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ABSTRACT Cyber-Physical Systems (CPSs) are becoming increasingly complex and interconnected as they
attempt to meet the demands of evolving society. As a result, monitoring and maintaining them becomes a
more complex and demanding task for control system operators and cyber defenders. While the literature
on visualization techniques in the context of cybersecurity is extensive, the same cannot be said for studies
on visualization for the security of cyber-physical systems. This paper aims to fill that gap by: 1) defining
the main features of a visualizations workflow for security visualizations in cyber-physical systems. The
workflow includes the acquisition of cyber and physical data, processing of data, selection, and configuration
of both visualization tools and end-user interactions. 2) Providing an overview of cyber-physical security
visualization systems, with a focus on smart grids as a case study. Finally, we use the perspectives gained from
this analysis to provide insights and directions for future research and design of cyber-physical visualization
techniques.

INDEX TERMS Cyber-physical security, cyber-physical system visualization, data visualization, human
factors, resilience, situational awareness, grids.

I. INTRODUCTION
Cyber-Physical Systems (CPSs) combine the dynamics of
physical processes with those of software and communica-
tion. Physical systems, networking, and computers interact
in ways that necessitate whole new design technologies [1].
CPSs are increasingly being deployed in critical infrastruc-
tures. Prominent applications of CPS include industrial con-
trol systems (ICS), smart grids, and intelligent transportation
systems (ITS) [2]. As cyber-physical systems become more
complex, so do the opportunities for an attacker to interfere
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with them. The increased interconnection of these systems
has resulted in new vulnerabilities and risks. A cyber attack on
power infrastructure could cause widespread outages, while
one onmedical equipment, for example, might harm a patient.
Among the prominent applications of CPSs, in this paper,
we will focus on smart grid systems.

The smart grid is envisioned as the next generation of
the power grid, which has been used for decades to gener-
ate, transmit, and distribute electricity. The smart grid offers
numerous advantages and cutting-edge functions. It provides
improvements in emission control, global load balancing,
intelligent generation, and national energy savings. It also
gives local consumers more control over how much energy
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FIGURE 1. Visualization workflow.

they use, which is beneficial to both the economy and the
environment [3]. The smart grid is composed of two major
parts: 1) power application and 2) supporting infrastruc-
ture [4]. The power application manages the main tasks of the
smart grid, notably the generation, transmission, and distribu-
tion of electricity. The supporting infrastructure, on the other
hand, is the intelligent part of the smart grid that is mainly
concerned with managing and monitoring the key functions
through the use of various pieces of hardware, computer
programs, and communication networks.

Smart grids and their security and resilience have been
at the core of critical infrastructures for many decades.
Even though smart grid system connectivity has resulted in
numerous benefits, many challenges have come up, including
security, reliability, stability, maintainability, and safety [5].
Malicious attacks have disrupted system operations or
resulted in the theft of sensitive data, and these attacks can
start with an attack on either the cyber infrastructure or the
physical components.

In 2007, the Department of Homeland Security of the USA
staged a cyber-attack demonstration code-named ‘‘Aurora’’
resulting in the destruction of a diesel generator that was
widely utilized across the US [6]. Recent incidents (e.g.,
Stuxnet [7], Ukraine power grid outage [8]) have shown that
sophisticated and stealthy attacks (and faults) can result in
catastrophic consequences to the economy, environment, and
even human lives. Thus, it is paramount important to ensure
the security of CPSs and smart grids.

A key aspect of detecting attacks is to provide enough
information awareness to operators of control systems.
To identify attacks and unexpected errors in smart grids
and other CPSs an anomaly detection system (ADS) is
required. Anomaly detection systems provide information
about the detection of attacks, however, visualization of such
information will facilitate more understanding of the attack
to the system operator [9]. Effective visualizations would
achieve a higher degree of operational assurance by providing

explainable visual information on abnormal behavior and
affected devices of the system. This will provide a better
understanding for the system operator about what happened
in the system and which actions to take. Therefore, we can
infer that visualization tools play a major role in making
smart grids secure and resilient. As the reported occurrences
of cyber-physical attacks increase exponentially [10], it is
imperative to develop and employ tool sets that enhance
the user’s ability to investigate, understand, and therefore
mitigate the impacts of future events on smart grids and other
cyber-physical systems.

Visualization tools are intended to be an effective means
of communicating data to quickly spur insightful actions
through visible patterns, trends, structures, and exceptions,
resulting in improved system security [11]. In today’s
data-driven world, we can collect and use data to help
decision-makers make informed and well-founded decisions.
The push for renewable energy, increased demand for elec-
tric power, and upgraded intelligent power grid equipment
(e.g., advanced grid meters, smart relays, etc.), have resulted
in increased data streams and complexity of systems, as well
as challenges related to controls of such systems [12].

The process of visualizing the state of the cyber-physical
system is linked to the process of transforming raw unstruc-
tured data into information that can be represented using
objects of varying shapes, colors, and dimensions. These
objects should help understand the state of the system by
facilitating the analysis of large amounts of data [13]. Figure 1
illustrates the various steps and actions involved in the visual-
ization process. This diagram provides a comprehensive illus-
tration of workflow throughout the process of transforming
raw data into the final product, which is an interactive visual-
ization designed to improve the security of the system [14].

