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We have a problem…

Southern Hemisphere Sea Ice Extent, climatereanalyzer.org 
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We have a problem…
+ 35,000,000,000 mt/year CO2
Southern Hemisphere Sea Ice Extent, climatereanalyzer.org 
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Introduction to Cupriavidus necator
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• Well studied Gram-negative bacteria 
• Genome: C1≈ 4 Mbp, C2 ≈ 2.9 Mbp, pHG1 ≈ 0.45 Mbp 

• Proven industrial host (PHA bioplastic)
• Very diverse metabolism

• Growth on sugars, gases (CO2 + H2), formate (CH₂O₂)



The Dream: A Formate Bioeconomy
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The Dream: A Formate Bioeconomy

90% faradaic efficiency
Current density: 500 mA/cm2

87.4 mM formate at 40 mL/min

97% faradaic efficiency
Current density: 450 mA/cm2

100 wt. % formic acid
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Improving growth on formate by ALE:
• Six replicate wildtype cultures
• Minimal media + 50mM sodium formate
• Growth for ≈ six months, 400+ generations

Adaptive Laboratory Evolution
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• Isolate best evolved strains
• Sequence their genomes
• Recreate by rational engineering

Improving growth on formate by ALE:
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Laboratory evolution
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Genome sequencing of ALE strains

Reconstituted ALE strains:
• Δ Megaplasmid CBB Operon (CBBp) 
• Δ Transcriptional Regulator (phcA)
• Δ Membrane Hydrogenase (MBH)
• Δ Soluble Hydrogenase (SH)

Chromosome 1
Hydrogenase 
(membrane)

Hydrogenase 
(soluble)

CBB Operon
Total Deletion 

(≈bp)
phcA    

Regulator
HA6 0 SNP
HB3 Δ Δ 42,177 SNP
HC8 Δ Δ Δ ‭124,302‬
GD2 Δ Δ Δ ‭120,753‬ SNP
GE7 Δ Δ Δ ‭120,730‬ SNP
GF4 SNP Δ ‭12,282‬

Megaplasmid pHG1
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• Most ALE strains have phcA deletions.
• CHC076 (ΔphcA): improved growth on formate
• phcA = LysR family transcriptional regulator

• What does it do?

C. necator ALE: ΔphcA
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C. necator ALE: ΔphcA RNA Seq

• CHC001 (WT) vs. CHC076 (ΔphcA) [Fructose/Formate]
• PhcA controls: flagella, chemotaxis, adhesion, secretion

• Activates expression of 100’s of genes

   

 
  

  
  

(H16_B2360-B2373) fliC flaG fliD fliS fliT fliK1 flhB2 fliE fliF fliG fliH fliI fliJ fliK2
CHC001(WT) Formate 805.2 40.1 45.1 14.3 20.7 1.4 0.4 0.5 0.9 1.2 0.3 0.9 1.2 0.3

CHC001 (WT) Fructose 348.1 40.9 35.2 11.2 11.9 1.4 0.8 8.1 9.1 15.7 2.6 6.1 13.4 2.7

CHC076 (ΔphcA) Formate 18.6 11.2 7.6 3.0 4.9 0.5 0.3 0.2 0.6 0.4 0.1 0.7 0.7 0.1

CHC076 (ΔphcA) Fructose 11.4 12.6 7.3 2.5 3.0 0.5 0.2 1.5 1.3 1.9 0.3 1.4 1.9 0.4

 
  

  
  

 
  

  
  

 
  

  
  

ΔphcA:
Less Expressed 

Genes

ΔphcA:
More Expressed 

Genes
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• R. solanacearum quorum sensing system
• PhcA controls virulence factors

• Only during (high OD) plant invasion
• Uses signaling molecule 3OH-PAME 

• C. necator: also quorum sensing!
• H16 PhcA: very similar regulon

•  Deletion of phcA during ALE? 
• Reduces unnecessary expression
• Conserves valuable ATP

• ΔphcA: broad utility
• Improves growth on fructose!
• Improves growth on succinate!

C. necator ALE: ΔphcA
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C. necator ALE: Megaplasmid Deletions
 

Hydrogenase 
(membrane)

Hydrogenase 
(soluble)

CBB Operon
Total Deletion 

(≈bp)
    

HA6 0
HB3 Δ Δ 42,177
HC8 Δ Δ Δ ‭124,302‬
GD2 Δ Δ Δ ‭120,753‬
GE7 Δ Δ Δ ‭120,730‬
GF4 SNP Δ ‭12,282‬

Megaplasmid pHG1
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• Most ALE strains have deletions in pHG1.
• CHC077: ΔMBH
• CHC078: ΔSH
• CHC079: ΔCBBp

• All show improved growth on formate, but why?



Genome sequencing of ALE strains

Huge deletions found in the megaplasmid pHG1
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C. necator ALE: Δ Hydrogenases

• Hydrogenases are expressed even when not needed 
• Hydrogenase production is energetically expensive

• Account for up to 3% of the proteome by mass!
• Deletion of SH/MBH during formate ALE?

• Conserves valuable carbon and energy! 15

Schwartz, E., 2009. Megaplasmids of Aerobic Hydrogenotrophic and 
Carboxidotrophic Bacteria.



Genome sequencing of ALE strains

Huge deletions found in the megaplasmid pHG1
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C. necator ALE: Δ Megaplasmid pHG1

• Step 1: pCHC027 (ΔpemK)
• Removes megaplasmid addiction system

Plasmid addiction system:
• pemK: Toxin

• mRNA endoribonuclease
• Stable

• pemI: Antitoxin
• PemK inhibitor
• Unstable

• Ensures pHG1 inheritance
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C. necator ALE: Δ Megaplasmid pHG1

• Step 2: pCHC036 (Δrep)
• Removes 9kb replication cluster

pHG1 Replication Region
• Origin of replication:

• oriV
• Replication initiation:

• repAB
• Plasmid partitioning:

• parAB
• Helicase:

• helD
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C. necator ALE: Δ Megaplasmid pHG1

• Successfully deleted the entire megaplasmid! 
• Strain CHC105 (ΔpHG1)

• Improved growth on both formate and fructose

Two stage strategy for ΔpHG1:
1) Δ Addiction toxin: pemK
2) Δ Replication region
• Origin of replication: oriV
• Replication initiation: repAB
• Plasmid partitioning: parAB
• Helicase: helD

6.1% 
Genome 

Reduction!
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pH-stat bioreactor cultivation
• Formic acid consumption → raises pH
• pH (setpoint 6.8) controlled with a 25% formic acid feed
• Formic acid is fed exactly as quickly as it is consumed
• Concentration of formic acid in the bioreactor is minimized
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C. necator ALE: Bioreactor Runs

• 500 mL bioreactors
• 35% formic acid feed
• pH-stat feeding method

• Best ALE-inspired strains
• ΔpHG1
• ΔphcA
• Also ΔphaCAB

• Excellent performance:
• 24% faster growth
• 32% faster feeding
• SOTA for formatotrophy!
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Perspectives: Engineering for Alternative Feedstocks

• No microbes on earth evolved under your specific, 
controlled laboratory conditions!

• We can harness the power of ALE to improve naturally 
occurring microbes on any feedstock.

• Many microbes are “generalists” – capable of 
pivoting towards many alternate growth modes.

• In nature, agility is advantageous
• In the lab, this is energetically wasteful

• Consider also the concept of “genome reduction.”
• Much of the genome may be dispensable, and even 

worse than useless, under your growth conditions!
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