargers will typically receive
multiple charging profiles between the start and stop of the session.

Charging Profile Example

° OCPP uses a message type
“setChargingProfile”

° Charging profile = Ampere or Power per
time interval

44 KW

e Always sent from server to client
36 KW ° Time steps are variable: Ts, 3s, 120s, etc.

° Can be replaced with new profile any time
28 kw

t=0s t=60 t=120 t=180 t=240 t=300 t=360
Timesteps are always in seconds t =420
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OCPP allows reliable and dynamic load management

| time:

-r/\u ampconirol

ENER:

Network info Network load 4 Sessions

Network name Live Charging Power: 2 Unilization. Sessions. 10

Location

Network 1D

Optimization objective

Total charge points

DRVIG event

Sorial Name Custom Name Currant Statug Total Connectors Max Pawer Liva Charging Powar Optimized Limit Last Session Started
n DeC 2 75 kW 14.06 kW 14.93 kW 20221212 09:23: 21
22 bc 2 7o kW 3953 kW 40 64 kW 20221212 10039:52
24 (v 2 75 kW 23.56 kW 2479 kW 20221212 10:15:56
28 oc 2 T kW 2010 kW 2047 kW 2022-12-12 10:02:30
15 oc 2 75 kW 1387 kW 14.77 kW 08:47.22
16 bc 2 75 kW 14.96 kW 15.45 kW 20221212 08:08:03
14 (+]83 2 75w 2381 kW 24.41 kW 20221212 08:4420
12 oc 2 TS kW 1388 kW 1482 kW 2022-12-12 09:46:21
13 bc 2 TS RW 13.92 kW 14.98 kW 2022-12-12 08:45:23
18 3]+ 2 TS W 4018 kW A0.64 kW 20221212 10:31:04
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= ./\‘ ampcontrol DEMO NETWORK ~

Charger10 /' ®

Live Charging Power Utilization

Benefits : 6% A

Works for AC and DC chargers

Redistribute charging during CV-Phase

Update charging profiles several times
during session

Takes into account vehicle data (departure
time, target SoC, etc.)

@ Max. Power (kW) Optimization limit (kW) @ Charging Power (kW) DR/V26 event cannector-1 connector-2
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Smart charging enables connections that extend beyond the charger hardware

00O

CHARGING ENERGY FLEET
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Case Study: rpvel Confidential

Ampcontrol ensures higher charger uptime and * >55% saved energy costs per month
reduces costs by >55%.

* >100k charging sessions per year

= Ny
T . == '||’ Site Power Output (1 week)
ampeontro TRITIUM

600
500 I 'I Il’h‘h

3004

Power (kW)

200+

1004

T T T T T T T
Sep 16 Sep 17 Sep 18 Sep19 Sep 20 Sep 21 Sep 22
2022

Ampcontrol significantly reduces energy costs by constraining the
site’s power output at different time of the day. This reduces
Demand Charges, and optimizes charging depending on TOU rates.
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What are challenges?



Typical error source

¢ Hardware broken

% Synchronization incorrect

9¢ Connection broken

2 Charger-vehicle communication
0 Charger firmware bug

2 CMS software bug

3 Incomplete OCPP integration

_-—

2 Unregistered idTag (RFID, etc.)

=/\=
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Charger exchange data and require the correct security

Security breach 1 Security breach 2

intget':)%ion

unwanted connection
erver erver

1. Only use secure WebSocket to connect chargers (URL starts with “wss” instead of “ws”)

2.  Your CMS provider AND charger must use the highest TLS version (TLS 12 or higher)
3. A URL should use a custom secret (“password”) per location

4.  Ask your CMS provider for additional security options

=\~ "



Increase uptime through hardware test, alert systems, and more

Test hardware with CMS partner before
purchase

Evaluate CMS uptime and smart charging
capabilities

For fleets: Integrate vehicle data to ensure
on-time departure

=/\=

HIGH

SOFTWARE

@ UPTIME

TESTED
HARDWARE

—

CONNECTED
VEHICLES
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https://www.ampcontrol.io/reports/ocpp-report

Interested in OCPP?

