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ABSTRACT Recently, numerous data-driven approaches to control an electric grid using machine learning
techniques have been investigated. Reinforcement learning (RL)-based techniques provide a credible alter-
native to conventional, optimization-based solvers especially when there is uncertainty in the environment,
such as renewable generation or cyber system performance. Efficiently training an agent, however, requires
numerous interactions with an environment to learn the best policies. There are numerous RL environments
for power systems, and, similarly, there are environments for communication systems. Most cyber system
simulators are based in a UNIX environment, while the power system simulators are based in the Windows
operating system. Hence the generation of a cyber-physical, mixed-domain RL environment has been
challenging. Existing co-simulation methods are efficient, but are resource and time intensive to generate
large-scale data sets for training RL agents. Hence, this work focuses on the development and validation
of a mixed-domain RL environment using OpenDSS for the power system and leveraging a discrete
event simulator Python package, SimPy for the cyber system, which is operating system agnostic. Further,
we present the results of co-simulation and training RL agents for a cyber-physical network reconfiguration
and Volt-Var control problem in a power distribution feeder.

INDEX TERMS Reinforcement learning, OpenDSS, SimPy, OpenAI gym, network reconfiguration,
re-routing.

I. INTRODUCTION
A smart electric grid being one of the complex, dynamic and
large scale network of electrical and communication devices,
its control can be transformed into a sequential-decision mak-
ing problem. Such problems can be solved using traditional
approaches such as convex optimization, stochastic program-
ming or heuristic methods such as genetic algorithms, ant
colony optimization etc. These approaches have challenges
solving control problems with uncertainty either caused due
to higher penetration of renewable power or cyber intrusions.
Reinforcement Learning (RL), a branch of machine learning,
have been an alternative approach, a data-driven approach to
solve challenging sequential decision making problem.
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Recently, data-driven control methods have been applied
for decision support and control in a variety of power sys-
tems applications, such as voltage control [1]; frequency
control [2]; energy management systems, such as optimal
power flow [3]; electric vehicle charging scheduling [4];
battery management [5]; and residential load control [6].
Control in power systems primarily target satisfying load
flow equations to meet demand at minimal cost, to keep the
system operating frequency constant, and to maintain the bus
voltage within limits while ensuring that the power system
components are not overloaded. Due to the increased use
of advanced communication infrastructures for monitoring
and control of power systems [7], the scope of cyber intru-
sions to enforce malfunction controller logic has proliferated.
Hence, the ability to dynamically reconfigure networks will
contribute to power system resilience to cyber threats. The
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use of software-defined networking (SDN) has been quite
prevalent recently in the information technology (IT) space,
and numerous researchers have developed SDN-based solu-
tions to mitigate threats in the operational technology (OT)
domain [8]. The programmable SDN controller can be trained
as an RL agent for determining the optimal configuration
considering cyber-physical states from both the IT and OT
space.

Although advanced distribution management systems
(ADMS) and distributed energy resource management sys-
tems (DERMS) integrate software solutions for outage
management as well as grid optimization and aggregated
distributed energy resource (DER) operations, respectively,
the underlying communication systems are monitored and
controlled using dedicated network monitoring and intru-
sion detection applications, such as Security Information
and Event Management (SIEM) and Snort. If these power
distribution management solutions are upgraded to facili-
tate cyber-physical situational awareness, i.e. simultaneous
visibility to cyber and physical sensor data, the controls
can be made more threat resilient. The fusion of both
cyber and physical states/information for the control can be
accelerated by a model-free, data-driven approach consid-
ering that modeling this complex interaction is often chal-
lenging. Overcoming the challenges in controls through a
data-driven approach necessitates generation of large-scale
data sets with varying scenarios. An agent’s training can
be effective if it interacts with an environment mimicking
an actual system. Though numerous works have focused on
developing environments using network and power distribu-
tion simulators [9], there is a need for an RL environment
with co-simulation. This work addresses the need for a
co-simulation environment that can assist in faster data gen-
eration under varying threats and contingencies. The goal of
this environment is to enhance the distribution feeder system
to be both cyber and physical resilient by training the recon-
figuration and voltage control agents alongwith the rerouting
agents, for restoring the communication and feeder network
respectively, with minimum steps. The outcomes from the
trained agents using this environment, are the optimal poli-
cies learned to control the electrical and cyber components,
during cyber-induced power system contingencies, which is
collectively known as cyber-physical defense against those
threats.

