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Quantifying aging effects in lithium-ion cells with chemistries that have a flat open circuit potential is challenging. We implement a
physics-based electrochemical model to track changes in the electrochemical impedance response of lithium titanate-based cells.
Frequency domain equations of a pseudo two-dimensional model are made dimensionless, and the corresponding non-dimensional
parameters are estimated using a Levenberg-Marquardt routine. The model weighs the relative contributions of changes in
diffusion, ionic conduction within the electrolyte phase against solid phase electronic conduction towards cell aging. Solid-phase
diffusion, charge transfer resistance and double layer capacitance at the solid-liquid interface are accounted for in the particle
impedance. The estimation routine tracks dimensionless parameters using accelerated cycling data from full cells over 1000 cycles.
The model can be deployed within a short time for state estimation using physics-based models without requiring prior knowledge
of the battery chemistry, format, or capacity.
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Reliable and high-capacity energy storage is essential for
transitioning to renewable energy sources. Improving performance
under fast charging and ability predict battery aging are extremely
important to enable electrification in automotive, aerospace, and
stationary applications. Electrochemical Impedance Spectroscopy
(EIS) is a very common method to understand and characterize Li-
ion batteries.1 The impedance spectrum generated by this method
depends on internal processes such as charge transfer kinetics,
transport through solid electrolyte interface (SEI), electrolyte trans-
port and solid phase diffusion. The response varies with temperature,
state of charge (SOC) and state of health (SOH). Hence EIS is a
simple yet powerful technique that can provide valuable information
about a battery cell like SOC and SOH.2

One of the major limiting factors for wide scale adoption electric
vehicles is the time it takes to charge batteries. Fast charging of
batteries is limited by factors such as electrolyte transport, interfacial
resistance and solid phase diffusion and can often lead to battery
degradation.3,4 Degradation in lithium-ion batteries can attributed to
several physical and chemical processes like SEI growth, lithium
plating,‘ positive electrode degradation and particle cracking, which
lead to observable effects such as capacity fade and power fade.5

Advanced diagnostic techniques and detailed models have been used
to study and understand each of these mechanisms leading to battery
failure.6–8 But such studies often involve detailed analysis of cell
components obtained from teardowns. While there is tremendous
interest in tracking degradation with a just a simple non-destructive
test like EIS, it is often quite challenging to tease out the effects of
these processes from just full-cell experimental data.

Previous studies have used circuit models to estimate degradation
of batteries using EIS data.9–12 They provide limited insights into
physical parameters within the battery and are also difficult to extend
to newer battery chemistries. Using physics-based models on the
other hand, provides better understanding of each physical processes
within the battery. Pseudo two-dimensional models have long been

used to model and study various aspects of lithium-ion batteries.13,14

Extensive research has been performed on modified forms of these
“Newman” models, applying them to various application15 along
with improvements to its computational efficiency.16,17 These
models have been mostly used in time-domain form for under-
standing battery performance, reliability, and safety.18–20 However,
use of these models requires tracking a large number of parameters
related to phenomena such as electrochemical reaction rates, species
conservation and charge conservation, in solid and electrolyte phase.

Several approaches have been used to obtain impedance response
from electrochemical models. Even though it is more common to use
equivalent circuit models to estimate impedance response of
batteries, it does not provide sufficient understanding of physical
parameters that change within the battery. Weddle et al. have used a
stitching algorithm to estimate battery impedance spectra using
stitching algorithm using on a composite state space model.21 Based
on initial frequency domain modeling efforts,22,23 researchers have
used porous electrode theory to simulate impedance response of
lithium-ion cells.24,25 Pathak et al. have used direct estimation of
impedance spectra by solving frequency domain equations of a
porous electrode model.26 The approach we present here is similar,
but with modified equations containing non-dimensional groups.

