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Computational predictions of vaporization properties aid the de novo design of green chemicals, includ-

ing clean alternative fuels, working fluids for efficient thermal energy recovery, and polymers that are

easily degradable and recyclable. Here, we developed chemically explainable graph attention networks to

predict five physical properties pertinent to performance in utilizing renewable energy: heat of vaporiza-

tion (HoV), critical temperature, flash point, boiling point, and liquid heat capacity. The predictive model

for HoV was trained using ∼150 000 data points, considering their uncertainties and temperature depen-

dence. Next, this model was expanded to the other properties through transfer learning to overcome the

limitations due to fewer data points (700–7500). The chemical interpretability of the model was then

investigated, demonstrating that the model explains molecular structural effects on vaporization pro-

perties. Finally, the developed predictive models were applied to design chemicals that have desirable

properties as efficient and green working fluids, fuels, and polymers, enabling fast and accurate screening

before experiments.

Introduction

Decarbonizing the power sector is urgently needed for most
countries to realize net-zero carbon emissions in the foresee-
able future.1 This will require advanced power generation
technologies from renewable thermal resources (solar heat,
geothermal, biomass, waste heat, etc.), necessitating an
efficient thermodynamic cycle that works in the low-to-mid
temperature range. The organic Rankine cycle (ORC) has been
recognized as a promising technology owing to its functional-
ity over a wide temperature.2,3 The ORC’s performance heavily

relies on the vaporization properties of the organic working
fluid.4 For example, a working fluid with a high heat of vapori-
zation (HoV) is known to give a higher unit work output at the
given temperature of the heat source.5 In this regard, extensive
research has been conducted on the structure–property relation-
ships for the working fluid’s vaporization properties.6–9

The vaporization properties of working fluids are also
closely related to the performance of refrigeration cycles (or
heat pumps)10 that consume ∼23% of residential sector electri-
city in the United States.11 Since the Montreal Protocol banned
the use of chlorofluorocarbons, there have been constant
demands for green working fluids with low global warming
and ozone depletion potential.12 Developing such chemicals
must be preceded by thoroughly understanding structure–
property relationships for vaporization properties.

The structure–property relationships of vaporization pro-
perties have been extensively studied to design clean (low-
emission) alternative fuels.13–15 Specifically, the HoV has been
considered one of the key factors for determining the combus-
tion characteristics of liquid fuels. Fuel vaporization in the
engine cylinder leads to a significant drop in temperature and
pressure, affecting propulsion systems’ thermal efficiency and
emission characteristics.16–18 For example, a predictive model
for particulate matter emissions from spark-ignition engines
utilizes fuel HoV to account for the influence of its vaporiza-
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tion properties on the emission characteristics.19 Similarly, the
importance of HoV in the thermal efficiency of propulsion
systems is evident as shown in the relationships of HoV vs.
cetane number (CN)20 and HoV vs. octane number (ON).21

Therefore, considering chemicals’ vaporization properties can
lead to the discovery of green chemicals with low emission
that are relevant to one of the twelve Principles of Green
Chemistry (#3 – Less hazardous/toxic materials).22

A de novo design of green chemicals demands a predictive
model for the vaporization properties of arbitrary molecules.
For HoV, various approaches have been applied to develop the
predictive models, including equation-based,23,24 group contri-
bution (GC) models,25–27 and their combination with
regression methods or neural networks.28–30 Besides GC-based
methods, quantitative structure–property relationship (QSPR)
models have been built using various structural
descriptors.31–35 Similar approaches have also been adopted
for other vaporization properties,27,31,36–69 including critical
temperature (TC), flash point (FP), and boiling point (TB).
More generally, numerous QSPR-based predictive models have
been developed for organic molecules’ properties relevant to
chemical regulations70 and safety in fire and explosion,71 and
for other physicochemical, biological, technological
properties.72

Despite the remarkable advances in prediction accuracy
over decades, these models still have several limitations. First,
some equation-based models assume knowledge of prior infor-
mation of other physical properties (e.g., TB predictive
equation as a function of HoV and vapor pressure). This
assumption is sometimes problematic when assessing a novel
molecular structure whose physical properties have not been
measured. Second, most models have not considered the
temperature dependency of vaporization properties (e.g., HoV),
which constrains the general applicability of the model to the
broader temperature range. Most existing predictive models
for HoV are valid for one temperature (room temperature or
boiling point).28–30,32,33 Third, the models do not properly
account for the uncertainties in experimental measurements.
Training the model with uncertainty quantification can
improve model accuracy and provide a confidence bound for
the predicted value.73

Lastly, there have been fewer discussions regarding the
chemical interpretation of predictive models than those
regarding their accuracy. Prediction results from GC-based
methods can be regarded as chemically explainable, since one
can find chemical reasons of different atom-wise contribution
values of each substructural moiety in a molecule. However,
there are three limitations of GC-based predictive models;
first, further investigation is needed to elucidate the effects of
temperatures on atom-wise GC values and vaporization pro-
perties such as HoV. Second, the GC values are typically
assigned to fragments consisting of only first-nearest atoms
around one atom, possibly leading to the lack of considering
non-local intramolecular interactions. The influence of ‘Nth-
nearest-neighboring’ atoms on vaporization properties should
be included to achieve more reliable prediction and interpret-

ation. Third, the non-linear relationship between GC and prop-
erty values should be taken into account, in addition to linear
additivity. When it comes to non-GC machine learning (ML)
models (tree-based, neural networks, etc.), many studies did
not even report chemical explanation of models, despite the
availability of several available tools for interpretation, includ-
ing attention weights (vide infra for details).

A chemically explainable model can give the predicted
value as well as rational principles for designing green
working fluids and low-emission fuels. In that regard, this
study developed chemically interpretable models through ana-
lyzing (i) attention weights for each atom and (ii) sensitivity of
individual atoms when HoV is changed with varying tempera-
tures. Objective (i) aims to identify crucial structural com-
ponents that contribute to significant variations in property
values among closely related molecules. Objective (ii) provides
insights into which molecular substructures are responsible
for significant changes in HoV under different temperature
conditions. Such approaches provide chemical explanation of
prediction results even for deep learning models such as
neural networks.