Because of the clear lack of survey papers on the topic of
visualizations for enhancing the cyber-physical security and
resiliency of smart grids, we performed an analysis of related
literature to provide a synthesized overview of the research
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on this critical topic. We hope to support both researchers and
industry partners by offering an overview of the state-of-the-
art techniques and best practices in this field. Our aim is to
facilitate a unified understanding of the use of visualizations
in CPS security, ultimately promoting more effective and
efficient security practices.

The main contributions of the paper are:

• An analysis of the visualization workflow (desired fea-
tures and characteristics).

• A review of existing work for smart grid security
visualization.

• Analyze the challenges and key findings discovered
during the review process regarding the visualization’s
design and implementation for the security of CPS.

• Identifying the potential future research directions for
the successful use of the visualization tools.

The rest of the paper is organized as follows. Section II
provides an overview of the related work in the field of data
visualization. Section III presents in detail the main points
and key features of the visualization workflow. An overview
of different visualization methods for smart grid case study
broken down into two classes (monitoring and planning
and discovery) is covered in section Section IV. Section V
discusses current challenges and key findings from the review
of cyber-physical visualization research, as well as potential
future research directions. The conclusions of the paper are
provided in the final section.

II. RELATED WORK
In today’s world, we generate and store vast amounts of
unstructured data that may help us discover new knowledge
and insights in cases we can aggregate into a meaningful
picture [15]. The authors of [16] and [17] conducted a
comprehensive survey on data visualization tools. This survey
not only provided a taxonomy of data visualization papers but
also highlighted the most effective techniques for optimizing
the performance of data visualizations, as well as discussed
the challenges and future opportunities in this field. Similarly,
in [18], the authors performed a survey on techniques that can
improve the efficiency of data visualization. In some reviews,
such as those presented in [16] and [19], the focus is on
analyzing the advantages and limitations of software tools
used to generate visualizations.

The ability to process, store, and analyze vast amounts
of data, commonly known as big data, is an interesting and
hot topic in the research community [20]. Numerous surveys
have investigated the challenges and solutions associatedwith
visualizing big data [20], [21]. In [22], the authors address
the problem of high-dimensional data and explore various
solutions for visualizing it. Other papers focus on the visu-
alization of specific types of data: ensemble data [23], event
sequence [24], multivariate spatial data [25], graphs [26].
Furthermore, certain surveys concentrate on analyzing papers
that focus on a specific domain or task: traffic data visu-
alization [27], security [11], [28], [29], [30], Internet of

Things [31], [32]. A promising research direction in visu-
alization involves the integration of machine learning algo-
rithms in the visualization process to automate the processing
step of the data or recommend visualizations that are more
useful for each user [33], [34], [35].

Given that cyber-physical systems involve a cyber com-
ponent, an important area of interest is the representation
of visualizations for cybersecurity. In [28], the authors pre-
sented a surveywith a security visualization based on network
logs. Similarly, the authors of [11] conducted an extensive
review of the field and classified visualization tools into
categories such as host/server monitoring, internal/external
monitoring, port activity, attack patterns, and routing behav-
ior. Jiang et. al. [29] performed a systematic review on cyber
situational awareness visualization. In terms of physical secu-
rity visualization, we can mention a review that has addressed
the visualization of time-series data produced by sensors [36].

After conducting extensive research, it was identified that
there is a lack of surveys on visualization methods specif-
ically designed for cyber-physical systems security. This
review will concentrate on visualization solutions that can
be applied to smart grid security. While there are surveys
that target the visualization and analysis of data in smart
grids [12], [37], [38], they do not specifically review the
security aspect of smart grids, but focus on monitoring other
features such as carbon footprint. As a result, this review will
rely on papers that provide visualizations for cyber-physical
systems but can be applied to smart grids, as well as tools
designed specifically for smart grid security. We will extract
useful insights from papers that focus on cybersecurity or
time-series data monitoring separately to provide a more
comprehensive discussion section and to describe the visu-
alization workflow in detail.

We conducted an extensive literature review by searching
four databases: IEEE Xplore, Web of Science, and Scopus.
We used the following search query ‘‘Visualization AND
(security OR cyber OR physical OR CPS)’’ and ‘‘Visual-
ization AND (review OR survey)’’ to select relevant papers
on the topic. Our search yielded a total of 326 publications.
From our analysis, we observed that the majority of the
articles focused solely on cyber-security, and there is a limited
number of papers that tackled the problem of security in
cyber-physical systems. We could only identify a limited
number of papers that had a finalized prototype of the visual-
ization engine, and these papers were selected for review in
Section IV.

III. VISUALIZATION WORKFLOW
The success of a security visualization system will be
impacted by a multitude of factors such as the quality of
available data and its attributes, the specific tasks that are
associated with the visualization, the end-user preferences,
habits, and expertise in the domain, the selection of visu-
alization techniques that will be incorporated in the final
visualization engine [39]. These steps are illustrated in Fig.1
and are part of a visualization workflow.
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TABLE 1. Overview of different types of data.

In this section, we will discuss each of these factors in
detail and provide an in-depth analysis of their main char-
acteristics. Firstly, we will describe the different types of
data and the techniques used for processing raw data, which
are typically used in visualizing smart grid security. Then,
we will present the most common visualization methods and
tools, along with their typical use cases and the associated
data. Furthermore, we will outline specific tasks that can
be involved in enhancing the security of cyber-physical sys-
tems. Finally, we will discuss the adaptability of visualiza-
tion to the end user, and the expected interactions from the
end user.

A. DATA AND PROCESSING TECHNIQUES
Cyber-physical systems generate increasing cyber and phys-
ical data. The following paragraphs will define cyber and
physical data and how the raw data is processed to visualize
such systems.

