

Industry Facing PV Degradation Prediction Tool and Database to Enable a 50-Year Life Module

Martin Springer, <u>Silvana Ovaitt</u>, Matthew Brown and <u>Michael Kempe</u>

ASTM Workshop on Weathering and Durability Testing June 28, 2023

Photo from iStock-62728163

- **1** PV Industry projected growth and reliability challenges
- 2 Ensuring quality of PV: standards, accelerated testing, and modeling
- **3** Capturing degradation with PV Degradation Tool
- 4 Example of PVDeg: rooftop installation distance

5 Live Demo

6 Summary

PV Industry projected growth and reliability challenges

Modules Continuously Evolve

Pre-2015 module, 20-25 year life

2022 module, 35 year life

Electricity is a commodity therefore cost pressures are driving innovation to untested materials and processes to reduce costs wherever possible.

Emerging Products – flexible, non-CdTe thin film, BIPV, Etc.

Modules collect light from both sides

Ovaitt & Mirletz et al, 2022. "PV in the Circular Economy, A Dynamic Framework Analyzing Technology Evolution and Reliability Impacts." ISCIENCE https://doi.org/10.1016/j.isci.2021.103488.

Exponential Growth in PV

- PV warranties are for 25 to 35 years.
- Designs and qualification testing is highly dependent on historical performance.
- We can't wait 10 to 20 years to determine if current testing and manufacturing processes are adequate.
- Warranties are based on market demands, not on robust scientific understanding.

New Technology + Explosive Growth

Module bifaciality factor $\phi = rac{P_{Rear}}{P_{Front}}$

Jarett Zuboy. DuraMAT Tech Scouting 2022

- 2. TCO by PVD (typically ITO for high optical transmission and low sheet resistance)
- p⁺ doping and full-area emitter formation by PECVD of a-Si:H
- 4. Intrinsically doped a-Si:H by PECVD
- 5. High lifetime n-type base wafer
- 6. Intrinsically doped a-Si:H by PECVD
- 7. *n*⁺ doping and full-area BSF formation by PECVD of a-Si:H
- 8. TCO by PVD (typically ITO for high optical transmission and low sheet resistance)
- 9. Backside fingers (busbars optional)

- 1. Ag and Al front metallization by screen-printing or PVD
- 2. SiN_x ARC and passivation layer by PECVD
- 3. PECVD or ALD of AlO_X surface passivation layer
- 4. *p*⁺ doping and full-area emitter formation by ion implantation or BBr₃ diffusion
- 5. High lifetime n-type base wafer
- Tunnel oxide passivated contact (TOPCon) layer formed by PECVD or LPCVD of doped a-Si or poly-Si layers
- 7. Ag rear metallization (sometimes full-area) by screen-printing or PVD

How do PV Systems Degrade

Manufacturing & Installation Manufacture QC Transportation Mounting

Packaging

AR-coating Discoloration Breakage

Operational loading and en	vironmental conditions		Cells			
Thermal cycles	Wind	Snow	Cracks	Snail trails	Hot-spots	PID, LID, LeTID
						Potential-Induced Light-elevated Generature- Degradation (LPID)

Mechanical stress may produce latent damage which is manifest after environmental exposure. This is in addition to reliability issues and other long-term degradation modes. Ensuring quality of PV: standards, accelerated testing, and modeling

Standardized Testing is Highly Empirical

Challenge: rapidly changing BOM, design and manufacturing process with unknown capacity to meet adequate degradation rate targets. We can't rely upon empirical field data to create at 50-year module.

Solution:

- 1. Continue the empirical process as a long-term feedback assessment augmented by tracking the BOM of fielded modules.
- 2. Identify all the major failure modes
 - a) Develop tests that are equivalent to well over 50 years or that can guarantee the problem cannot occur.
 - b) Determine which failure modes can be assessed with only a few year's equivalent exposure and extrapolated accurately.
 - c) More emphasis on coupon testing and prequalifying materials
- 3. Better fundamental understanding of the mechanisms of failure for testing design.
- 4. More coordinated industry-wide collection of degradation data in easily used formats.