Use of non-dimensional groups has been previously used to
analyze performance of batteries.27,28 The use of dimensionless
groups has several advantages: when all parameters for an electro-
chemical model are available, one can use a traditional “Newman-
type” model, but often there are restrictions on what parameters we
have access to. The use of dimensionless groups helps us pursue a
physics-based model with a limited number of parameters known
a priori. The use of dimensionless groups also helps us to assess the
relative contributions of the different physical phenomena (e.g.,
diffusion flux vs migration flux or solid-phase transport Vs electro-
lyte transport, etc.) towards the degradation of the cells. We start
with a Newman type pseudo two-dimensional electrochemical
model and present the approach to develop non-dimensional groups
for dimensionless analysis. This model is then used to study
degradation in full cells with an LTO anode, at various number ofzE-mail: Anudeep.Mallarapu@nrel.gov
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cycles. Even though this model was primarily developed to under-
stand aging effects, this approach is applicable to other applications
which involve interpreting full-cell EIS data.

Modeling and Analysis Approach

A lithium-ion cell consists of porous anode and cathode regions
with a membrane in between, which is electronically insulating,
called separator region. The pores in all three regions are filled with
an electrolyte that transports lithium-ions between both electrodes.
Pseudo two-dimensional models consider the equations for charge
conservation in electrolyte, species conservation in electrolyte,
charge conservation in solid phase and species conservation in solid
phase. In this study, frequency domain equations describing these
physical processes are converted to their non dimensional form and
used to analyze experimental data.

Mathematical model development.—For impedance analysis of
a lithium-ion battery, we write each state variable (ψ ) as:

ψ ψ ψ= ¯ + ( ˜ ) [ ]ωRe e 1i t

where ψ̃ is an oscillation across the steady state value ψ̄ .
The AC impedance of the cell can be defined as the ratio of a

change in voltage to a small sinusoidal current of frequency (ν).
Since the voltage is not in phase with the applied current, the in-
phase components are described using a real component ψ( ˜ )Re and
out-of-phase components are described using an imaginary compo-
nent ψ( ˜ )Im of a complex number of the form + ⋅a i b, where

= −i 1 .

We start with equations for a pseudo two-dimensional model
(listed in Appendix) based on Ref. 26 which can be solved to obtain
Impedance for a lithium-ion battery as a function of frequency ω( ).

We can eliminate solving for the radial distribution of lithium
concentration in solid phase by using an analytical relation for
particle impedance at the interface. Decoupling the radial coordinate
highly reduces the total degrees of freedom after discretization and
improves computational time for the model.

ϕ ϕ˜ = ( ˜ − ˜ ) [ ]Z F j 2p 1 2
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More complicated expressions can be used to model particle
impedance in order to add more physics to the model. For a
sinusoidal current of magnitude I ,app the full cell impedance is
then given by:

ϕ ϕ
=

[ ˜ ] − [ ˜ ]
[ ]

= + + =
Z

A I
7cell

x l l l x

app

1 1 0

0

n s p

We assume the same Bruggeman coefficient in all regions for
simplicity. These equations can be solved to obtain impedance
response of a cell with input of the following 33 parameters.

R ,s p, D ,s p, i ,p0, α ,A p, α ,C p, C ,dl p, ( )− ,dU

dc ps
R ,s n, D ,s n, i ,n0, α ,A n, α ,C n,

C ,dl n, ( )− ,dU

dc ns
a ,p a ,n σ ,p σ ,n c ,0 D ,e κ ,e l ,p l ,s l ,n ε ,p ε ,s ε ,n b, +t ,Li R, F,

T , I ,app A0

Parameter estimation is quite challenging when many parameters
are involved, especially when no known information is available
about the cell. In this work, we convert these equations to obtain
non-dimensional groups for dimensionless analysis. This reduces the
total number of model parameters and expresses the equations in a
more natural form. This makes parameter estimation more manage-
able.

Variable (ψ̃ ) can be represented as:

*ψ ψ˜ = Ψ̄ [ ]8

Such that:

* * * *ϕ ϕ ϕ ϕ˜ = Φ̄ ˜ = Φ̄ ˜ = ¯ ˜ = ¯ [ ]c c C c c C, , , 91 1 2 2 1 1 2 2

where Ψ̄ is non-dimensional form of ψ̃ , with ψ* being a dimensional
reference value.