Cyber data includes items, such as network packets, port
numbers, system logs, network flow events, proxy logs, fire-
wall logs, DNS data, DHCP logs, I/O data, user authen-
tication events, CPU, RAM, and other information. Intru-
sion detection systems (IDS) and intrusion prevention sys-
tems (IPS) may generate additional cyber data, such as
raw-log insights or specific pattern detection [40]. Moreover,
supervisory control and data acquisition (SCADA) systems,
Advanced Metering Infrastructure (AMI), Distribution Man-
agement Systems (DMS), and Cybersecurity tools such as
firewalls are also sources of cyber data [41]. While this data
is often monitored and reviewed by experienced analysts,
cyber data is one of the most difficult types of data to visu-
alize in real-time. In [42], authors remark that part of this
difficulty stems from the technical factors (what mapping
strategies are possible for the given data) and the human
factors (what type of visualization makes sense to the user).
The sheer amount of cyber data that is generated by network
and systemmonitors (scalability) can also make visualization
difficult [11]. Despite these challenges, there are a wide
variety of tools available for cyber visualization including
FlowTag, NVisionIP, security information and event man-
agement (SIEM) [43], IDS RainStorm, and Netvis [42]. The

most common data types for this type of data are numer-
ical (temporal and multidimensional) and categorical. The
logs and reports will frequently imply analyzing text-based
information.

Physical data can be defined as data that relates directly to
the physical world, such asmeasurements on ambient temper-
ature, humidity, wind speed, and direction, and geographical
area, voltage, irradiance, and cloud cover [44]. Physical data
also refers to the current state of a physical system based
on the available internal sensor measurements, upon which
people, like grid operators, are dependent to make judgment
calls about their systems. For physical data measurements,
they are often visualized in the system software (i.e. RTAC
management software, MATLAB, etc.). This type of data will
be described using numerical features in the case of sensor
data and categorical features in cases where it is needed
to identify the state of a component, e.g., if the switch is
on or off. The main data sources are Smart meters, PMUs,
Micro PMUs, Field measurement devices, Programmable
thermostats, Sensors installed on grid-level equipment, (e.g.
transformers, network switches), Programmable Logic Con-
trollers (PLCs) [45]. Table 1 provides a summary of the
data types produced by cyber-physical systems which can be
included in the security visualization.

Data processing techniques: In this step, we are dealing
with the problems related to big data [46]. And the main
problem occurs in the cases of real-time security visualization
(monitoring) or when the amount of data is so massive that it
can overload the buffer. In this case, it is required to compress
the size of the data or select the data that is most suggestive
and remove the data that is redundant. Data normalization
techniques are used to bring the data within a common scale
to avoid any bias towards a particular feature. The most
used techniques for data processing are feature selection
and extraction, clustering, and dimensionality reduction [36],
[47]. Moreover, the sliding window technique is an essential
method for analyzing time series data [48]. It involves divid-
ing a long time series into shorter, overlapping segments or
windows, allowing for a more precise analysis of the data.
One of the main advantages of using a sliding window is that
it can capture local patterns or trends in the data that may
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not be apparent when considering the entire time series as a
whole.

B. VISUALIZATION METHODS
There are many types of visualization methods that can be
used for displaying security-related data and the choice of
these types of visualization depends usually on the message
that needs to be communicated and the time constraints for
the visualization. In this section, we will discuss the most
common techniques, the strengths of each display, use cases,
and how they are adapted to specific security needs [49].

The most common use cases and types of visualization
tools are:

Visualization of data trends:Most of the stored data from
CPSs is continuous time-series data, so the most intuitive
study that can be performed is noticing changes and changes
over time. The most popular techniques are line charts and
area charts. As well it is possible to visualize trends in mul-
tidimensional data using parallel coordinates [50] or radial
displays [51].

Visualization of data correlations: These types of
visualization are designed to emphasize the strength of the
relationships between displayed variables. The most used
visualization are scatter plots [52], bubble plots which rep-
resent the variation of scatter plots in three dimensions
where the third dimension is the diameter of the bubble, and
heatmaps, where the color intensity suggests the strength of
the relationship.

Visualization of data distributions: The visualization of
distributions is useful for better understanding the data and
its characteristics, which can help identify outliers. The most
common types of distribution visualizations are histograms
for highlighting the frequency of an event [53], box plots
for displaying the range of the data, and violin plots for
visualizing the shape of the distribution.

Network visualization: This type of visualization is suit-
able for representing the complex structure of cyber-physical
systems and how elements are connected. It is a very useful
tool for tracking the overlapping physical and cyber layers
of the system. The main idea behind these visualizations is
to represent system components as nodes and relationships
between components as edges [54].

Hierarchical visualizations: The visualization of this cat-
egory display the data in a hierarchical structure, where each
level represents a different level of abstraction. It can be
beneficial for discovering interdependencies between com-
ponents. Typical choices in this category are treemaps, which
consist of nested rectangles of different colors and sizes, and
each rectangle represents a node, and the color and size may
suggest different properties of the node [55]. For highlight-
ing dependencies between different levels tree diagrams and
dendrograms can be used.

Iconic visualizations: An abstraction that aids in data
analysis and comprehension is an icon-based representation
of high-dimensional data. The attributes of the icons, such as

color, shape, and size, are linked to the features of the high
dimensional data [56].