Here, we introduce a novel strategy to develop a reliable and
chemically explainable ML predictive model for vaporization
properties (Fig. 1). First, databases of vaporization properties
were collected and curated to use as inputs for training and
evaluation of the model. The raw databases are not structured;
particularly, molecules’ simplified molecular-input line-entry
system (SMILES) strings are unavailable in some data sources.
Therefore, we generated and canonicalized their SMILES
strings to input molecules as two-dimensional representations
into our ML model (details in the Methods section). A graph
attention network (GAT) model was then built and trained
against the databases. The GAT is an advanced graph neural
network structure where atoms and bonds of a molecule are
described as nodes and edges. It can consider the effects of
interactions among atoms on target molecular properties (i.e.,
vaporization properties in this study). Attention weights of
each atom in GAT are related to structural importance, and
investigating them is beneficial regarding their interpretability.
Hence, this approach has been utilized in predicting and ana-
lyzing numerous chemical properties.74–83

Besides GAT, tree-based ML algorithms have also succeeded
in various chemistry applications, e.g., drug discovery.84

However, in this work, we did not consider molecular descrip-
tor-based models, including tree-based ones, because our GAT
showed better accuracy than the recent descriptor-based
models (vide infra). Second, GAT does not usually need exhaus-
tive molecular feature generation and selection. Reasonable
accuracy was accomplished using only a few features (atom fea-
tures and connectivity). Without incorporating additional
molecular features, the model can infer overall molecular
structural effects on HoV through local graph convolution,
which can consider more than first-nearest neighbors around
each atom. Therefore, it could be generalizable to a broader
scope of molecules compared to descriptor-based models, and
its accuracy can be comparable to or better than conventional

Paper Green Chemistry

10248 | Green Chem., 2024, 26, 10247–10264 This journal is © The Royal Society of Chemistry 2024

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

3 
Se

pt
em

be
r 

20
24

. D
ow

nl
oa

de
d 

on
 9

/3
0/

20
24

 6
:0

6:
28

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4gc01994f


group contribution methods, which usually consider only first-
nearest atoms. Third, GAT is not computationally expensive
when using a graphical processing unit (GPU). Details are
available in the following sections regarding the architecture
and accuracy of the GAT model.

To reach the maximal accuracy, a grid search and ten-fold
cross-validation found the optimal hyperparameters of the
GAT. The mean absolute error (MAE) of validation sets from
ten folds was evaluated for each hyperparameter, and the
hyperparameter that showed the lowest MAE was selected.
Among the ten models from the optimal hyperparameter set,
the best model with the lowest validation set MAE was
selected. The final accuracy of the model with optimal hyper-
parameters was assessed for the held-out test set of HoV, with
analyses of functional group effects and outliers. This training
and accuracy evaluation process was then repeated for other
properties: flash point (FP), critical temperature (TC), boiling
point (TB), heat capacity of liquid (CP), and melting point (TM).
The predictive model for HoV was also validated by comparing
our experimentally measured HoVs with predicted values.

Subsequently, the chemical structural effects on HoV were
investigated by analyzing the GAT model. Attention weights of
each atom in a molecule were then compared to find key sub-
structures or functional groups determining HoV. Such investi-
gations demonstrate that our predictive model is accurate and
chemically explainable. Finally, our predictive models for
vaporization properties were applied to the practical design of

green chemicals (i.e., working fluid, renewable fuel candidates,
and polymers). The following sections describe each step’s
detailed procedure and results outlined in Fig. 1.

Results and discussion
Databases of vaporization properties used for the model
development

Table 1 summarizes the data sources and the number of data
points for the six properties studied in this work. The present
study only considers the molecules consisting of C, H, and O
atoms, most common in fuels and working fluids readily
synthesizable from natural sources. Halogens were omitted
from the consideration owing to their potential impacts on
ozone depletion.

For the HoV prediction model, we used 153 105 data points
of 7400 molecules in the NIST Web Thermo Tables
(NIST-WTT). Fig. 2 illustrates the HoV values of five molecules
in the NIST-WTT85 as examples, depicting the sensitive nature
of HoV to molecular structures. NIST-WTT contains the HoV
values of each molecule at varying temperatures below TC
where HoV becomes zero. The database also provides error
bars from experimental measurements or extrapolations from
experimental values, which were utilized for uncertainty
quantification of predicted HoVs. A tenth of the molecules
(740) were reserved for the held-out test set for splitting the

Fig. 1 Flow diagram of the overall procedure for developing predictive models for vaporization properties.

Table 1 Summary of molecular properties and databases considered in this work

Property Ndata References Comments

Heat of vaporization (HoV) 153 105 NIST Web Thermo Tables (NIST-WTT)85 • 7400 molecules at different temperatures
• Experimental + calculated values

Critical temperature (TC) 7362 • Temperature at which HoV is zero
Flash point (FP) 708 Design Institute for Physical Properties

(DIPPR) database +
literature28,30,32,33,47–49,51,53–55,57,86

• Total 3282 data points were found from DIPPR and other
literature sources, but only those from DIPPR (708 data points)
were used for training and validation of the model due to the
inconsistency among different data sources

Boiling point (TB) 3034 N/A
Heat capacity of liquid
at 298 K (CP)

777 DIPPR database86 • Control properties irrelevant to vaporization

Melting point (TM) 920
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data. The rest 6660 molecules were divided into ten folds to
carry out the ten-fold cross-validation and hyperparameter
tuning. Detailed information about each split data set is avail-
able in section S1 of ESI.†

Meanwhile, the same data source collected TC values of
7362 molecules. Molecular FPs were gathered from the Design
Institute for Physical Properties (DIPPR) database86 and other
literature.58 We removed the ambiguous FPs, which are signifi-
cantly different among multiple literature sources, leading to
3282 data points,47–49,51,53–55,57,86 708 of which are from the

DIPPR database. The FPs from the DIPPR database were only
used for training and validating the model since combining all
data from different sources deteriorates the predictive accu-
racy, presumably due to the different reliability of standard
and non-standard experimental methods (vide infra for
details). The same procedure was repeated for TB, resulting in
3034 data points in total.28,30,32,33,86 All TB values correspond
to those measured in the atmospheric pressure condition. In
addition, 777 CP values in the liquid phase and 920 TM values
were acquired from the DIPPR database.86 CP and TM were con-
sidered a control group to compare the accuracy of predicting
vaporization properties with those unrelated to vaporization.
Liquid CP was also utilized with vaporization properties such
as TB, TC, and HoV when designing new working fluids
(vide infra).

Development of graph attention networks for predicting HoV

Fig. 3a shows a schematic diagram of our GAT model for pre-
dicting the HoV and other properties outlined in Table 1. The
model first generates the 16-dimensional atom feature vectors
from a SMILES molecular representation. For each atom, five
features (atom type, number of bonds and hydrogens, ring
state, and aromatic state) are encoded as one-hot feature
vectors. A connectivity matrix is also created from SMILES.
This matrix encodes whether there is a bond between two
atoms, and does not contain information about bond orders.
These atom features and connectivity matrix comprise an
input layer, and it should be emphasized that no three-dimen-
sional coordinates of atoms in a molecule are needed for the
prediction. Of note, SMILES strings can distinguish stereoi-

Fig. 2 Heat of vaporization of five example molecules in the NIST-WTT
database.

Fig. 3 (a) Architecture of the GAT model. (b) The Kullback-Leibler divergence loss function to predict HoV with considering uncertainty. (c) 2D rep-
resentations of atom feature vectors obtained after passing the first (layer 1), third (layer 3), fifth (layer 5) graph convolution layers. As a specific
example, the feature vectors are plotted for two carbon atoms of dibutyl ether (in red cross) and butyl sec-butyl ether (in black square), to demon-
strate that the model can consider the structural effect between an atom and its fifth-nearest neighbors.
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somers and diastereomers, and atom feature vectors can
encode information about stereocenters. However, the current
HoV model does not consider stereocenters since only 13% of
the molecules in NIST-WTT contain the stereochemistry infor-
mation (1106 and 7400 molecules with and without stereo-
chemistry, respectively). In addition, the mean HoV difference
between two stereoisomers (e.g., cis vs. trans, (E)- vs. (Z)-, and
(R)- vs. (S)-) is 1.54 kJ mol−1, being lower than the mean uncer-
tainty of HoVs in NIST-WTT (3.44 kJ mol−1, section S2 in ESI†).
Thorough consideration of stereochemistry effects on HoV is
beyond the scope of current work and will be future work.