The major contributions of this paper are to:
1) Develop a discrete event simulation-based cyber RL

environment for training agents for network reconfigu-
ration to address network congestion and cyber threats.

2) Develop an OpenDSS-based RL environment for
distribution grid reconfiguration using sectionalizing
switches under various system faults.

3) Merge both SimPy and the OpenDSS-based environ-
ment for cyber-physical defense against cyber threats
and feeder contingencies.

4) Validate the environment for different sizes of power
and cyber systems.

5) Train well-known RL agents using the environments
with the Markov decision process (MDP) model of
rerouting and network reconfiguration in the respective
environments.

The paper is structured as follows. Section II provides
a literature review of various cyber, power system, and
cyber-physical RL environments. Section III introduces the
proposed the SimPy-based cyber simulator with its develop-
ment of the Gym-based environment and the amalgamation
with the OpenDSS Gym environment. In Section IV, the
validation experiments are presented for the novel simu-
lator, along with the evaluation of the environments with
some well-known RL agents under various threat scenarios.
Finally, in Section V, the possible extension of the current
work is discussed, and the paper concludes in Section VI.

II. BACKGROUND
Before delving into the design of the RL environment, a few
basics and prior works are illustrated in this section. RL is
a subbranch of machine learning whose objective is to train
agents for control actions to maximize the cumulative reward.
It was initially introduced in the areas of digital gaming,
followed by robotics. Before using RL to train an agent,
one needs to define the problem as an MDP. An MDP is a
discrete-time stochastic process used to describe the agent
and the environment interactions. It is defined by a tuple
of five components: states (S); action (A); state transition
model, P(st+1|st , at ), which describes the transition of the
environment state when the agent performs an action, a,
in a current state, st ; reward model R(st+1|st , at ), which
describes the actual reward value that the agent receives from
the environment after the execution is performed; and the
discount factor, γ , which controls the future rewards. This
work focuses on model-free RL, where the P is unknown in
the MDP.

A. OpenAI GYM
OpenAI Gym [10] is an open-source Python library for
developing and comparing RL algorithms by providing an
application programming interface (API) to communicate
between learning algorithms and RL environments as well
as a standard set of environments compliant with that API.
It primarily consists of definitions of the observation, action
space, reset(), step(), and render() function, where
in the step(), an action is executed and information is
extracted from the environment. The setup collects the current
state of the environment by calling the following callback
functions: a) GetObservation()—collect the values of
the observed variables and/or the parameters in the simu-
lation; b) GetReward()—get the reward achieved during
the last step; c) GetDone()—check a predefined end-of-
episode condition; and d) GetInfo()—(optional) get any
extra information associated with the current environment
state, such as which contingency or, specifically, which line
faults are considered in the current episode.
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B. CYBER RL ENVIRONMENTS
Currently, there are numerous RL environments developed
for cyber emulation targeting resource allocation, Trans-
mission Control Protocol (TCP) congestion control, or
addressing security. CyberBattleSim [11] is an artificial intel-
ligence (AI)-based security solution from Microsoft to solve
security challenges. It provides an environment for simulat-
ing intruders’ lateral movements by sequentially exploiting
vulnerabilities of an enterprise network to reach a targeted
goal using high-level abstraction of computer networks and
cybersecurity concepts. While the environment captures the
movement of the attacker between the states of the system,
network performance parameters in between the transition is
not captured, as they are abstracted.