Fusion of the methods: In this case multiple cases that
were presented before are used simultaneously for providing
multiple angles of the available data to transmit more useful
information at the same time [57]. For example, a map that
shows the status of various components of the system using
icons [58]. Additionally, treemaps and icons can be used
in combination to display additional information about a
component rectangle. Using multiple types of data or visu-
alizations in this manner allows for a more comprehensive
understanding of the data.

C. SPECIFIC TASKS RELATED TO VISUALIZATION
It is clear that the main goal of the visualization mentioned
in this paper is to enhance the security of the cyber-physical
system, but at the same time, we can identify two main tasks
that are directly related to this goal: monitoring of the system
and situational-aware discovery and planning.

Monitoring: These visualization systems are designed to
support the user’s decision-making process in real time dur-
ing the monitoring process. It is important to design the
visual aspects of these tools with user efficiency in mind.
The data and visual tools should be selected in a way as
the decision-maker may identify the affected portion of the
system and the possible propagation of the attack through the
system.

Discovery and planning: Based on the literature review
we can define this task for two subcategories based on the
temporal use-case: 1. preemptive use and 2. root-cause
analysis. These tools are not subject to the same time con-
straints as real-time monitoring, data processing can be done
offline, and more time is available for rendering complex
visualizations. These tools heavily rely on the quality of data
and algorithms used for extracting features that will facilitate
developing hypotheses to identify vulnerabilities before they
are exploited or to identify the root cause and develop a
recovery plan after an accident happens.

1. Preemptive use: These types of visualizations are
designed to assist in the prevention of attacks/events. They are
extremely useful during the design process of cyber-physical
systems, or vulnerability and/or resilient assessments. This
type of visualization will commonly compute a lot of if/then
scenarios, to identify vulnerabilities. By providing multiple
perspectives, the decision-makers can better identify areas of
improvement or weakness in the resiliency and security of the
system.

2. Root-cause analysis: This use case intends to aid the
user in the investigation of cyber-physical events after they
have occurred. The application of the visualization tools aims
to provide insights and perspective through visual techniques
displaying logged attack data. These insights and perspectives
are used to assist the user with the understanding of the cyber
or physical event and inform the decision-making process in
taking steps to mitigate such events in the future.
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D. END-USER EXPERIENCE
In this section, we emphasize the factors that can enhance
the overall end-user experience when it comes to visualiza-
tions: interactions and adaptability. To ensure the success
of a task based on a security visualization, it is important
that the end-user can easily understand the information pre-
sented through the visualization. However, the time needed
to comprehend the presented data can depend on their prior
knowledge related to the domain and preferences. This poses
a significant challenge, as there can be significant differences
between the needs and preferences of cybersecurity special-
ists, engineers, or highermanagement who are responsible for
the security of a cyber-physical system. To address this issue,
end-users should be able to interact with the visualization
and the most common interactions described in the literature
are: zooming, filtering, details-on-demand, relate, history,
extract [59].

Furthermore, the visualization can include the possibil-
ity to dynamically adapt to the user based on data gath-
ered from previous interactions. For example, a machine
learning recommendation system that uses data from users
from the same categories as previous interactions could be
implemented to provide a more personalized and efficient
experience. By implementing these strategies, end-users can
better perceive and understand the information displayed by
the visualization.

IV. USE CASE: SMART GRID SECURITY VISUALIZATIONS
In this section, we will discuss the strengths and weaknesses
of each type of visualization solution, as well as the important
attributes of each analyzed solution. The reason for categoriz-
ing the solutions as real-time monitoring and discovery and
planning is that the primary task for which the solution was
designed, as well as time constraints, will have the greatest
influence on the choice of processing techniques, visualiza-
tion tools, and the amount of data that can be effectively
visualized.

Subsection A describes the visualizations for monitoring
tailored towards a short-term, immediate decision-making
targeted approach (real-time). Subsection B presents the plan-
ning and discovery visualization may refer to the two-time
categories related to anomalies: 1. visualizations that help to
identify vulnerabilities during the design phase of the system
and 2. visualization tailored towards forensics, i.e. under-
standing why certain events have occurred, and finding the
reason that led to those events. Table 2 illustrates visualization
systems reviewed in this paper.

A. MONITORING TASK
Monitoring is commonly associated with making short-term,
real-time decisions. Monitoring visualizations should pro-
vide two main tools for the operators: 1) real-time visualiza-
tions for identifying anomalous behavior, and 2) meaningful
information for fast, short-term decision-making for securing
unaffected components of the system and rapidly solving the

FIGURE 2. Data Fusion Tool - Example of visualization of sources related
to a sensor or cyber event based on associated IP Addresses [60].

issue in the system. For example, when a grid is attacked
by sensor spoofing, the operator should be able to quickly
identify which part of the system is under attack and make
decisions to prevent the spreading of the attack to the other
parts of the system. Monitoring visualizations should be sim-
ple and interactive enough that system operators understand
the system state to take rapid operational decisions. The main
challenges for the tactical visualizations are 1) high volume
and velocity data processing, 2) suggestive representation for
taking rapid actions, 3) interdisciplinary representations, and
4) situational awareness.

By leveraging specific data characteristics in smart grid
applications, we can create dynamic visualizations that adapt
to real-time changes. For example, we can exploit the peri-
odicity of sensor data, including amplitude or frequency,
to develop a tool that can detect and highlight any deviations
in these measurements. This approach was presented in Data
Fusion Tool [60]. The visualization engine highlights the
regions affected by cyber-physical events, as presented in
figure 2, and assists in the discovery of meaningful correla-
tions that provide operators with useful context.

