

Is Knowledge about Running Applications Helping Improve Runtime Prediction of HPC Jobs?

INTRODUCTION

- High-Performance Computing (HPC) systems require scheduling algorithms
- Scheduling algorithms rely on user estimates of resource requirements
- User estimates are prone to error, with runtime usually overestimated
- Machine Learning models can be trained to predict job runtime
- Knowledge of a job's primary app can be established from XALT data
- Only 4 of 20 surveyed papers included primary app in runtime prediction models

Does **incorporating the primary app** improve model performance?

METHODOLOGY

3.8 million jobs run on the National Renewable Energy Laboratory (NREL) Eagle HPC system

MODELS:

Two sets of CatBoost models: one set with and one set without including primary application.

TRAIN-TEST SPLIT:

Training/testing sets split at times ranging from Feb. '20 to Sept. '22 in increments of one day, with a 200-day training window and a 24-hour testing window.

TRAINING & PREDICTING:

Two separate models were trained for each split time. Each model was used to predict runtimes for jobs in the corresponding test set.

SHAP VALUES:

SHAP values for each test set were determined and combined to get the average feature importance for all jobs.

Figure 1: The importance of each feature for the models without the app (top) and with the app (botttom) in terms of their average absolute SHAP value.

Figure 2: This figure displays the average difference in error between models with jobs binned by the actual runtime (bin width is 4 hours). Most jobs are short, with more than 3.2 million of the 3.8 million jobs contained within the first bin.

Table 1: The models were evaluated with Mean Absolute Error (MAE). Root Mean Squared Error (RMSE) and Coefficient of Variation (R2).

Metric	Without App	With App
MAE (hours)	2.19	2.12
RMSE (hours)	7.92	7.73
R2	0.444	0.471

RESULTS & CONCLUSIONS

- > Including the app *improves model performance* (Table 1)
- > When app is included, it is the second most important feature in the model (Figure 1b)
- > Performance improvement is most conspicuous for long jobs running more than 4 days (Figure 2)
- Improvements are dependent upon the app used by the job (Figure 3)

Figure 3: Each marker represents the percentage difference in RMSE when the primary app is included, with results grouped by the app used.