Similarly, we also define non-dimensional forms of frequency
and position as:

Table I. Dimensionless equations for pseudo two-dimensional im-
pedance model.
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*ω ω= Ω [ ]10

*= [ ]x Xx 11

We take *x as l ,n l ,s lp in negative electrode, separator, and positive
electrode respectively. The model equations in their non-dimen-
sional form are provided in Table I with corresponding definitions of
dimensionless parameters in Table II.

The dimensionless impedance can now be defined as follows:
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This model has a total of 21 independent non-dimensional para-
meters. A dimensional parameter ( *Z ) is also required to compare
model results (dimensionless Z̄cell) to experimental data (( )Zcell

dat in
Ohms), bringing the total model parameters to 22.

Θ Θ Θ Θ Θ Θ, , , , , ,1 2 3 4 5 6 Θ Θ Θ Θ, , , ,p p p p7, 8, 9, 10, Θ Θ, ,n n7, 8,

Θ Θ, ,n n9, 10, Θ Θ Θ Θ Θ Θ Θ, , , , , , ,n p n p11, 11, 12, 12, 13 14 15 *Z where Θi

are defined in Table II. It should be noted that for Θ1 to Θ6 the values
in different regions can be related using other dimensionless
variables as shown in Table III. Θ7 to Θ10 are independent
parameters in positive and negative electrode regions. The equations
in Table I are discretized using the finite difference method and the
dimensionless variables are solved for each point across a range of
frequencies. Simpler closed-form solutions are possible. See for
example.29

Experimental data and parameter estimation process.—For this
study, a 1 Ah-class pouched lithium-ion cell (LTO/NMC811) is
assembled for accelerated degradation test. The NMC811 positive
electrode with LiNi0.8Mn0.1Co0.1O2, carbon, and polyvinylidene
fluoride is prepared with a density of 3 g cc−1. The LTO negative
electrode with LTO, carbon, and polyvinylidene fluoride is prepared
and with a density of 2 g cc−1. These electrodes are then dried in
vacuum at a temperature of 120 °C. The pouched cell is assembled
using same protocol in Ref. 30. An electrochemical cycling test is
conducted between 2.75 V and 1.5 V using a constant-current/
constant-voltage charge (CCCV-charge) protocol, followed by a
constant-current discharge (CC-discharge) protocol in a thermostat
chamber set to 65 °C. The charging and discharging load current of
3C-rate is used and the termination current during CV charge is set
to C/20. The AC impedance of the cell is measured at 25 °C on a
combined potentiostat and frequency response analyzer (Solartron
1287 A by Solartron Analytical) every 200th cycle with a voltage
amplitude of 10 mV vs 2.25 V (open circuit voltage at SOC50% of
the cell), with frequencies ranging from 4.8 kHz to 0.05 Hz used in
the analysis. For subsequent analysis, the inductance component is
removed from the raw data. For this, raw data is fitted to an
equivalent circuit model (see supplementary document for more
information). The inductance component is then subtracted from the
raw data using the following equation.

π ν
π ν
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where Zraw and Zdat are raw impedance data and inductance
corrected impedance data respectively, νi is frequency, L and RL

are inductance parameters in equivalent circuit model.
The model parameters are estimated using Levenberg–Marquardt

algorithm31 by minimizing sum of the weighted squares of the errors
(χ2) where error is the difference between model prediction (for a
parameter set ⃗p) and experimental data for each frequency (νi). In

Table II. Definitions of dimensionless groups (used in Table I) and related expressions.
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Table III. Variables used in this paper.