Goals for this project

- Create a simplified method to extrapolate laboratory data to the field.
 - Develop python code to accomplish repetitive tasks. (e.g. access meteorological data, determine field stressors...)
 - Establish protocols for software such that new degradation functions can be implemented using only a few lines of code.
- Create living databases of information on degradation and material properties that are needed for extrapolation
- The Python code will be written to be utilized by three levels of users:
 - Experts who are developing the core procedures of the project
 - Experienced Python coders who will write their own functions and add them to the database
 - People with almost no Python experience who will just want to run common (e.g. Arrhenius) or industry standard degradation functions.

Block diagram of python code structure

Capturing degradation with PV Degradation Tool

PV Degradation Tools The integration pipeline for PV degradation analysis!

1) Weather Database

Needs: -High quality -Open Access -High Resolution and locations captured

National Solar Radiation Database: <u>https://nsrdb.nrel.gov/</u>

- Satellite data of cloud properties, atmospheric and aerosol properties, surface albedo, and solar radiation measurements
- +20 years of data for many global locations; TMYs
- Online viewer/downloader
- API to download data from AWS
- Facilitated use through the NREL-rex package to use internally on HPC or in AWS

Region	Model Name	Satellite	Temporal Resolution	Spatial Resolution	Years Covered
Europe, Africa, & Asia	PSM V3	METEOSAT IODC	15, 30, 60-minute	4km	2017-2019
USA & Americas	PSM V3	GOES	30, 60-minute 4km		1998-2021
USA & Americas	PSM V3	GOES	10, 30, 60-minute	4km	2019-2021
USA (Continental) & Mexico	PSM V3	GOES	5, 30, 60-minute 2km		2019-2021
South Asia	SUNY	METEOSAT IODC	60-minute 10km		2000-2014
Asia, Australia & Pacific	PSM V3	Himawari	10, 30, 60-minute	2km	2016-2020
Asia, Australia & Pacific	PSM V3	Himawari	30, 60-minute	4km	2011-2015

PVDeg can also intake from some others open-source formats:

- Energy Plus website (.EPW format; world)
- PVGis (.CSV format, mostly Europe)
- Local files (SAM format)

2) Material Libraries

Needs:

Searchable database of PV related degradation parameters.

Comprehensive literature search for most common values already included

User contributions Proposed taxonomy

Includes:

- material properties
- parameters for degradation calculations
- Known constants and other empirical factors
- equations

Data Gathering:

D	E	F	G	н	1	J	M
DOI						Degredation Mechanism or	
number	Source title	Authors	Reference	Key words	Material	Mode	Equation Text
		D.J. Coyle, H.A. Blaydes, R.S. Northey, LE Pickett K.P. Nagarkar, P.A. Zhao	coyle, D.	remperature,	CIGS	CIGS_Efficiency, ITO_ECA0	R_D=R_0-e^(-E_a/(R·T_k)) (RH/(1-RH+E))
10.1002/.	L0.1002/. Life Prediction for CIGS Solar Dip1172 Modules		J., et al.	humidity, CIGS,			
pip1172		Lie e l	(2011).	Moisture			
		and J.O. Gardner		ingrace_thin			
		D L Covie H A Blavdes B S Northey	Coyle, D.	remperature,			

Structured proposed in JSON format (taxonomy still in development):

"DT", (
DataEntryPerson: weston wall,	
"DOI: "10.1109/PVSC45281.2020.9300357",	
"SourceTitle: "Highly Accelerated UV Stress Testing for Transparent Fle	xible Frontsheets",
"Authors: "Michael D Kempe, Peter Hacke, Joshua Morse, Michael Owen-Bel	lini, Derek Holsapple, Trevor🍫Lockman, Samani
"Reference: "Kempe, M. D., et al. (2020). Highly Accelerated UV Stress	Testing for Transparent Flexible Frontsheets.
"KeyWords: "Humidity, Irradiance",	
"Material: "Flexible Frontsheet, Frontsheet Coatings",	
"Degradation: "UV Transmittance 310nm-350nm",	
<pre>"EquationType: "Arrhenius_RH_Irradiance",</pre>	
<pre>"Equation: "R_D=R_0@RH^n@G_340^P@e^(-E_a/K_(b@T_k))",</pre>	
"R_D": {	
Units: "%/h"	
},	
"R_0": {	
Units: "%/h"	
},	
"E_a": {	
Value: 53.2,	
STDEV: 16.6	
Units: "kJ/mol"	
}	