Node-link diagrams are a powerful tool for visually rep-
resenting relationships. The authors of [61] used this type
of visualization tool to represent the complex interconnec-
tions between loads and generators. The main goal of the
visualization engine is to draw the attention of the operator
to the anomalous subsystems by highlighting the affected
nodes (load or generator) in red. This tool facilitates the
identification of alternative generators capable of supplying
energy to the load.

The work of [63] is focused on using the PMU data for
determining the stability boundary of the system and moni-
toring if the system is in safe working conditions. The visu-
alization [62] determines the safe conditions using PMU data
and random bits forest algorithm. The most relevant features
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TABLE 2. Overview of visualization systems reviewed.

are selected using bagging nearest-neighbor and Pearson cor-
relation.

The Cyber Situational Awareness Visualization (Cyber-
SAVe) [64] utilizes several algorithms and visualization tech-
niques to detect various types of attacks on the smart grid.

This approach views the complex system as being composed
of nodes. This visualization tool solves the problem of the
high volume of data by fusing all available data and mea-
suring against the single ‘‘cyber trust’’ metric in order to
enable users tomake critical decisions. Cyber trust at the level
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FIGURE 3. CyberSAVe - The Metric Assessment System displaying three
components of trust displaying single node metrics (local view) [64].

of nodes (sensors) refers to sensors’ availability, ability to
accurately detect measured values, produce few false alarms,
and how trustworthy future measurements are predicted to
be. The calculated level of trust for a particular sensor can
be used to isolate a sensor targeted by an attack. Figure 3
demonstrates a time history plot of a single node (sensor)
by displaying the three components of the cyber trust metrics
(alarm, detection, and availability) and thus the overall trust
of the node.

Situational awareness is suggested by the fusion of a geo-
graphical map and the nodes in the smart grid that provides
information to the system operator about the impacted nodes
and their interconnection to the other parts of the system.
Individual nodes in the geographical system are represented
using a color-coded format. This differentiation by color
allows the operator to gain a quick insight into the trust
of each individual node while also giving insight into the
overall system state. Figure 4 illustrates the holistic view
of the visualization tool used for smart grid security from a
geographical perspective in the CyberSAVe system.

The Modular Analysis Hierarchical Intrusion Detection
System Visualization Event (MAHIVE) [65] displays vari-
ous data related to intrusion detection such as alerts, logs,
and categories of events such as SSL, DNP3, or file-related
alerts. The visualization dashboard for the MAHIVE Alert
system uses scatter plots, bar charts, and numerical displays
to present anomaly detection system-related data. While the
presentation of this system is limited in terms of the current
state of its visualization capabilities, the authors have identi-
fied various topics of future work for improving the system.

FIGURE 4. CyberSAVe - global view of multiple nodes [64].

FIGURE 5. Proof of concept dashboard interface presenting descriptive
analytics of data for Human-On-The-Loop framework [66].

The significance of contextualized data in a human-
readable format was emphasized by [66], a human-on-the-
loop framework that allows the operator to customize the
visualization. The presented framework has the main goal
to contextualize data from automated detection, prevention,
and mitigation tools. The framework consists of three mod-
ules: 1) data analyzer comprising Kafka, Apache Spark,
and R, 2) classifier comprising a deep neural network, and
3) decision-maker with situational awareness and cognitive
learningmodel. Thesemodules are used to conceptualize data
and then present it via the dashboard interface. The front end
of the dashboard interface is segmented into four divisions
that the operator can dynamically customize to show data
based on system priorities and availability. Such dynamic
customization facilitates adjusting to the point of view of a
particular operator’s background (discipline). The dashboard
in Figure 6 presents a theoretical scenario where an operator
is monitoring Grid-Tied 3 PV systems.
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FIGURE 6. Cyber-Energy Emulation (CEE) Platform [66].

The Cyber-Energy Emulation (CEE) Platform [67] is
used for real-time visualization of large-scale environments
involving cyber-physical devices. This approach is quite
unique to the field of cyber-physical visualization tools as
this platform has the capability to include real and emu-
lated physical devices. The emulated environment allows the
user to test parameter changes without the risk of damaging
physical equipment. This emulation feature combined with
real-time visualization of network traffic, security alerts, and
power system states allows the user to improve their overall
system state awareness during system operation and param-
eter experimentation. The CEE real-time environment has
the ability to display data from cyber and physical events
in a 3D platform while providing the user with a beneficial
perspective and utilities for in-depth analysis. An example
of a 3D-rendered experimental environment with an ongoing
intrusion detection alert can be seen in figure 6 with detailed
logs and an interactive user interface.

Cyber-Physical Security Assessment (CPSA) visualization
tool was proposed by Saxena et. al. [68] to promote sit-
uational awareness in the smart grids. This tool utilizes a
Graphical User Interface (GUI) to assist operators in their
decision-making process by identifying vulnerable states and
measurement errors. The proposed visualization scheme for
this tool uses a combination of line graphs, alphanumeric data
fields, and the relative geographical location of the infrastruc-
ture. Moreover, CPSA can be used to improve understanding
of power system monitoring, analyzing the nature of cyber-
attacks, malicious command insertion,affected devices, and
understanding the impact of attacks on the operation of the
power system. Thus, the operator is informed of potential and
active threats, as well as the possible fallout from attacks on
the power system.