Variable Description SI units

ϕ1 Solid phase potential V
ϕ2 Liquid phase potential V
c1 Solid phase lithium concentration /mol m3

c2 Liquid phase lithium concentration /mol m3

j Lithium flux at interface / /mol s m2

Positive Negative
Rs p, Rs n, Particle radius m

Ds p, Ds n, Solid phase diffusivity /m s2

i p0, i n0, Exchange current density /A m2

αA p, αA n, Anodic charge transfer coefficient —

αC p, αC n, Cathodic charge transfer coefficient —

Cdl p, Cdl n, Double layer capacitance /F m2

⎜ ⎟
⎛
⎝

⎞
⎠

− dU

dcs p

⎜ ⎟
⎛
⎝

⎞
⎠

− dU

dcs n

Derivative of open circuit potential /V m mol3

ap an Area fraction /m m2 3

σp
eff σn

eff Effective electronic conductivity /S m

lp ln Electrode thickness m

εp εn Electrode porosity /m m3 3

c0 Electrolyte salt concentration /mol m3

De Electrolyte diffusivity /m s2

κe Electrolyte ionic conductivity /S m
ls Separator thickness m
εs Separator porosity /m m3 3

b Bruggeman coefficient —

+tLi Lithium-ion transference number —

R Gas constant / /J mol K
F Faraday constant /s A mol
T Temperature K

Iapp Applied current amplitude A
A0 Cell area m2

Figure 1. Fitting using Levenberg–Marquardt parameter estimation algorithm: The impedance model is fit to experimental EIS data by starting from a
reasonable initial guess.
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Figure 2. Sample profiles of oscillation in (a) electrolyte concentration and (b) electrolyte potential predicted using the model used in this work. These profiles
are real and imaginary components of oscillation around equilibrium values.

Figure 3. Model fits compared against experimental results for dataset A. (a) Nyquist plot (b) magnitude of complex cell impedance (c) phase angle of
impedance (d) *Z , Θ Θ Θ, ,11,p 11,n 14 values predicted for each state of charge in this data set.
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this case ⃗p is the set of 22 parameters as described in the previous
section (Mathematical model development).
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There can be several non-unique sets of parameters which will
produce the same output EIS data. For example, increasing Θp by δ1

can have the same effect on the impedance curve as decreasing Θq by
δ .2 Which means a single EIS experiment does not provide all the
necessary information to estimate all the model parameters. Hence it
is necessary to fit the data across multiple data sets to get a more
accurate value for each parameter. For accurate parameter estimation

it is important to understand which parameters change across the
available experimental data.

It is reasonable to assume that *Z , which is determined by total
cell area, does not change much for the cells of the same type and size.
Similarly, Θ11,k and Θ14 also remain constant for a battery unless
extremely large expansions/deformations occur. The parameter esti-
mation algorithm will optimize these to minimize the error to a
minimum for each test. Hence, we first use the parameter estimation
algorithm over dataset A (EIS data on uncycled cells at multiple
SOCs) by including these parameters ( *Z , Θ Θ Θ, ,11,p 11,n 14) as a
variable parameter. Average predicted values from parameter estima-
tion on dataset A for these parameters are held fixed when analyzing
dataset B (EIS data on the same type of cells cycled to multiple
number of cycles). Approximate initial guesses are used from
parameters provided in Ref. 26. Figure 1 shows a sample case for
how initial model prediction gets fitted the measured data as
algorithmic iterations progress.

It is important that parameter estimation algorithm finds physi-
cally meaningful values while ensuring goodness of fit against the
data. For instance, physical parameters like electrode thicknesses
and porosities cannot change by orders of magnitude when the

Figure 4. Model fit compared against experimental data for dataset B (a) Nyquist plot (b) magnitude of complex cell impedance (c) phase angle of impedance.
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capacity degradation from the cell is gradual. To make sure that the
model parameters are realistic, an initial run of optimization was
performed, fixing the parameters Θ ,1 Θ ,4 Θ ,5 Θ ,6 Θ .12 The final set of
estimates were performed by including all parameters within the
estimation routine.

Results and Discussion

The solution for the spatial distribution of variables as a function
of applied frequency as shown in Fig. 2. Negative values in these
plots are a result of the oscillations in the variables not being in-
phase with the applied current oscillation. The variation in of both C̄2

Figure 5. Trends in dimensionless parameters – I.
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and Φ̄2 is linear in the separator region. At very high frequencies, the
oscillations in lithium concentration (Fig. 2a) drop to almost zero,
since there is not enough time available for mass transfer to take
place. The magnitude of oscillation in electrolyte potential (Fig. 2b)
steadily decreases as frequency of applied current increases. It
should be noted that Fig. 2a is depicting real and imaginary parts of

small oscillations around equilibrium concentration which do not
contribute to overall depletion/accumulation of salt concentration.

