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Why analysis?

Analysis is foundational to BOTTLE’s mission

* Develop robust processes to upcycle existing waste plastics that meet
key goals:

*« >50% energy savings relative to virgin material production
* 2>75% carbon utilization from waste plastics

e >2x economic incentive over reclaimed materials

* Analysis-guided R&D aligns with DOE’s Strategy for Plastics Innovation

Economic, environmental, and comparative analysis

* Model new processes and analyze energy, carbon, cost, and GHG
emissions metrics to determine their feasibility and key drivers.

* Compare these results against incumbent technologies.

* Results and insights help inform decisions in a crowded solution space.

Image: S.R. Nicholson, N.A. Rorrer et al., Joule 2021.
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Analysis approach

 Techno-economic analysis (TEA) and life-cycle assessment (LCA) conducted across multiple scopes.

 Economics and sustainability assumptions follow transparent / open-source practices in EERE-funded R&D; framework
published in a 2022 BOTTLE review.1

* Analysis is an iterative process that occurs in parallel to laboratory R&D.
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Today’s topics

1. Leveraging TEA/LCA to identify areas for improvement in emerging chemical recycling technologies
— Enzymatic hydrolysis
— Pyrolysis
- Gasification
2. Comparing across technologies and identifying opportunities for combining end-of-life pathways
— Closed-loop recycling comparison
— Multi-pathway optimization
3. Looking towards social analysis
- Individual recycling behavior
— Social and environmental justice
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Enzymatic hydrolysis

LCA - improvements across many process areas will be necessary for realization of enzymatic recycling

* Opportunities to better design this technology:

— Remove or replace energy intensive process steps like amorphization pre-treatment, distillation, moist-solid case

— Reuse consumables as with water recycling, moist-solid cases

— Use lower impact consumables like ammonia instead of NaOH, renewable electricity
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Mixed plastic pyrolysis

TEA/LCA - pyrolysis to various aromatics or olefins is 1.4-4x more expensive and 2-4x more environmentally
impactful than conventional production, even with “cheap” mixed plastic feedstock

* Opportunities: source cheaper feedstocks, eliminate need for significant size reduction, avoid compromising high yields
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Mixed plastic

gasification

TEA/LCA - gasification to methanol or H, is 2-3x more expensive and 1.5-4x more environmentally impactful

than conventional production

*  Opportunities: source cheaper feedstocks while increasing yields of the target products, couple with existing facilities
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Comparing recycling options and parallel
application opportunities
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From stand-alone to comparative

How can we identify gaps and synergies across recycling technologies?
 Our approach: comparative analysis of closed-loop (plastic-to-plastic) recycling technologies across cost, environmental
impacts, and technical performance.

— Combination of literature review (material quality, retention, contamination tolerance), process modelling (Aspen Plus software),
TEA (minimum selling price), and LCA (GHG emissions, energy use, toxicity, water use, E-factor).
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Multi-criteria decision analysis (MCDA)

MCDA - evaluation of conflicting criteria

Mechanical recycling & glycolysis already
offer better alternative than virgin plastic.

Many emerging technologies perform worse
under environmental weighting = need
streamlining

Technologies with low scores are not
necessarily “bad” - many can improve to
similar or better than virgin plastic
manufacturing.

T. Uekert et al. ACS Sustain. Chem. Eng. 2023
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Feedstock = priority pathways

(Technical constraints

Which plastic is
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Beyond closed-loop recycling

How can we compare plastic-to-x options and determine how to combine
them to minimize impacts and maximize circularity?

* Methodology:
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System optimization

» Glycolysis + upcycling to glass fiber reinforced resin + mechanical recycling - GHG emissions reduce by 1.1 MMT, costs
increase by 2.5x, circularity increases from O to 0.13, virgin bottle demand decreases by 16% relative to landfilling only

* Improved collection rate (30% = 69%) can lead to further reduction GHG emissions (up to 1.2 MMT) and increase the
circularity index (up to 0.47)
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Opportunities in social analysis
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Addressing collection

We can’t recycle if plastic isn’t
collected...so how do we improve Implement cart-tagging Expand deposit-return schemes

e

collection rate?

* Agent-based model explores effect of
interventions on households’ disposal
behavior.

* Cart tagging, deposit return schemes,
education, and equitable access could
increase U.S. PET bottle collection by Improve education
13-41%. : g

w £ w (=] ~ o =]
Difference in contamination rate
in 2050 (percentage point)

N

Difference in recycling rate
in 2050 (percentage point)

J. Walzberg et al. Energy Res. Soc. Sci. 2023

Difference in recycling rate
in 2050 (percentage point)

- = b [
~N w [+-] o
Difference in recycling rate

-

o
in 2050 {(percentage point)

=T



Social & environmental justice

How can we incorporate social and environmental justice
into analysis of early-stage research?

* Explore health and environment, affordability and consumer
rights, and jobs and worker rights — qualitative for early-TRL,
quantitative for mid-TRL

* Enzymatic hydrolysis case study = sulfuric acid and ethylene
glycol emissions are “hotspots”

Try our EJ/SJ
worksheet for your own
technology!

Image credit: Clore Social Leadership

D\SABILlTY R'GHTS

ENVIRONMENTAL
JUSTICE

re likely 20 million people a
| by yearwere intemally
s & displaced by extreme
wildfires than by conflict. d

[ :
Q&UGEES & ASYLUM see®

18



Key takeaways

Analysis is crucial for benchmarking recycling technologies and determining research priorities to
ensure that circularity = sustainability.

There is no “silver bullet” - we need combinations of end-of-life technologies.

Lots more to come on recyclable by design polymers, biodegradable plastic recycling, and more!

https://www.washingtonpost.com/climate-
AT HOME! solutions/interactive/2023/recycling-tips-mistakes-quiz

THINK BEYOND Tips at:
@ THE LAB: RECYCLE
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Thank you! Questions?

Reach out to taylor.uekert@nrel.gov
Visit https://www.bottle.org/
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