The approach of Le Blanc et. al. [69] is focused on inter-
viewing, observing, and learning about human experiences
and interactions with control systems. By developing an
understanding focused on human factors, the authors focus
on improving user productivity and situation awareness. This
paper presents an approach to creating suggestive and inter-
disciplinary representations by interviewing and including
previous observations and experiences of the system opera-
tors to determine what information is important to the user.

FIGURE 7. Wireframe preliminary design concept [69].

FIGURE 8. A proposed display showing that a remote terminal unit (RTU)
has rebooted unexpectedly [70].

Through observation of team-member interactions and data
sharing between cyber and engineering teams, the authors
identified informational context and other key features for
informed system visualization. The preliminary design con-
cept as seen in Figure 7 was created by observing the
reactions of human subjects during the simulated cyber and
physical attacks on the power grid.

The work of Scholtz et al. [70] focuses on enhancing sit-
uation awareness of individuals from non-overlapping roles
to improve the coordinated response of control system engi-
neers. An example of an alert on a remote terminal unit that
has rebooted unexpectedly is illustrated by Figure 8. This pro-
posed display allows multiple non-overlapping professionals
to be able to provide insights during the monitoring of the
system.

One of the inherent characteristic features of communica-
tion within operational technologies (OT) is the frequency
with which communication occurs. Sensors within opera-
tional technology applications regularly send and receive
sensor data at frequent intervals. The goal of the visualization
system presented by Lohfink et al. [71] is to utilize these
inherent features from sensors to provide insights into the
available data using spiral plots. These insights aim to support
and inform control operators and cyber defenders of the
response strategy, regardless of their experience in the field.
The main goal of spiral plots is to map the data dimensions
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FIGURE 9. Anomaly (left) and disrupted period (right) abrupt
increase [71].

FIGURE 10. Display of attack scenario with the interconnectivity of
sensors [72].

to the width and color of the plot, making it more intuitive.
The proposed system overview can be seen in figure 9. The
final visualization is composed of the spiral plots and icons
displaying alerts from the anomaly detection system.

The goal of the display presented in [72] is to aggregate
meaningful information together, facilitating rapid opera-
tional decisions and complementary context for the roles,
as the root cause of events can include both cyber and phys-
ical elements. Figure 10 shows an example of the visualiza-
tion for the IEEE 33 bus system with several of the busses
grouped into Aggregated System Resources (ASRs). Each
of the different ASR units can be selected to drill down
into lower levels that display the ASR’s internal components,
as shown in Figure 11, where each bus now possesses its own
resilience icon. The user can easily locate relevant informa-
tion by displaying information at a desired resolution. The
interconnections between different elements are representing
different states, such as normally closed, closed, normally
open, or opened (Figure 10).

B. PLANNING AND DISCOVERY TASK
Planning and discovery facilitate the adoption of a long-term
plan for securing the cyber-physical system. In the case of
these visualizations, the time scale is much more different
than in the case of real-time visualizations. In this case,
the efficiency of visualization is affected by the quality
of the algorithms for data mining and integration of prior

FIGURE 11. Overview of each sensor with feature-wise details [72].

FIGURE 12. Screenshot of the dashboard showing exploit chains in the
system topology graph (1) and filtering of the attack vector space per
component [73].

FIGURE 13. Distribution of vulnerabilities [74].

knowledge [82]. Based on the time scale of the two types of
visualizations, we can consider the following two scenarios:
1. Preemptive visualization for secure design of the sys-
tem before any exploit occurred, 2. Root-cause visualization
for securing the weak points of the system after an attack
happened.

1) PREEMPTIVE VISUALIZATION
The secure design visualization can facilitate the secure-
by-design process and apply the zero-trust framework as
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well as identify risks associated with possible incoming data
sources/events [83].

One of the most popular approaches for preemptive visu-
alization is to compute attack graphs [76], [77], [78] in order
to better understand the system’s vulnerabilities before they
are exploited by attackers. In [76], the authors proposed a
visualization tool that uses Architecture Analysis and Design
Language to model attacks, identify attack vectors, and visu-
alize potential damage. As a result, system operators can use
this visualization tool to identify weak points and develop
effective solutions for their remediation. The visualization
engine presented in [78] evaluates the effectiveness of poten-
tial mitigation plans and provides an overview of possible
attack evolution by generating attack graphs for specific sce-
narios that can be simulated directly in the visualization tool.

The work presented by Wu et al. [74] is an example of a
visualization system that provides applications for both the
attacker’s and defender’s perspectives. When considering the
attacker’s perspective, there are multiple types of visualiza-
tion techniques used for displaying pertinent data. Statisti-
cal analysis is performed to identify potential vulnerabilities
and display their cause within a nightingale rose diagram
as seen in Figure 13. The diagram is used to demonstrate
the distribution of threats caused by a corresponding vul-
nerability. This threat and vulnerability data is used to link
corresponding threats to commonly correlated keywords such
as ‘‘buffer overflow’’ and ‘‘memory’’. These keywords are
then displayed in a word cloud graph, giving the attacker a
sense of potential attack vectors.

An example of a node-link diagram was given by the
Bakirtzis et al. [73]. Here, the authors present an interactive
security analysis dashboard that displays system require-
ments and associated attack vectors. As seen in the figure 12,
this tool makes it possible to start analysis earlier in the
system life-cycle. This system uses node-link diagrams to
help inform system designers and security analysts where to
improve collaboration during the system design process. The
node-link diagrams display system specifications, potential
attack vectors, and the resulting attack surface within the
system’s topology.

