Background Experimental Setup

Distribution utilities use conservation voltage reduction
(CVR) to obtain energy savings and lower peak demand
by reducing bus voltages. Traditionally, the CVR is
accomplished by controlling the legacy assets such as
load tap changers, voltage regulators, and capacitor
banks. The deployment of the advanced distribution
management system (ADMS) and distributed energy
resource management system (DERMS) enables the
integration of distributed energy resources into the
distribution networks and provide the grid services
including CVR. This paper studies the coordinated
operation of an ADMS and a DERMS in achieving CVR
and voltage regulation. A commercial ADMS uses legacy
devices and Edge-of-Network Grid Optimization (ENGO)
devices to obtain energy savings through CVR. A
prototype DERMS dispatches the photovoltaic smart
inverters based on real-time optimal power low to ensure
voltage regulation across the feeder. The results show that
the coordinated operation of ADMS and DERMS is
effective in achieving CVR and voltage regulation.
Specifically, energy savings of up to 4.7% are observed in
the real utility distribution system used in this study.

Feeder Characteristics

* 12.47-kV system with a peak load of 35 MW

« One substation load tap changer, 13 capacitor banks
for voltage regulation

+ Large system with > 13,000 buses

« Added distributed PV generation of ~200% relative to
the minimum load for the study
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Figure. 1. Topology of Xcel Energy’s distribution
system.
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Figure 2. ADMS test bed setup.

Table 1. Simulation Scenarios
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Devices
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Figure. 3. (a) Volt-VAR curve, and (b) Volt-Watt curve.
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Table 2. Volt-VAR Curve Settings
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Table 3. Volt-WATT Curve Settings 574
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Figure. 5. (a) LTC tap changes, (b) bus voltages, (c) Q
output of ENGO units, and (d) capacitor statuses.
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We evaluated the coordinated operation of an ADMS and
a prototype DERMS in achieving CVR while ensuring
voltage regulation with high PV penetration. Our findings
show that the ADMS lowers system voltages to achieve
CVR by lowering the LTC taps which reduce the feeder
head voltage. To ensure voltage regulation, ADMS uses

6001200 IR0 2400 dynamic reactive power support from ENGO devices and
(d) capacitor banks. The DERMS complements the ADMS

through active and reactive power control of the PV smart
inverters. Energy savings of up to 4.7% with a significant
improvement in the voltage profile and minimal PV energy
export curtailment (0.25%) are observed in the studied
system with these controls.
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