This model runs quickly (Using 2.4 GHz Intel Core i9 processor
with 16 GB memory, the simulation of an EIS curve with 41 data
points typically takes around 2.408 s which is roughly 60 ms for each
frequency point) and can obtain the impedance response across a wide

Figure 6. Trends in dimensionless parameters – II.
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range of frequencies. As we increase frequency, the imaginary part of
impedance approaches zero and electronic effects dominate, which is
expected. We first solve the dimensionless model and estimate its
parameters for an uncycled cell using impedance data at multiple
states of charge. For this case, all estimate parameters correspond to
the reference cell with no degradation. We then proceed to estimate
model parameters for the aged cells.

The model fits the data well for all the states of charge (Figs. 3a–3c).
The parameters ( *Z , Θ Θ Θ, ,11,p 11,n 14) that are estimated from this
dataset are consistent for all the curves, as the EIS responses are relatively
similar for all SOCs. As explained earlier, these parameters are not likely
to change as the cell ages. Any change in them from estimation algorithm
are likely due to the model not being sensitive to these parameters within
the range of frequencies in the data. When EIS spectrum is relatively non-
sensitive to a parameter, the parameter is “free” to change within the
routine as the estimation algorithm can still guess slightly different value
without affecting fitting error much. To avoid any unrealistic variation,
the values are averaged (Fig. 3d) from estimation from multiple SOCs
(dataset A) and held constant throughout the estimation of parameters for
battery degradation (dataset B). This approach precludes the need to know
the individual cell design values, even under the reference conditions. The
ability to include *Z as part of the parameter set estimated, significantly
expands the capability of this toolset to study aging in cells whose
component level data is not available.

In dataset B, EIS response is obtained at 50% SOC at every 200
cycles. The algorithm is run until a convergence tolerance of 10−4 is
reached on the reduced chi-squared value. The parameters estimated
by the algorithm are sufficiently optimized to approximate the

experimental data quite well (Fig. 4). The error between data and
model can be further improved by using better parameter estimation
algorithms. Each parameter from these model fits is plotted with
number of cycles in Figs. 5 and 6 to analyze the variation of battery
internal states as the cell ages.

It can be observed that Θ2 has almost no change in its value,
which makes sense as the value of a small oscillating current does
not change the linear response of a battery. Parameters like Θ1, Θ4,

Θ5, Θ6 also have very little change in value with number of cycles.
Some of these parameters (like transference number, electrolyte
diffusivity) can change physically but the model might not capture
those changes due to EIS response within the measured frequency
range not being sensitive to these parameters.

Θ3, corresponding to the ratio of solid phase conductivity to ionic
conductivity, is a predominant factor controlling changes in the real
part of impedance especially at high frequencies. The trend for Θ3 is
quite linear and its value increases about 60% in these 1000 cycles.
The increase in Θ3 with number of cycles showing that the effective
ionic conductivity goes down with time as battery ages, leading to an
increase in internal resistance.

The parameters Θ7, Θ8, Θ9 and Θ10, have a greater change within
the cathode as compared to the anode which suggests that the
cathode (NMC 811) degradation is more severe for this cell
compared to anode (LTO). Θ10 relates to solid phase diffusion in
electrode particles. We can observe decreasing trend in Θ10,p

suggesting a reduction of solid phase diffusivity. This could be a
result of cathode degradation and fracture of particles due to rapid
expansion and contraction during fast cycles. After first 200 cycles

Figure 7. Approach to predict EIS spectrum from parameter trends: fits from initial cycles are extrapolated to predict parameters for subsequent number of
cycles.

Figure 8. Summary of the approach used in current study. The developed framework is useful to quickly understand physical changes under aging conditions,
using EIS data.
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(possibly after crack initiation), the degradation is severe, causing
rapid reduction in Θ10,p.