Another interesting example of visualization was the
‘‘resilienceCube’’ by Jovanovic et al. [75]. This paper
presents data via line graphs, tabular data, 3-dimensional
matrix cubes, node-link diagrams and maps. The framework
was designed to accommodate a wide range of custom
tools that monitor three aspects of infrastructure resiliency:
Recovery/Adaptation, Robustness, and Preparedness. The
‘‘cube’’ plots each of these three values in a 3D space to
provide a sense of how well or poor the system is in each
area. This assortment of display tools is intended to aid
in resilient management strategies by allowing the user to
assess, monitor, and benchmark the resilience of a cyber-
physical system. The proposed framework set allows for the
modeling and analyzing of scenario-based threats, as well
as stress-testing the intended system design. This method
of identifying potential weaknesses in critical infrastructure

FIGURE 14. Alerts Dashboard - Alert severity monitoring
visualizations [80].

allows for the optimization of the initial investment as the
resilience of the system can be improved upon.

2) THE ROOT-CAUSE VISUALIZATION
This class of visualization methods addresses the need for
forensics investigation and analysis. Such visualizations are
intended to provide insight into the factors that led to a
cyber-physical event. These visualizations enable users to
learn from past events and come up with a plan to eliminate
vulnerabilities that were exploited by the attackers.

Macedo et al. [80] presented a tool that aims to combine an
intuitive user interface with machine learning forecasts that
display the available data through time-series visualizations.
The dynamic user interface of this tool is intended to display
pertinent information in supporting the investigation of cyber
and physical attacks that are presented in a user-friendly man-
ner. This visualization tool uses line graphs, pie charts, bar
charts, and numerical displays, as seen in Figure 14, to display
the available data that is generated by threat detection tools.

The work of Yan et al. [79] aims to improve the under-
standing of how the power grid behaves under complex
attacks by combining geographical details of substations with
attack and defense data in a simulated environment. This
creates a geographically accurate power grid system testbed
for which the user can simulate several single-node (substa-
tion) attacks. The intent of this visualization system is to pro-
vide effective visualization capability of these cyber-physical
attacks which will help inform the decision-making pro-
cess of power system operators regarding their response
strategies.

The geographical representations of the power grid during
the simulation of an attack are able to display the cascading
impact of a cyber-physical attack on the power grid, as seen
in Figure 15. The ability to visualize the impact of a cas-
cading attack and how it propagates through the power grid
is intended to assist power engineers and operators in the
efficient modeling and simulation of these attack scenarios.
These scenarios utilize real power grid system data that can
potentially help operators to understand grid behavior under
certain types of complex attacks with the goal of improving
defense strategies through a more informed decision-making
process. Another visualization tool for visualizing the cascad-
ing failures is presented in [81]. The primary visualization
method used is the node-link diagrams with specific node
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FIGURE 15. Cascading attack example: (Red) currently down, (Blue)
previously down, and (Black) normal operation [79].

icons. The proposed solution includes separate displays for
the cyber layer and physical hardware.

V. DISCUSSION
In this section, we will present the main challenges, findings,
and future research directions for improving smart grid secu-
rity visualizations.

The visualization system must be designed to aid in the
solving of specific problems and tasks while remaining sim-
ple and intuitive to use [70]. By providing significant context
to themined data, it should improve situational awareness and
facilitate faster decision-making.

1) CHALLENGES IDENTIFIED IN VISUALIZATIONS OF POWER
GRID SECURITY
a: COMBINING CYBER AND PHYSICAL
Major difficulties stem from the differences between cyber
and physical data, acquisition process, and difficulties of
synchronizing these types of data. Many distributed sensors
are used in today’s power grid, each using a different com-
munication protocols, hardware, and software resources to
generate multidimensional datasets with varying sampling
rates, which are then transmitted to the central control center.

b: MISSING HOLISTIC VIEW
Currently, most research is focused on cyber security visual-
izations, with few proposed solutions for providing a holistic
(cyber and physical data combined) view of the security of
cyber-physical systems. The visualizations do not have any
built-in tools for determining whether a cyber attack caused
physical anomalies or whether physical anomalies disrupted
communications between system components. As a result,
it is entirely up to the end-user to identify cyber-physical
causality by correlating the visualizations.

2) BEST PRACTICES
After performing the review, it has been observed that
the majority of researchers are focusing their efforts on
the development of real-time visualization monitoring tools
for security, with relatively fewer efforts dedicated to

visualizations designed specifically for tasks such as root
cause analysis or system design.

Monitoring - This category of visualization tools should
include features in their presentation format that allow the
user to interpret them quickly. An effective example would
be the ability to highlight important or high-priority alerts in
the foreground of the display, while also taking into account
the relative size, shapes, and colors in the context of the
overall design, in order to quickly capture the attention of the
user and provide a clear understanding of the alert’s details,
achieving a balance between focusing on critical components
and comprehending the system as a whole.

Planning and discovery - This class of visualizations
relies on prior knowledge and external sources to identify
potential attack vectors in order to prevent future attacks. It is
critical in this case to stay up to date on newly discovered
vulnerabilities. The primary goal of these visualizations is
to identify system weaknesses and areas for improvement in
terms of resilience and security. The most effective approach
is to look at the problem from both the red and blue teams’
perspectives and to present information to the end-user via
separate visualizations. This type of visualization necessitates
analyzing ‘‘if-then’’ scenarios to identify vulnerable system
components and predict potential attack outcomes, while also
ensuring that a worst-case scenario attack does not cause
cascading failures that bring the entire grid down.