In our report, "What is OCPP and How to Use It For Smart Charging,”

discover how OCPP eases communication of charging station
works and its potential for energy management and grid
integration.

)

ne

-/\— ampcontrol Products

Blog

Webinars
Company News
Case Studies
Reports

QOCPP Guide

APl Documentation

Glossary

Solutions

Interesting Read

Jackson County Selects
Ampcontrol for Charging
Management System

REQUEST A DEMO

Static vs Dynamic Load
Management: What is the
Difference?
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http://www.ampcontrol.io/reports/ocpp-report
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Thank you for joining

If you have any questions, please email us at:
contact@ampcontrol.io

or visit us at
www.ampcontrol.io



mailto:contact@ampcontrol.io
http://www.ampcontrol.io/

GSA | EVSE & Managed Charging

Christie-Anne Edie | GSA R8 Sustainability Program Manager | May 18, 2023
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GSA Region 8 Sustainability Program Manager
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Applied Innovation Learning Lab (AILL) | Managed Charging

Progress

Background:
On April 13, 2022 GSA Administrator Carnahan announced that GSA will be launching demonstration
projects, called Applied Innovation Learning Laboratories, at the DFC and other locations around the

country.

One of the first-ever GSA Green Proving Ground collaborations between multiple Industry and Federal
partners, including Department of Energy National Renewable Energy Laboratory and Sandia National

Laboratories.

Learning Labs Phase | — EV Charging Infrastructure (EVSE)

e Supports glide path to an all Zero Emission Vehicle (ZEV) federal fleet
o 2027: 100% light duty vehicles in fleet = ZEVs
o 2035: 100% all vehicles in fleet ZEVs
° External Alignment / Leading by Example
o 2030: construction of a national network of 500,000 electric vehicle (EV) chargers

o $7.5 Billion funding to state and local government for EVSE in Bipartisan Infrastructure Law

Additional resources:
GSA - Press Release

GSA -Administrator Carnahan’s Remarks
VVH- Executive Order 14057

WH-EV Charging Action Plan
VW -FACT SHEET: The Biden-Harris Electric

Vehicle Charging Action Plan

Local coverage



https://www.gsa.gov/about-us/newsroom/news-releases/gsa-administrator-national-climate-advisor-elected-officials-promote-climate-and-job-investments-in-colorado-04132022
https://www.gsa.gov/about-us/newsroom/speeches/speeches-by-the-administrator/remarks-for-administrator-robin-carnahan-denver-federal-center-tour-4-13-22-04152022
https://www.federalregister.gov/documents/2021/12/13/2021-27114/catalyzing-clean-energy-industries-and-jobs-through-federal-sustainability
https://www.whitehouse.gov/briefing-room/statements-releases/2021/12/13/fact-sheet-the-biden-harris-electric-vehicle-charging-action-plan/
https://www.whitehouse.gov/briefing-room/statements-releases/2021/12/13/fact-sheet-the-biden-harris-electric-vehicle-charging-action-plan/
https://www.whitehouse.gov/briefing-room/statements-releases/2021/12/13/fact-sheet-the-biden-harris-electric-vehicle-charging-action-plan/
https://www.9news.com/article/news/state/colorado-climate/lakewood-building-geared-to-fight-climate-change/73-2f0495f8-fcbb-4ddb-b8f0-f5873be95538

GSA’s Green Proving Ground

GPG leverages GSA’s real estate portfolio to evaluate innovative building technologies.

Accelerate Market Acceptance
Help bridge the technology valley of death
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AILL: Electric Vehicle Supply Equipment (EVSE)

Coordinated Approach:

Consolidate resources and leverage Green Proving Ground Program M&V to develop
EVSE requirements and acquisition tools needed to support an all-electric fleet.
° EVSE GPG Technologies (Lab M&V)

© Fermata Energy | Bi-directional EV charging turns EVs into energy storage assets,
increasing resilience and lowering the cost of EV ownership.

o Beam Global | Renewable, transportable EV charging station combines solar,
battery storage and emergency power. Can be independent or grid tied.