The input atom features then pass through the graph con-
volutional layers updated with considering adjacent atoms.
Detailed formulations for graph convolution and attention
matrices can be found in Methods and the literature.74

Meanwhile, to consider temperature dependence on HoV, an
input temperature value is embedded into a global feature
vector. Next, the global feature vector updates the atom feature
vectors from the last convolution layer, and those atom vectors
again update the global feature vector (crossed arrows in
Fig. 3a). More technical details about the global feature update
scheme can be found in Wen et al.87 and Methods section of
the present paper.

It should be noted that GATs have better capabilities than
convolutional neural networks and graph neural networks
having no attention mechanisms, when they learn global fea-
tures. In GATs, the attention coefficients in an attention matrix
are shared throughout multiple GAT layers and attention
heads, resulting in a more robust consideration of non-local
structural effects on HoV.74,88–90 Such attention mechanisms
alongside global update blocks of temperatures lead to a rigor-
ous quantification of the influence of temperatures on HoV.
The global update scheme effectively enhances model’s accu-
racy through reinforcing the introduction of relational induc-
tive biases to the model.91 Predictive models utilizing global
updates have demonstrated superior accuracy compared to
those without global updates in predicting chemicals’ bond
dissociation enthalpies, cetane numbers, and
solubilities.87,92–94

The averaged atom feature vector and global vector are then
concatenated and undergo three readout layers with ReLU acti-
vation functions to provide the predicted HoV (Hpred) and its
uncertainty (σpred). In other words, the predicted HoV of a
molecule is given as not a specific value but a normal distri-
bution Q whose mean and standard deviation are Hpred and
σpred, respectively (Fig. 3b). This distribution is compared with
another normal distribution P ∼ N(HNIST, σ2NIST) acquired
from the NIST database. The model is trained to maximize the
overlap between P and Q.

Methods for quantifying σpred include Bayesian neural net-
works (BNNs) where trainable weights and biases of readout
layers are given as probability distributions instead of specific
values. BNNs are appropriate for considering the epistemic
uncertainty stemming from fitting the model to limited data.
However, we assumed that the database is sufficiently exten-
sive (153 105 data points, Table 1) and focused on aleatoric

uncertainties arising from the variability from experimental
measurements or extrapolation of experimental data. Such
uncertainties may depend on uniquely complex molecular
structures and can be irreducible regardless of database size.95

In this regard, the final readout layer directly quantifies σpred
as a function of molecular structure and outputs the distri-
bution Q instead of determining σpred from BNNs or ensem-
bles of NNs. Elucidating the relationship between chemical
structure and uncertainties informs how distant the molecule
is from the chemical space of well-known compounds and the
fidelity of the predicted values when designing new
molecules.96–99 Recent studies have also adopted similar
approaches and obtained reliable results from the graph
neural network-based prediction of molecular properties with
uncertainty quantification.96,97

In the first step of the model development, cross-validation
and hyperparameter tuning were performed to find the best
model architecture (Fig. 1). Using five layers with five attention
heads minimizes the validation set MAE; fewer or more layers
or attention heads do not improve the accuracy (section S3 in
ESI†). It should be noted that the mathematical definition of
the loss function is another key hyperparameter for developing
a reliable model. The Kullback-Leibler (KL) divergence loss
function, DKL(P||Q), was adopted to minimize the difference
between two normal distributions (Fig. 3b) of HoVs from the
database and prediction. It has been successfully applied to
recent ML models relevant to physics, chemistry, and
biochemistry.100–103 Detailed formula of the KL divergence is
available in eqn (5) of the Methods section. Surprisingly, the
KL divergence showed higher accuracy than the typical mean-
squared-error loss function without uncertainty quantification,
indicating that considering uncertainty is pivotal for a reliable
prediction. In addition, the GAT model with the KL divergence
is more accurate than the graph convolutional networks
without attention, and the GAT prediction based on Watson’s
equation (details in section S3, ESI†). Optimization of other
hyperparameters is explained in section S4 of ESI.†

The weights of graph convolution layers from the HoV
model were then used to expand the prediction to five other
properties (Fig. 3a). A transfer learning approach was adopted
to overcome the limitation due to fewer data points of these
properties (700–7500 data points, Table 1) compared to HoV
(∼105). Its feasibility was examined by comparing the accu-
racies of the models trained with and without transfer learning
(for details, vide infra). These properties do not have a temp-
erature effect, so only the graph convolution layers were
adopted from the HoV model. The averaged atom feature
vectors obtained from the transfer learning pass through
another series of readout layers to predict vaporization
properties.

The five-layer GAT model (Fig. 3a) can distinguish the
different local environments of atoms in a molecule, as shown
in the t-stochastic neighbor embedding (t-SNE) analysis of
atom feature vectors in hidden layers (Fig. 3c). The first layer’s
2D t-SNE representations of atom features display a clear clus-
tering according to the four basic atom types. Those in the
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third layer are more dispersed except for a few clusters near
the center, and the fifth layer shows the most scattered atom
features. This indicates that, as a molecular graph passes
through more layers, the model updates atom feature vectors
to differentiate more detailed local environments leading to
different HoVs.

For further demonstration, we selected two representative
compounds, butyl sec-butyl ether, and dibutyl ether, which
have slight structural differences in Fig. 3c. The former has
one branched methyl group (methyl group on a tertiary
carbon), whereas the latter does not. The terminal methyl
carbons in the butyl group were chosen from each compound,
and their atom feature vectors were compared. They show
similar 2D t-SNEs until the third layer; interestingly, they
become distinct in the fifth layer. These two carbons share the
same substructure until the fourth-nearest neighbors. Their
fifth-nearest ones are different, and the model captures this
structural dissimilarity, ultimately leading to different HoVs of
these compounds.

The feasibility of the model shown in Fig. 3a was assessed
by training the model using the databases of HoVs at TB from
the literature and comparing the prediction accuracies from
previously reported models (Table 2). The previous studies
used various techniques such as genetic algorithms, multi-
variate regression, group contribution, and artificial neural
networks. For a fair comparison, we applied the splits of data
sets into training, validation, and test sets identical to those
reported in the literature. Although only C/H/O-containing
molecules were chosen, the training : validation : test set ratio
is maintained at approximately 8 : 1 : 1 (or training : test 4 : 1),
which is reasonable for training our model and comparing the
accuracy with other models. Our model generally shows better
accuracy; a test set MAE 0.1 kJ mol−1 higher was demonstrated
in only one case, which could be attributed to experimental
uncertainties. The raw data obtained for the analysis shown in
Table 2 is available via an Excel spreadsheet file uploaded as
ESI.†

Accuracy of the HoV model trained using the largest database

Ultimately, our GAT model was trained using a much more
extensive database than any other models in the literature.