The authors of [12] developed an action recommendation
engine based on RL for self-healing operations in the network
operation center built using Graphical NS-3 (GNS-3). The
authors of [13] proposed a deep RL agent for SDN-based
rerouting to minimize network delays using the OMNeT++

discrete event simulator (DES). The authors of [14] devel-
oped an OpenAI Gym-based RL environment for interacting
with the NS-3 simulator using Protocol Buffers (protobuf)
and developed an MDP model for TCP congestion control.
The work in [15] models an RL environment for a software-
defined wide-area network (WAN) using the Mininet, where
an agent switches betweenWAN links to maximize the band-
width utilization, and where links are switched between the
internet cloud and Multiprotocol Label Switching (MPLS)
links, with the goal to mimimize the usage of MPLS links
by using the resources from the cloud.

C. POWER SYSTEM RL ENVIRONMENT
PyMGRID [16] provides a platform for generating syn-
thetic microgrids and model them as MDPs for providing
both primary and tertiary control. Still the models are not
operating with a well-known simulators like OpenDSS and
cannot support interfacing other cyber emulation or simu-
lation environment. L2RPN [17] is an Open-AI Gym com-
patible RL environment created for the IEEE 118 case for
network reconfiguration as a competition for different par-
ticipants world-wide to train agents. They tested 200 N − 1
and 40000 N − 2 contingencies in the system. Gym-
SolarPVDER [18] is a RL environment where the dynamics
of the DER are modelled using dynamic phasors. Deep RL
(DRL) have been considered in other physical domains apart
from power systems, such as predictive aircraft maintenance
where the net maintenance cost for maintenance of aircraft
turbofan engines was reduced using DRL [19].

D. CYBER-PHYSICAL RL ENVIRONMENTS
Although there are numerous pure cyber or physical RL
environments, there are limited cyber-physical power dis-
tribution RL environments. The review paper on RL meth-
ods for cyber-physical systems illustrates some co-design
framework for network computing and control [20], but

they are not pertaining specifically to power system con-
trols. For power system domain, a cyber-transmission grid
RL environment, which is the fusion of PowerWorld with
NS-3 [21], was designed for guaranteed control through
mitigating TCP congestion evaluated for a Western Electric-
ity Coordinating Council (WSCC) transmission grid. Still,
both environments operated separately in this work, as the
episodic results obtained in the NS-3 simulation were used
as input to the PowerWorld environment offline. Similarly,
a pure simulation-based, cyber-physical RL environment was
developed in [22], but this work did not leverage the actual
simulator in the back end. Moreover, it tested theMDPmodel
using the naive value and policy iteration technique.

E. CYBER-PHYSICAL THREAT MODEL
Most of the prior works considers a threat model confined to
either cyber or physical space. For instance a physical layer
spoofing detection using received signal strength indicators
using RL is proposed for wireless networks [23]. In [24],
an RL agent is trained to respond against white-box and
black-box attacks as a use-case of automative defense in the
SDN. Modification of GOOSE, SMV and MMS to malfunc-
tion relays is considered as the threat model in [25], but the
model doesnt consider what steps an attacker takes to modify
such protocols.

III. A NOVEL CYBER-PHYSICAL RL ENVIRONMENT
This section presents the proposed cyber-physical RL envi-
ronment. The various components of the proposed envi-
ronment are detailed, and then their interconnection is
described.