® EV charge management optimizes charging based on vehicle use, utility rates, and
the carbon content of delivered power. CANCELLED

o Existing EVSE Technologies (Internal Guidance)

@ ChargePoint chargers with capability to bill back to public customers as well as
GSA Fleet customers

Additional resources:

2023 GPG Program Press Release



https://docs.google.com/document/d/1C9ihwhTfrpgVyIqh4D5lR4RTYTbOcDMiNT_F7O_fdHM/edit

Bi-Directional EV Charging by Fermata (Charlottesville, VA) |
GPG

Bi-directional EV charging can be used to stabilize the grid by strategically
using EVs to either power local building loads or send energy back to the grid. Value to GSA if Validated
This vehicle-to-everything (V2X) technology turns EVs into energy storage

assets, increasing resilience and lowering the cost of EV ownership. ' Retliaey el ) e v e

charge management

e Reduce C02 emissions, 10-ton/yr for |
charger

o Reduce fleet electric vehicle cost

o Pilot project for new initiative: Applied
Innovation Learning Lab

e Currently, the Nissan LEAF is the only
EV with bidirectionally equipped battery
in the US.

o Greatest value for facilities with
demand that varies and peaks over the
course of the day and average 15-
minute load that exceeds bidirectional
charger capacity



Renewable, transportable, off-grid EV charging station combines solar, battery

storage and emergency power panels. Can be independent or grid tied.

Reduce C02 emissions, |10-ton/yr for |
charger

Reduced EVSE infrastructure cost and
flexibility to easily move to match fleet
needs

Quickly deployed in a standard 9x18
parking space. ADA compliant.

No required construction permitting.
No associated trenching, switch gear
upgrades, interconnection agreements

Ideal for building with small number of
EV. | unit can deliver 265 e-miles per
day.




EV Charge Management CANCELLED | GPG

The Biden-Harris Administration is committed to electrifying the 450,000 vehicles
in the federal fleet. This EV charge management solution supports that goal by Value to GSA if Validated

integrating embedded vehicle telematics with utility signals to optimize charging

based on vehicle use, utility rates, and the carbon content of delivered power.
e 30% fuel cost savings

e 10% GHGsavings

o Charger agnostic with no additional
hardware costs.

® Includes predictive analytics and
dashboard insights.

o Applicable throughout the portfolio




Smart Charging: GSA/Federal Challenges

Pricing/Management Policy: Multi-tenant facilities with varying mission requirements and charging needs. GSA
manages the facility, the Customer Agency ultimately decides which station to purchase. GSA and most federal
government do not have automated fleet reservation systems. VWeare relying on human planning charge
management. GSA is not prepared to manage this at an individual building level =widespread uncontrolled
charging.




Smart Charging: GSA/Federal Challenges

IT Security: Each agency has their own network and each building has its own BAS = integration issues. Unique
Secured networks (Cloud-based services) must be FedRAMP certified. This includes any hardware, remediation, and
software. This process can take years.




Smart Charging: GSA/Federal Challenges

Utilities cannot keep up with the increase in electrical demand. Some locations (such as Salt Lake City, are
already experiencing blackouts. Often Utilities do not have a demand response programs.




Managed Charging: Solutions

FedRAMP - Each respective agencies’ ClO shares information with other agencies.

Ensure all Government-purchased stations are OCPP - Open Charge Point Protocol (industry standard). Most
stations on GSA’s Blanket Purchase Agreement are OCPP.

Encourage the pilot of an fleet reservation software system that can integrate smart charging.

We need a low-cost, scalable solution that can communicate across all varying brands of charging stations and

vendors.
R f; e,
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The Future of Managed Charging

GSA will continue to pilot managed charging software options via Green Proving Ground in 2024 including
Automated Demand Response programs (ADR) - integrated software.

The Administration is driving the initiative but the market hasn’t caught up. The technology is at a tipping
point of functionality.




Christie-Anne Edie
GSA Sustainability Program Manager

christie.edie@qgsa.qgov
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