There are 124 100 HoVs at varying temperatures in the train-
ing, 13 634 in the validation, and 15 371 in the test sets. In
the best-case model, we achieved reasonable accuracy for
this extensive database, with the MAEs of 3.33, 4.21, and
4.77 kJ mol−1 for each split data set. Although the MAEs are
relatively higher than those of HoVs at TB (Table 2, 0.7–1.2 kJ
mol−1), it should be emphasized that the errors are compar-
able to the mean uncertainty of HoVs in the database
(3.44 kJ mol−1, section S2, ESI†). Given the MAEs similar to
the database’s mean uncertainty, it can be deduced that the
GAT model architecture and the trained model are less sus-
ceptible to overfitting. Moreover, the model was trained
using the largest database ever (153 105 data points) com-
pared to any other previous studies, considering the temp-
erature effects of HoV.

A learning curve was obtained (Fig. 4a) by training the
model with increasing training set data points, where triplicate
runs were performed for each training set to consider the var-
iance of MAEs stemming from the randomness of training. A
clear improvement in test set accuracy was shown as the
number of training set molecules increased, suggesting that
the model accuracy could be further improved using a more
extensive database.

More analysis on the model error was then carried out
(details in section S5, ESI†). Most of the errors (∼80%) are
within ± 5.0 kJ mol−1. Next, the MAEs by 13 categorized func-
tional groups were analyzed. All functional groups showed
lower MAEs (2.24–4.57 kJ mol−1) than the overall test set MAE
(4.77 kJ mol−1) except for fused ring compounds whose MAE is
5.03 kJ mol−1. Fused rings have fewer data points per molecule
at different temperatures (17.56 data points per molecule) than
other functional groups (19–22 data points per molecule),
while their structures are more complex, presumably leading
to their higher MAE.

The molecular structure of the top 5 outliers was further
analyzed. Interestingly, methane showed the highest MAE
(81.4 kJ mol−1), which may be attributed to the temperature
range (90–150 K) and atom type (a carbon with four hydrogens)
that rarely appear in the database. The molecules with the
second to fifth highest MAE are complex cyclic compounds.
The 2nd and 5th outliers have 26- and 24-membered rings,

Table 2 Comparison of accuracies of predicting HoVs with literature

Reference Method
Ndata (training/
validation/test)a

Mean absolute error (training/
validation/test)

Comments
Literature
(kJ mol−1)

This work
(GAT, kJ mol−1)

Gharagheizi
et al.32

Genetic algorithm-based
multivariate regression

2291/—/571 1.01/—/0.99 0.73/—/0.79 HoVs at boiling point (TB)

Gharagheizi
et al.30

Group contribution +
artificial neural network

2312/287/275 0.86/1.21/1.05 0.84/1.20/1.16 HoVs at TB

Jia et al.33 Features from quantum
chemistry calculations + QSPR

219/—/61 1.13/—/1.12 0.88/—/0.92 HoVs at TB. Less extensive database but
contains new oxygenates (alcohols, ethers,
esters, ketones, etc.)

aDatabase from the literature. C/H/O-containing molecules only.
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respectively, and their structures are highly twisted and
deviated from typical conformations (chair and boat, etc.) of
cyclic compounds. The remaining two compounds are cyclo-
propene with ketone and phenyl rings and quinone with four
linearly fused rings (pentacenequinone). Such structural dis-
tinctiveness is hard to be captured by GATs that use 2D struc-
tures as inputs, so they became outliers from predictions.
However, these large-sized or fused ring structures are uncom-
mon and far from desirable fuel candidates or working fluids.
To further examine the feasibility of uncertainty quantifi-
cation, we compared the accuracy of this model with one that
used a mean-squared-error loss function without considering
uncertainty. A lower training set MAE of 2.21 kJ mol−1 was
observed, but validation and test set MAEs are 4.67 and 5.09 kJ
mol−1, respectively, indicating that overfitting occurs if uncer-
tainty is not considered (section S5, ESI†).

Next, we investigated the Pearson and Spearman rank corre-
lation coefficients (ρ) between the absolute errors from the pre-
diction (|HNIST − Hpred|) and uncertainties quantified from the
model (σpred), as listed in Table 3. In principle, these two quan-
tities should show a positive correlation; if the uncertainty is
low, the prediction error should also be low. The KL divergence

formula (eqn (5), Methods section) also well reflects this trend;
the numerator and denominator contain |HNIST − Hpred| and
σpred, respectively. A stronger positive correlation leads to the
numerator and denominator being closer, thus minimizing
divergence values. Meanwhile, the first term of eqn (5) pre-
vents |HNIST − Hpred| and σpred from simultaneously diverging
to infinity. The logarithm of the ratio between σpred and σNIST
minimizes σpred to be closer to the uncertainty tabulated in the
database (σNIST).

A Pearson ρ close to 1 indicates that two variables have a
relationship close to monotonic proportionality. A Spearman ρ

equal to 1 corresponds to identical ranks of two variables. Our
GAT model showed a decent positive Pearson correlation: 0.60,
0.49, and 0.54 for training, validation, and test set, respect-
ively. The Spearman rank correlation values were located
within 0.47–0.57. This is comparable to the ρ = 0.469 obtained
from the state-of-the-art message-passing neural network,
which quantified the uncertainty for molecular properties of
133 885 compounds in the QM9 dataset.96 All these results
manifest that our model gives an accurate HoV prediction and
a reasonable quantification of uncertainties.

Expansion of the predictive model to other vaporization
properties

The predictive model for HoV was expanded to predict other
vaporization properties listed in Table 1 by adopting the trans-
fer learning approach (Fig. 3a). This overcomes the limited
number of data points for these properties while utilizing the
pre-trained HoV model that learned chemical structural effects
on vaporization from the large database. Transfer learning can
be done by varying the number of layers transferred from the
HoV model. Here, we hypothesized that the relevance to HoV
is different for each of the properties in Table 1, and transfer-
ring more layers is optimal when a property has higher rele-
vance. For each property, the GAT models were trained by
changing the number of transferred layers (0 to 6, seven cases)
to find the optimal number of transferred layers and the
model with the best accuracy. Twenty different data set splits
were tested for each of the seven cases to prevent the model
from obtaining biased results regarding accuracies.

Fig. 5a illustrates the mean and standard deviation of test
set MAEs from the 20 TC, FP, and TB models with different
numbers of transferred layers. The standard deviation of MAEs
does not exceed 2 K for TC, FP, and TB, indicating that chan-
ging the data splits does not affect the overall trends of MAEs.
These low deviations also demonstrate that the models from
transfer learning are not susceptible to overfitting specific data

Fig. 4 (a) Learning curve for the model, plotting the test set MAEs
against the number of molecules in the training set. Error bars indicate
the standard deviation from triplicate runs. (b) Parity plot of predicted vs.
database HoV values for training (blue), validation (green), and test (red)
sets.