Θ7 and Θ9 relating to charge transfer resistance drop gradually in
the cathode as the battery ages, indicating that charge transfer
resistance is increasing. It is suggested that the increase of cathode
charge transfer resistance is caused by degradation in the cathode
surface, such as rock-salt layer by positive electrode structure
change or film-growth reaction by electrolyte.30,32,33 Θ8,p (propor-
tional to double layer capacitance) is seen to be decreasing within
the cathode initially and slightly increase after 800 cycles. These
changes (Θ7, Θ8, Θ9, and Θ10) are not that significant (<40% change)
within negative electrode (LTO) and can be attributed to the fact
that LTO is known be a zero-strain insertion material34,35 and
known not to form SEI unless subject to potentials below 1 V.36

Θ12 (electrode porosity) remains constant as the battery ages, but
reduces near 1000 cycles, and again the drop is more prominent in
positive electrode suggesting a reduction in cathode porosity. But it
is possible that this change is not physical and is a result of
parameter estimation algorithm not finding a sufficiently optimized
solution for the 1000 cycle case (see Figs. 4a and 4c), which could
also be affecting Θ8. Bruggeman constant (Θ15) is not seen to change
much.

The model provides understanding of physical changes in the cell
and can hence serve as a useful diagnostic tool to understand
dominant degradation mode, by eliminating/reducing the number of
complex experiments involving cell teardowns. Along with this, the
approach can be potentially used to make real-time predictions
during EV operation. To achieve this, we can use fitting functions on
of parameter trends which can then be extrapolated into the future.
For demonstrative purposes a simple analysis is shown in Fig. 7,
using the same dataset B, where we attempt to use data from up to
600 cycles and make a prediction of parameters for 800 cycles and
1000 cycles. The following fitting function is used for all parameters.

θ( ) = + [ ]m N blog 17i cycle

In theory, depending on degradation mechanisms, we will need to
use more suitable functions for each parameter. In this case,
prediction of EIS spectrum at 800 cycles has small error compared
to data, which is further exacerbated at 1000 cycles. But it should be
noted that this dataset is limited to just a few EIS curves and all
parameters’ trends are captured using a very simple function.
Applying this approach to larger data sets will allow us to identify
appropriate fitting functions that capture trends in these parameters
well. These models can then be used to predict how parameters
evolve with time and estimate how battery is expected to age in the
future based on past changes in EIS spectrum.

Figure 8 provides a high-level overview of the approach used in
this paper. A non-dimensionalized model developed in this study
predicts cell impedance as a function of frequency based on 22 input
parameters. Coupled with a Levenberg-Marqaurt parameter estima-
tion routine, these parameters can be guessed such that the model
finds a good fit to a given EIS curve. It is important to identify which
of these parameters do not change with aging, so that these can be
held constant to analyze aging dataset. We identify 4 such
parameters and predict their averaged values using a separate
dataset. These values are held constant while the rest are estimated
to provide the best fit for aging dataset (EIS curves at multiple cycle
numbers). Finally, the changes in estimated parameters are analyzed
to provide insights for understanding dominant degradation mechan-
isms.

Conclusions

An approach to understanding battery physics from EIS data
using physics-based modeling has been developed. The model is
generic and can be extended to various battery chemistries and with
varying properties along the thickness direction. This approach
allows us to gain valuable insights and use physics-based models

without having prior knowledge of the battery chemistry, format, or
capacity. This model can be used to understand battery aging in
terms of changes in physics-based parameters. We can extend the
model by modifying the form of particle impedance. This framework
still has limitations such as being sensitive to initial guess values for
parameter estimation because of the algorithm finding local minima,
as well as multiple parameters sets predicting similar EIS response.
The model needs to be applied to a wide range of data to improve the
accuracy of estimated parameters. Further, when applied to a large
number of data points, it can be used as a predictive tool during
battery operation to understand state of health and battery life.

Appendix. Dimensional Equations for Pseudo two-Dimensional
Impedance Model26
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