3) TOP CHOICES FOR VISUALIZATIONS
The solutions examined in the paper are mostly dashboards
that use multiple visualization techniques to provide users
with valuable insight into available data from various per-
spectives. The most common techniques are traditional 2D
representations such as line and bar plots. However, icon dis-
plays are also popular because they can condense a significant
amount of information into a single attribute of the icon,
thereby saving display space. Node-link diagrams are used
to illustrate the interconnections of a system, where the color
or shape of nodes and links may indicate different properties
of the system components. Furthermore, most dashboards
include a map to help with spatial understanding of the data.

4) INTERDISCIPLINARY ADAPTATION
An additional consideration in the design of visualization for
power grids is interdisciplinary visualization. In the modern
world of inter-connected and smart systems, users frommany
different roles as cyber experts, power engineers, etc. are
collaborating to secure the grid. Supporting interdisciplinary
adaptation and information sharing is imperative to help the
end-users communicate and inform the decision-making pro-
cess for their response strategies. These considerations also
help find common ground among data and system feedback,
as the available data may be used for many different consid-
erations from role to role.

Allowing end-users to choose relevant information and
how it is presented is an effective strategy for optimizing the
adaptation process. Another option is to incorporate feedback
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mechanisms into the system design. The feedback gathered
can be analyzed to determine the effectiveness of the visual-
ization system and areas for improvement in future versions.

A. FUTURE RESEARCH DIRECTIONS
1) HOLISTIC CYBER-PHYSICAL HEALTH METRICS
By combining different streams of information into single
metrics, the time required to achieve situational awareness
can be significantly reduced by presenting single-number
displays that holistically describe the system state. These
metrics are presented at a level of abstraction that requires no
prior knowledge or experience, making them easily adoptable
by end-user with diverse backgrounds. Examples of such
approaches are presented in [64], where the authors introduce
the trust metric, which computes the metric for a single
sensor, and [72], where the authors provide a score for the
cyber/physical health and resilience of the system.

2) EMPHASIZING INTERDISCIPLINARY ADAPTABILITY
It is imperative to design a tool that does not add additional
workload to the user and is capable of providing complete
cyber-physical visualization that encompasses the entirety of
the monitored system. This design consideration will allow
the user to fully utilize the features of the additional data
visualization tool while avoiding the idea of adding, ‘‘yet
another screen to monitor.’’ While the goal of these visu-
alization methods is frequently to provide the user with a
better perspective, literature shows that these tools frequently
encourage the integration of multi-disciplinary efforts with
the common overarching goal of maintaining and protecting
the power grid. The versatility of visualization tools makes it
an appealing technology for researchers and industry profes-
sionals to pursue in order to further develop this standard.

3) EVALUATION IN REAL-WORLD SCENARIOS AND
BENCHMARKING
Some of the solutions studied in this field are still in the early
stages of development, and their effectiveness has been tested
on experimental setups. As a result, additional testing and
evaluation of these proposed solutions in real-world indus-
trial scenarios are required to truly assess their effectiveness
and highlight the benefits that they can provide to operators
in achieving situational awareness. This testing will allow
researchers and industry professionals to better understand
the challenges of putting these solutions into practice, as well
as identify areas for further improvements. Moreover, to eval-
uate these solutions effectively, there is a need to develop
a benchmark that can help to identify unique criteria for
evaluation [84], [85].

4) INTEGRATION OF AI/ML
Overall, the development of visualization tools based on
machine learning has the potential to significantly improve
the security of smart grids. Recent advancements in machine
learning have opened up new horizons in the field of
cyber-physical security visualization engines. Some of the

benefits are a dynamic adaptable system based on an
intelligent recommendation system, universal dimensionality
reduction, feature extractors, and an effective intrusion and
anomaly detection system for identifying and categorization
of anomalies. Machine learning can be seen as a complemen-
tary tool for extracting insights from existing data streams.

5) CAUSALITY BETWEEN CYBER AND PHYSICAL
It may be extremely beneficial to shift away from the end-user
effort in determining cyber and physical causality and corre-
lation towards the use of algorithms to infer the causality of
certain events detected in the system based on available data.
This approach can significantly reduce the time required to
comprehend the data because the visualization will clearly
display whether changes in the system’s subsystems or layers
are correlated or causal.

VI. CONCLUSION
Visualization methods provide the ability to effectively orga-
nize and display complex data, allowing for effective and
timely operator decisions, as well as running of ‘‘if-then’’
scenarios.

It is critical to detect anomalous behavior in the power grids
as soon as possible, as any delay can have serious conse-
quences to the security and safety of human life and physical
assets. The visualization of security aspects of cyber-physical
systems has a tremendous effect on the life cycle of complex
systems. We looked at preemptive use visualizations that
guide and assist users during the design process, as well
as vulnerability and resilience assessments. Other solutions
are designed to assist users in making real-time decisions
during monitoring tasks by providing situational awareness
and resolving the issue. Furthermore, some dashboards have
been designed to assist users in investigating cyber-physical
events after they have occurred and determine the root-cause
analysis.

Over the recent years, one can recognize several growing
interests when it comes to the visualization of cyber-physical
systems with security in mind. The first one is incorporating
machine learning algorithms to identify patterns, discover
previously unknown relationships, automatically categorize
and label incoming data, and reduce data dimensionality. The
next one is a shift towards a user-centric focus (adapt to
operator need in a given moment). Yet another direction is
benchmarking of visualization mechanisms (efficiency eval-
uation in real-world industrial scenarios).
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