Table 3 Correlations between absolute errors of prediction (|HNIST −
Hpred|) vs. uncertainties quantified from the model (σpred)

Dataset Nmolecule Ndata Pearson ρ Spearman ρ

Training 5994 124 100 0.60 0.57
Validation 666 13 634 0.49 0.47
Test 740 15 371 0.54 0.50
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splits. These three vaporization properties are relevant to HoV,
so transferring all or part of the layers from the HoV model
effectively maximizes the predictive accuracy. The means of
test set MAEs converged for TC and FP with the difference
below 1 K when four to six layers were transferred (16.1–17.1 K
for TC, 9.2–9.4 K for FP). Transferring two to five layers is
optimal for TB (means of test set MAEs ranging from 11.1 to
11.7 K).

In contrast, CP of liquid at 298 K and TM are unrelated to
HoV. These two properties were examined additionally to
justify that the optimal number of transferred layers is relevant
to the relationship of a given property with HoV (Fig. 5b).
Transferring 0–1 layers showed the best mean of test set MAEs
(98.4–98.6 J kg−1 K−1) for CP. The optimal number of trans-
ferred layers is 1–2 for TM. However, the means of MAEs
(32–33 K) are much higher than those of other properties
(9–17 K) shown in Fig. 5a. Also, the standard deviations of
MAEs are very high in all cases: 11–14 K. These two contrasting
examples further demonstrate our hypothesis that the number
of transferred layers is related to the correlation between HoV
and vaporization properties.

We also compared the Pearson correlation coefficient
between HoVs and other vaporization properties (Table 4) to
verify that a property strongly correlates with HoV if the model
becomes more accurate when more layers are transferred. The
first target property is TC; TC is the temperature where HoV
becomes zero. Watson’s equation estimates that the HoVs at
different temperatures T are proportional to (TC − T ).23 In
other words, there is a direct formulaic relationship between
TC and HoV, which can be associated with a high Pearson ρ

(0.86) between HoV at room temperature and TC. Transferring
four to all six layers showed the best accuracy in predicting TC,
also in line with these high Pearson ρ values. The Pearson ρ

between FPs and HoVs at FP (0.91) is comparable to that in

the case of TC, resulting in the identical range of the optimal
number of transferred layers (4–6 layers). Previous studies46,52

quantified the relationship between FP and HoV. They derived
an equation for estimating FP as a function of HoV, TB, and
other descriptors such as the number of carbons, surface area,
etc., explaining the Pearson ρ value for FPs.

TB is also known to have a relationship with HoV, according
to the Clausius–Clapeyron equation and other studies regard-
ing FP and TB.

46,52 Therefore, transfer learning shows better
accuracy than training the model without transferring layers
from the HoV model, with slightly fewer numbers of trans-
ferred layers (2–5) than TC and FP. It should be emphasized
that the model for each vaporization property has been devel-
oped without prior knowledge regarding the relationships
among these properties, while the results are consistent with
their underlying physical equations.

Meanwhile, the best-case model for each property should
be chosen for screening desirable working fluids and fuel can-
didates. Table 4 summarizes the best-case models with their
number of data points and MAEs for training, validation, and
test sets. The best-case models showed the test set MAE of
14.9 K, 6.5 K, and 9.2 K for TC, FP, and TB, respectively. TC
could also be predicted by estimating the temperature where
the predicted HoV becomes zero; however, the HoV prediction
near TC was less accurate than that at lower temperature
ranges (Fig. 4b). As can be seen in Fig. 2, the uncertainties of
NIST-WTT HoVs increase near TC, leading to less reliable pre-
dictions of HoVs when they approach zero. Transfer learning
was carried out instead of predictions from the HoV model to
obtain the best TC prediction accuracy, resulting in the best
model shown in Table 4.

It should be noted that the test set MAE is lower than the
training set MAE for the best-case model of TC. Such an
anomaly could occur when the molecules in the test set have

Fig. 5 The mean and standard deviation of test set MAEs of 20 GAT models from different random data splits, with varying the number of graph
convolution layers transferred from the HoV model. Line and scatter plots with error bars for (a) three vaporization properties and (b) two properties
irrelevant to vaporization.
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relatively plain structures that make the prediction more accu-
rate. To avoid the artificial bias from data splitting, we also
evaluated the mean and standard deviation of MAEs for all
models with different data splits (20 per each number of trans-
ferred layers, Table 4). As a result, all properties showed lower
averaged training set MAEs than averaged test set MAEs, indi-
cating that our models were evaluated under no specific ‘privi-
leged’ data splits.

The FP prediction model was developed using only the
DIPPR database. We also attempted to train the model using a
larger integrated database, but the MAEs increased (section
S6, ESI†). The less accuracy for the larger database is presum-
ably due to the inconsistency arising from different data
sources, including FPs measured using non-standard
methods,47–51,53–57,86 rather than the deficiency of the model.
The best model from training against the DIPPR database
showed the MAEs of 6.4–7.1 K for training, validation, and test
sets. These errors are comparable to the typical experimental
errors of FP measurements using standard methods
(5.0–8.0 K).58,85,86 On the other hand, the model for TM
showed a higher test set MAE (21.7 K) than other properties,
but it was not used for designing green chemicals. The lowest
MAEs for CP of liquids are 65–81 J kg−1 K−1. This accuracy is
acceptable to be utilized in the design of working fluids
(vide infra).

While numerous models have been reported for ‘one inde-
pendent predictive model per one property’, all these results
manifest the general applicability of the temperature depen-
dence of HoV to other properties relevant to vaporization.
Such approaches would lead to robust predictive models con-
sistent with the underlying physics of vaporization and inte-
grated into one model architecture. As discussed in the next
section, the model can be more powerful if it is chemically
interpretable.

Chemical interpretation of the model

The interpretability of an accurate predictive model is a key
aspect of chemistry-informed design.104,105 To demonstrate
our model’s chemical interpretation, we chose ethers and
esters as representative molecules among various fuel candi-
dates. They have drawn attention as promising biofuel candi-
dates due to their favorable reactivity, emission characteristics,
and synthetic viability from biomass.106,107 First, the attention
weights of atoms were analyzed to find the key substructures
that lead to HoV differences. The literature108 and section S7
in ESI† explain the detailed procedure for evaluating atom-
wise attention weights.

The attention weight analysis for three C8 ethers is illus-
trated in Fig. 6a. The predicted HoVs showed a good agree-
ment with those in the NIST-WTT. More methyl branches
result in lower HoVs (dibutyl ether > butyl isobutyl ether > dii-
sobutyl ether), presumably due to decreased molar surface
area and, thus, intermolecular interactions.109 The attention
weights also explain this trend; the highest attention weights
were observed in the tertiary carbons of two branched ethers
since they have methyl branches and lower HoV than a linearT
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one. The γ carbons in dibutyl ether showed the most signifi-
cant attention because they are adjacent to terminal methyl
carbons and determine the continuation or termination of
alkyl chains.

This analysis was repeated for esters (Fig. 6b). The hydroxy
(OH) substitution at beta carbon of ethyl 3-hydroxyhexanoate
(E3OHH) leads to higher HoVs than ethyl hexanoate (EH)
because it can form intramolecular and intermolecular hydro-
gen bonds. HoVs of the hydroxyester with a shorter carbon
chain (methyl 3-hydroxypropanoate: M3OHP) are still higher
than EH, indicating the significance of OH groups in deter-
mining HoV. Our model also captured this structural feature;
the beta carbons having an OH group showed the highest
attention weights among atoms in E3OHH and M3OHP. On
the other hand, the effect of OH position on HoVs was investi-
gated. The HoVs of methyl 2-hydroxypropanoate (M2OHP) are
lower than M3OHP. In both cases, the carbon atom with an
OH group showed the highest attention, regardless of whether
it is a terminal carbon.