3) Degradation Functions

Needs: -Peer-reviewed functions -Auxiliary data handling and calculations functions -Open-source -Flexibility for Paralelization

https://github.com/NREL/PVDegradationTools

Modules, methods, classes and attributes are explained here.

collection	Collection of functions related to calculating current collection in solar cells
humidity	Collection of classes and functions for humidity calculations.
degradation	Collection of functions for degradation calculations.
fatigue	
letid	Collection of functions to calculate LETID or B-O LID defect states, defect state transitions
spectral	Collection of classes and functions to obtain spectral parameters.
design	Collection of functions for PV module design considertations.
standards	Collection of classes and functions for standard development.
temperature	Collection of classes and functions to calculate different temperatures
utilities	
weather	Collection of classes and functions to obtain spectral parameters.
•	· · · · · · · · · · · · · · · · · · ·
	$(-E_{q})$

4) Parallel Analysis

Needs: -Run in NREL's HPC and AWS -Flexible -As intuitive as possible Allow single location calculations through webpage

 Allow parallelized geospatial world map calculations through AWS cloud (external) and Eagle (internal)

https://github.com/NREL/gaps

• (/home/mspringe/.conda-envs/pvd) [mspringe@el2 demo]\$ pvd Usage: pvd [OPTIONS] COMMAND [ARGS]...

Command Line Interface

Options:

-v, --verbose Flag to turn on debug logging. Default is not verbose. --help Show this message and exit.

Commands:

batch
collect-run-rel_humidity
collect-run-standoff
pipeline
run-rel_humidity
run-standoff
status
template-configs

Execute an analysis pipeline over a... Execute the collect-run-rel_humidity step... Execute the collect-run-standoff step from a... Execute multiple steps in an analysis pipeline Execute the run-rel_humidity step from a... Execute the run-standoff step from a config... Display the status of a project FOLDER. Generate template config files for requested... Example of PVDeg: rooftop installation distance

I want the panels I install to be safe, but I don't want to spend more money than necessary on racking. I know hot panels are no-bueno, and that the closer they are to the roof the hotter they'll be. How do I know the right distance for my city, i.e. Phoenix?

Standoff images for distances of (A) flush mount (B) 2.5 cm, and (C) 10 cm.

IEC 63126 specifies more rigorous testing for modules deployed in combinations of locations and racking that result in **high temperatures** defined as the 98th percentile temperature of 70°C, 80°C or 90°C

$$X_{eff} = -X_o \ln\left(1 - \frac{T_o - T_{98}}{\Delta T}\right)$$

$$X_0 = 6.1 \text{ cm}$$

 $T_{98} = 70^{\circ}\text{C}$
 $T_0 = \text{Insulated back module}$
temperature
 $\Delta T = \text{Difference between insulated}$

back and open rack modules

IEC 63126 specifies more rigorous testing for modules deployed in combinations of locations and racking that result in **high temperatures** defined as the 98th percentile temperature of 70°C, 80°C or 90°C

$$X_{eff} = -X_o \ln\left(1 - \frac{T_o - T_{98}}{\Delta T}\right)$$

 $X_0 = 6.1 \text{ cm}$ $T_{98} = 70^{\circ}\text{C}$ $T_0 = \text{Insulated back module}$

 T_0 = insulated back module temperature ΔT = Difference between insulated back and open rack

modules

- Large amounts of calculation with minimal effort
- Integrates the NSRDB data, module temperature models, and the PVDeg functions in the GitHub repository.
- <1 hour (with parallelization)
- Single-location calculations easily accessible through the journals
- Similar maps will be used in the new version of IEC 63126.

Live demo

tinyurl.com/ASTMDemo

Summary

- PV deployment is growing and evolving exponentially, and we can't wait many years to know if things are durable and might last 50 years; therefore, a very robust understanding of the modes and mechanisms for failure is needed.
- Open source and flexible Python code is being developed to help with this long-term extrapolation to the field.
- Extrapolation to the field involves a lot of repetitive process which we are automating enabling users to focus on the unique and fundamental aspects of a given degradation.
- We are also creating living libraries of data to facilitate understanding of the complex and multi-faceted degradation of PV modules.

github.com/NREL/PVDegradationTools

This work was authored [in part] by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE) under Solar Energy Technologies Office (SETO) and Advanced Materials and Manufacturing Technology Office (AMMTO) Agreement. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government.

NREL/PR-5K00-86705