It should be noted that, as the critical point is approached,
the prediction accuracy of GAT model, particularly for esters in
Fig. 6b, gets worse as it is relatively harder to catch the mole-
cular interaction in dense states. This challenge around the
critical point is also reflected in the large error bar of experi-
mental data near the critical points. Still, it is interesting that
the prediction for M2OHP deviates from the experimental data
more than their uncertainty bound, while those of the other
ethers and esters in the figures are within the experimental
error bar. This large discrepancy in M2OHP can be attributed
to its unique molecular structure, where a OH group is
attached to the alpha-site of the ester functional group which
is rarely observed in other molecules and may cause the intri-
cate intramolecular interaction.

The OH group also influences the temperature dependence
of a molecule on HoV. For example, the HoV of E3OHH is
higher than that of EH at all temperatures. To explain the
reason for these HoV differences, we compared the response
of atom feature vectors to the global updates, which is evalu-

ated by the L2-norm of feature vector difference before and
after the update: ||v − v′|| (eqn (2) in Methods and Fig. 6c). At
400 K, all atoms in EH and E3OHH show a low response value
to the temperature except the OH group, alpha, and beta
carbons of E3OHH. The overall responses increase at 600 K,
but these three atoms in E3OHH respond most sensitively to
the temperature, contributing to higher HoVs of E3OHH than
EH at the given temperature range. This indicates that the OH
substitution at the beta position is a key factor for increasing
the HoV of esters via hydrogen bonds.

The above analysis on attention weights and temperature
dependence demonstrates our model’s capability of capturing
chemical structural effects on HoV. The predicted HoVs are
accurate and are consistent with the chemical knowledge perti-
nent to HoV, such as molecular surface area and hydrogen
bonds. The structural insights from this chemical interpret-
ation would inform the discovery and design of new working
fluids and (bio)fuel candidates. It should be emphasized that
the chemical interpretation method using attention weights
can also be applied to the GAT models trained through trans-
fer learning for other vaporization properties (section S8,
ESI†).

Experimental validation of the model

We carried out in-house measurements of HoVs at tempera-
tures near TB for further assessment of the model using exter-
nal data besides NIST-WTT. HoVs were measured for three
beta-hydroxy esters and six ethers shown in Fig. 7a. They are
promising biofuel candidates derivable from biomass and
have high reactivity and low soot emission.106,107,110 They also
have diverse structural features, such as linear/branched, sym-
metric/asymmetric alkyl chains, hydroxy, ether, and ester
groups, which are suitable for model evaluation. Notably,
three (4-butoxyheptane, methyl 3-hydroxyhexanoate, and
methyl 3-hydroxytetradecanoate: I, VII, and IX) do not exist in
NIST-WTT. The remaining six compounds are found in
NIST-WTT, but the GAT model has never seen HoVs at the
temperatures in Fig. 7a during the model training. Therefore,

Fig. 6 Analysis of HoVs and atom attention weights for (a) three ethers: dibutyl ether (black), butyl isobutyl ether (blue), diisobutyl ether (red), and
(b) four esters: ethyl 3-hydroxyhexanoate (red), ethyl hexanoate (green), methyl 3-hydroxypropanoate (blue), methyl 2-hydroxypropanoate (black).
(c) Comparison of temperature response of atom feature vectors in ethyl 3-hydroxyhexanoate and ethyl hexanoate, at two temperatures.
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the feasibility of our external validation is further justified by
the unavailability of these nine molecules at the given
temperatures.

We predicted the HoVs of these molecules at the same
temperature using our model and compared the measured
and predicted values. As a result, our GAT model showed
reasonable accuracy with an MAE of 2.6 kJ mol−1 for these
nine molecules. It should be emphasized that all measured
and predicted values overlap if uncertainties are considered
(Fig. 7b), which manifests the importance of considering con-
fidence intervals in the ML prediction of HoV.

Application of the model to green chemical screening

The developed GAT models for vaporization properties predic-
tion can have numerous potential applications for designing
green chemicals. Here, we applied our GAT models to screen-
ing green chemicals for three purposes: working fluids,
alternative fuels, and sustainable polymers. It should be
emphasized that other molecular properties relevant to ‘green-
ness’ of chemicals were examined together with the vaporiza-
tion properties for the practical consideration of Green
Principles during the screening. Such additional molecular
traits are fuels’ emission characteristics (yield sooting index –

YSI) and polymers’ glass transition temperature which are rele-
vant to degradability. In addition, when screening working
fluids, renewable energy sources were taken into account, such
as solar and geothermal energy (vide infra for details).

The first example is to screen for optimal ORC working
fluids with desirable vaporization properties that maximize the
utility of renewable thermal resources. Xu et al.111 discussed
the relevance of working fluids’ TC on the thermal efficiency of
sub-critical pressure ORC. Their simulation study revealed that
the thermal efficiency of ORC at a given temperature of heat
source (TH) is maximized with the working fluids having TC
between TH − 30 K and TH + 100 K, suggesting TC as an essen-
tial criterion for screening the optimal working fluids.
Meanwhile, the “dryness” of working fluids was also widely

accepted as an important property relevant to ORC’s thermal
efficiency and work output.112–114 The working fluid is con-
sidered dry if the fluid stays in the vapor phase upon isentro-
pic expansion of the saturated vapor, which is essential to
ensure the absence of liquid droplets at the turbine exit. The
dryness of the working fluid can be determined with the temp-
erature sensitivity of the specific entropy (ξ = ds/dT ) of satu-
rated vapors; that is, the working fluid is dry if ξ > 0 or wet
otherwise. Liu et al.112 suggested an analytic equation for pre-
dicting ξ of organic compounds from their vaporization
characteristics as below:

ξcalc: ¼
1

TH
2 CP; lTH � nT*

H

1� T*
H

� �
þ 1

� �
HoVH

� �
; ð1Þ

where T*
H is the reduced temperature of the heat source (=TH/

TC), n is an empirical coefficient that ranges from 0.375 to
0.38,115 and HoVH is the HoV at TH. This study assumes the TH
as TB for the brevity in molecular screening.

To screen working fluids based on their dryness and TC,
Fig. 8a depicts the distribution of ∼27 000 organic molecules
from the database (NIST WTT, DIPPR, PubChem, etc.85,86,116)
on TC–ξ axis, where all the relevant molecular properties – TC,
TB, CP,l, and HoVH – were evaluated from the present GAT
model. The TC screening criteria for solar collector, geother-
mal, and solar pond were based on their typical temperature
range (573 K, 453 K, and 353 K, respectively117), while ξ was
restricted to positive. Most (96%) tested molecules fall into the
dry working fluid. Meanwhile, more compounds at higher TC
provide more viable options for working fluid selection for
high-temperature heat sources such as solar collectors. On the
other hand, the low-temperature heat sources (geothermal and
solar ponds) have limited choices for the dry working fluid.

The validity of working fluid screening based on the GAT
model was confirmed on the T–s diagram of the selected
working fluids for geothermal ORC (Fig. 8b), where the
thermodynamic properties of liquid–vapor transition were col-
lected from CoolProp.118 The n-heptane met the screening cri-

Fig. 7 (a) Results from our in-house measurements of HoVs for nine ether and hydroxy ester molecules, with HoV values predicted using our GAT
model. (b) Overlapped confidence intervals of measured and predicted HoV values for these nine molecules.
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teria as a working fluid for geothermal ORC, and its T–s
diagram in Fig. 7b depicts the ideal shape in geothermal temp-
erature with clear dryness, proving the soundness of ML-based
screening of ORC working fluid. Similarly, the iso-hexane and
neo-pentane also satisfied the screening criteria for geothermal
ORC but with lower TC than n-heptane, which is consistent
with their T–s diagram in Fig. 8b. This finding is in line with
previous studies on n-heptane, iso-hexane, and neo-pentane as
ORC working fluids,119,120 all of which showed a plausible per-
formance in geothermal power generation. As a counterexam-
ple, we depicted the T–s diagram of ethanol, which shows the
negative temperature sensitivity of specific entropy (thus, wet)
as predicted from the ML-based working fluid screening. In
summary, the GAT model from the present study can provide
useful guidance on screening ORC working fluid for renewable
thermal resources with varying temperatures.

As another example, the present GAT model can be utilized
to discover alternative fuel candidates for decarbonizing the
transportation sections. Our previous study110 suggested ether
fuels as a promising alternative to conventional fuels owing to
their high reactivity and low soot emission characteristics
while being synthesizable from biomass conversion. Such
ethers can be derived through catalytic Guerbet coupling and
dehydration of biomass-derived alcohols.110,121 Despite the
extensive studies from both experimental and theoretical

approaches, the optimal structure of ether-containing mole-
cules is still under investigation due to their various degrees of
freedom. In this regard, the present study examined the utility
of the GAT model in screening ether fuels based on their
vaporization and combustion characteristics.

ASTM standards122–124 restrict various molecular properties
of transportation fuels to ensure safety and operability in the
propulsion systems. TB range is one of the important criteria
for categorizing the fuel molecules into diesel, jet fuels, and
gasoline, and it affects the vaporization process of the injected
fuels in the combustion chamber. Meanwhile, fuel safety and
inflammability are controlled by regulating the FP above
specific criteria. Fig. 8c presents the distribution of ∼1300
saturated ethers on TB–FP axis, where both properties are pre-
dicted from the GAT model from the present study. All the
tested ethers are from existing databases that contain experi-
mentally observed molecules; thus, they are all synthesizable.
We set the boundary of TB for diesel, jet fuel, and gasoline as
423–653 K, 398–563 K, and 308–473 K, respectively.125 The
lower limit of FP of diesel and jet fuels was set as 325 K and
311 K, while those of gasoline are not constrained, as
described in ASTM standards. Consequently, 30.3% of tested
ethers fall into the diesel regime, while 45.3% and 78.5% are
in the jet-fuels, and gasoline range, respectively. Of note, the
currently oxygenated compounds such as ethers are not accep-

Fig. 8 Application of the GAT model for working fluid and alternative fuels screening. (a) Distribution of ∼27 000 organic molecules on TC–ξ axis,
(b) T–s curve of four different working fluids with varying TC and ξ, (c) distribution of ∼1300 saturated ethers on TB–FP axis, and (d) sub-screening
based on YSI and CN.
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table as alternatives to conventional jet fuels owing to their
poor thermal stability and low specific energy.125 Therefore,
here we focused on diesel fuel candidates, although it can also
be applied to the design of renewable fuels for other engines,
including gasoline and aviation.

The 387 diesel-range ethers were then further analyzed on
the cetane number (CN) and yield sooting index (YSI) axis,
which represents the reactivity and sooting tendency of fuel
candidates, as shown in Fig. 8d. The CN and YSI of ether com-
pounds were estimated from the multivariate linear regression
model suggested by Cho et al.110 The screening criteria for CN
was set to be higher than 40 as dictated in ASTM standard for
diesel fuels,123 while YSI was assumed below those of
n-dodecane (YSI = 67.1), which is a typical surrogate fuel for
conventional diesel. Consequently, 60 of 387 diesel-range
ethers satisfied the criteria for combustion characteristics.
Fig. 8d shows four of the selected ethers fuels, all of which
contain multiple oxygen atoms to increase the reactivity and
suppress the soot formation, as envisioned by Cho et al.110 Of
note, the candidates with lower YSI indicate that they are
closer to green chemicals that mitigate adverse health and
environmental impacts. In summary, the GAT model from the
present study can provide an additional window for screening
alternative fuels based on their vaporization characteristics,
which significantly reduces efforts for combustion properties
characterization.

For the last example, we applied our models to polymer
screening by predicting cohesive energy and glass transition
temperature of polymers from the HoVs of their monomers.
Cohesive energy could be a criterion to consider in designing
polymers since it is relevant to molecular interactions of poly-
mers and the polarity and binding energy of polymer chains. It
affects many thermophysical and mechanical properties, for
example, glass transition temperature (Tg). Although polymers
typically degrade before vaporizing, we can use the cohesive
energy of a given polymer to approximate the HoV of its struc-

tural analogs. The validity of this approximation is presumably
due to the shared need to break molecular interactions
required by both liquid vaporization and polymer degradation.

We attempted to predict the cohesive energies of polymers
(Ecoh, pred) by linear regression of monomer HoVs (HoVpred,

mono, Fig. 9). The 5-fold cross-validation was performed using
the literature values of cohesive energies of 93 polymers at
room temperature.126 High test set accuracies were obtained,
with Q2 and MAE of 0.97 and 2.20 kJ mol−1, respectively.
Moreover, the coefficients (c1 and c2) from five regressions
showed very low standard deviations (0.01 and 0.43), indicat-
ing a robust relationship between the monomer’s HoV and the
polymer’s cohesive energy. Reliable extrapolation from mono-
mers to polymers was possible by our accurate predictive
models for HoV, demonstrating the potential applicability of
our GAT models to polymers.

Next, we also predicted Tg of polymers by the linear
regression of monomer’s HoV normalized by the number of
functional groups representing molecular oscillations (Noscil).
This was motivated by a previous study which quantified the
linear relationship between Tg and cohesive energies per
Noscil.

127 The 5-fold cross-validation for 28 polymers126,127

resulted in test set Q2 and MAE of 0.94 and 15.8 K, respectively,
against the experimental Tg values. The linear regression
coefficients (c3 and c4) showed low deviations among five train-
ing sets, highlighting the relationship between HoV and Tg.
However, a polymer’s glass transition is a complicated
phenomenon that cannot be accounted for solely by HoVs, as
can be seen by a weak correlation between HoV and Tg for the
seven polymers with alcohol moieties (section S9 in ESI†).
Despite this limitation, predicting polymer properties from
monomer’s HoV is a fast and robust approach for designing
and screening new polymers. The prediction results in Fig. 9
include polymers that can be synthesized from renewable
sources such as biomass: for example, those with ethers,
esters, and phenolic moieties (I–VI in Fig. 9).

Fig. 9 Application of the GAT model for screening polymers through the prediction of polymer’s cohesive energy and glass transition temperature
using monomer’s HoV.
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Conclusions

A GAT model was developed to predict vaporization properties.
The extensive NIST-WTT HoV database consisting of ∼150 000
data points was utilized for model development considering
the temperature dependence of HoV and uncertainty quantifi-
cation. The model showed good prediction accuracy with
reasonable uncertainty estimation. The predictive model for
HoV was expanded to other vaporization properties, whose
databases are less extensive than HoV. Adopting transfer learn-
ing approaches for TC, FP, and TB was beneficial, using the
trained layer weights from the HoV model. The transfer learn-
ing models showed lower errors in estimating these properties
than the models from non-transfer training. The prediction
and chemical interpretation were possible by analyzing atten-
tion weights and temperature response of atom feature
vectors, leading to the elucidation of molecular structural
effects on HoV. This workflow encompassing uncertainty
quantification, transfer learning, and chemical interpretation
was applied to the practical design of working fluids and (bio)
fuel candidates.

Our predictive models and their applications are relevant to
some of the 12 Green Chemistry Principles:22 (i) less hazar-
dous/toxic materials, (ii) energy efficient by design, (iii) renew-
able rather than designing new material, and (iv) design pro-
ducts for degradation. Principle (i) was considered by includ-
ing fuel candidates’ YSI and vaporization properties that influ-
ence emissions as screening criteria. Principle (ii) was taken
into account since vaporization properties also affect chemi-
cals’ energy efficiency when being used as working fluids and
alternative fuels. In addition, we mainly considered com-
pounds that are derivable from biomass, which is related to
Principle (iii). Predicting glass transition temperatures of poly-
mers can lead to Principle (iv).

The computational approaches introduced in this contri-
bution can be used for other molecular properties related to
the design of green chemicals, facilitating clean and sustain-
able energy production. Particularly, our predictive models can
be expanded to Green Indices that quantify environmental
impacts, emissions, and carbon economy. One can adopt
other databases of Green Indices and re-train the GAT
models.128 Transfer learning can also be applied if the target
properties of interest are correlated with the vaporization
properties.

Methods

The following procedure was carried out for the data collection
and curation. SMILES strings of molecules were generated by
converting their IUPAC names or CAS numbers into SMILES
via Chemical Identifier Resolver developed by the National
Institutes of Health (NIH)129 and the PubChemPy package.130

The RDKit cheminformatics package131 was utilized for cano-
nicalizing SMILES strings and generating atom features and
connectivity of molecules that are used as inputs of our GAT

model. Our GAT model was programmed in Python 3.7132

using the Deep Graph Library 0.7133 with the TensorFlow
2.4134 backend. In the GAT, the given 16-dimensional input
features H(0) pass through graph convolution layers consider-
ing attention weights (α) that impose different convolution
weights to each bond based on other surrounding atoms. The
updated atom feature vector of atom i at the (l + 1)-th layer
½Hðlþ1Þ

i � is:

Hðlþ1Þ
i ¼ τ

1
K

XK
k

X
j[NðiÞ

αðlÞij; kH
ðlÞ
j W ðlÞ

0
@

1
A

2
4

3
5; ð2Þ

where τ is the rectified linear unit (ReLU) activation function
to introduce non-linearity between molecular structure and
predicted HoV, K is the number of attention heads. N(i) is the
set of first-nearest neighbors of atom i connected by bonds,
W(l) is a graph convolution matrix. a and W(l) are trainable
matrices.

Such attention weights with multiple attention heads are
capable of capturing long-range, non-local, global effects of
molecular structures on HoV. Next, the two-stage global update
scheme was combined with our attention mechanisms to
incorporate temperature information into the model. The first
update is carried out by:

v′ ¼ v þ τ½ϕ1ðvÞ þ ϕ2ðuÞ�; ð3Þ
where v and v′ are the atom feature vectors before and after the
update. u is the global (temperature) feature vector. f1 and f2
are two fully connected layers, respectively. The second update
is performed by using the averaged atom feature vectors:

u′ ¼ uþ τ ϕ3
1

Natom

XNatom

i

v′i

 !
þ ϕ4ðuÞ

" #
; ð4Þ

where u and u′ are the global feature vectors before and after
the update. f3 and f4 are two dense layers. v′i is the updated
feature vector of one atom obtained from eqn (2), and Natom is
the number of atoms in a molecule.

The first update propagates the temperature condition to
individual atoms in a molecule. The subsequent update is for
the aggregation of the atom-wise responses to temperature
changes and the incorporation of the collected information
into the updated global feature vector. Overall, atom and
global feature vectors are updated mutually, simulating the
effects of a molecule on its surroundings during vaporization
and vice versa, which leads to a physics-informed description
of vaporization.

The KL divergence is defined as

DKLðP k QÞ ¼
1

Ndata

XNdata

i

log
σpred; i
σNIST; i

þ σNIST; i2 þ ðHNIST; i � Hpred; iÞ2
2σpred; i2

� 1
2

 !" #

ð5Þ
where HNIST, σNIST, Hpred, σpred are HoVs and uncertainty from
database and prediction, respectively, and P ∼ N(HNIST, σ2NIST),
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Q ∼ N(Hpred, σ
2
pred). Training the HoV model against 153 105

data points for 200 epochs using one V100 GPU took about
two hours.

Experimental details of HoV measurements

Pure component symmetric ethers and beta hydroxy hexanoate
esters investigated for HoV measurement were purchased in
>98% purity from Sigma Aldrich. Asymmetric ethers were
custom synthesized by Advanced Molecular Technologies of
Melbourne, Australia. A Differential Scanning Calorimeter/
Thermogravimetric Analyzer (DSC/TGA) (TA Instruments,
Q600-series) was utilized to perform HoV measurements. It
was based on a previous method developed for gasoline
samples.135,136 The instrument was calibrated per the manu-
facturer’s specifications, and a correction factor was calculated
for the instrument (1.17) using n-butyl benzene because its
HoV is well documented.137,138 Utilizing a similar method-
ology to that developed by Luning Prak and coworkers,139 each
pure component was placed in an aluminum pan (TA
Instruments, Tzero Pan 901683.901) with a hermetically sealed
pinhole lid (TA Instruments, Tzero Hermetic Lid w/Pin Hole
901685.901). The DSC/TGA was held isothermally for one
minute and then ramped at a rate of 30 °C per minute until it
reached a temperature of 15–20 °C below the boiling point of
the pure component. The DSC/TGA was then held isothermally
for 30 seconds before again being ramped at a rate of 10 °C
per minute until it reached a temperature within 5 °C of the
boiling point. It then remained isothermal until the sample
had completely evaporated, as determined by the TGA. The
heat flow was integrated from the isothermal ramp’s start until
the sample evaporation’s end. The HoV was calculated as the
combined heat flow divided by the mass loss recorded by the
TGA. Each sample was run in triplicate, and the average HoV
was reported.
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