A. SimPy CYBER SIMULATOR
The cyber simulation environment is developed using the
SimPy Python package, an open-source, process-based,
DES framework. SimPy is considered in modeling the
neighborhood-area network of advanced metering infrastruc-
ture systems [26]. Based on this DES framework, packet
generators are modeled as the data concentrator (DC), the
packet sink as the data aggregator (DA), the forwarding
devices as the routers, and the communication channels as
the links connecting the nodes. The packets are generated
from the DC based on the number of smart meters that
communicate to the DC. As a threat model, background
traffic is generated to create congestion in the channel and
to increase the queueing delay in the routers, which impacts
the channel bandwidth and the overall latency. The state is
modeled as the packet drop rate in the forwarding device and
the available bandwidth in the channels/edges, although the
action spaces are related to the routing policy updates in the
layer 3 (L3) devices. The IEEE 123-bus distribution case is
segregated into 7 zones. Within each zone, a DC receives
data from the smart meters and sends them to the distribu-
tion system operator (DSO) using a WAN with the mesh
topology.
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1) ROUTER MODEL
A router is a networking device used for forwarding data
packets between two networks. It functions in the network
layer of the TCP/IP stack. Conventionally, the router software
has two functional processing units: the a) control plane,
and the b) forwarding plane. In the control plane, the router
maintains a routing table that maintains which path would
be used to forward a packet and along which interface. This
routing table is statically configured or dynamically updated
using dynamic routing protocols, such as open shortest path
first (OSPF). The time taken to forward packets depends
on the processing time of parsing the packet and searching
the next hop information from the routing table. Hence, the
service rate, RSR, as well as the queue limit for every router,
RQL is modeled. The queue limit indicates the amount of
bytes the router can forward at a given instance. In the for-
warding plane, the router simply forwards the packet to the
desired interface based on the routing rule. In theMDPmodel,
modeling the router drop rate as a state plays a crucial role in
enforcing new routes. The router packet drop rate is defined
as the ratio of the number of dropped packets to the received
packets.

2) CHANNEL MODEL
The channel models the latency and bandwidth between each
node in the network model. Based on the traffic, the channels
update their utilization rates and compute the available chan-
nel capacity with the update frequency of Uf in the SimPy
DES. The utilization rate, Ur is defined as,

Ur =
Total Bytes in the channel

Uf ∗ ChBW
(1)

The available channel capacity, Chavail , is given by

ChBW (1 − Ur ) (2)

A packet injected into the channel is dropped, if the
Total Bytes in channel crosses the Chavail limit. For the
evaluation of the environment, the experiments are performed
under varying ChBW .

3) DATA CONCENTRATOR MODEL
The DC acts as a data collector and forwarder for all the smart
meters in the zones. When a fault occurs in the distribution
feeder, the relay captures it and forwards it to the DC. The
DC within the zone forwards the state to the DSO, which acts
as the DA. In the simulation model, it is assumed that all the
sensor data are accumulated at the DC; hence, the payload
size of the packet sent to the DA depends on the number
of components, i.e., transmission lines, buses, switches, etc.,
within a zone. Conventionally, the DC communicates with
sensors using power line carriers, and they communicate to
the DSO through the WAN.

4) DATA AGGREGATOR MODEL
Packets are received from the DC from different zones in the
system. This node acts as the DSO/DA, collecting data from

each DC for control purposes. In the MDP model, the goal is
the state when the DA accepts at least Ng traffic within a time
frame from the DCs of each zone.

5) THREAT MODEL
For the threat model, denial-of-service (DoS) and distributed
denial-of-service (DDoS) attacks are considered where an
attacker injects unwanted traffic to exhaust the router as well
as the communication channel, causing an increase in latency
and the packet drop rate of the critical traffic. In the exper-
iments, for every episode, variability is introduced through
compromising different sets of core routers. The location
would affect the neighboring channels and routers, whereas
the attack intensity would affect the available channel band-
width and the router queue limit.

In this work, the threat model spans across both IT and
OT networks in the system. The scenarios are presented
in the manner in which while a physical contingency have
occurred and due to the cyber threat, what should be an ideal
action to be taken to reach the goal of performing network
reconfiguration in less number of steps. Because of the cyber-
threat, pure physical actions may not restore the contingency
due to loss of connectivity due to threat.

6) REROUTING MDP MODEL
1) State Space The system states are the packet drop rates

at every router and the channel utilization rate, Ur ,
at every channel.

2) Action Space The actions within the discrete action
MDP depend on the action at every router to select the
highest-priority nearest hop among all the neighbors.
The action model is MultiDiscrete in nature, where
the first discrete variable selects the router, and the
second discrete variable selects one from among all the
neighbors.

3) Reward Model Currently, the reward is defined as
the number of packets successfully received at the
DSO. Other factors include the average latency of
the packet from the source to the destination. The
latency is the combination of propagation, queueing,
and transmission delays. The propagation delay is kept
fixed, whereas the queueing and transmission delays
are affected in the MDP model, based on the channel
bandwidth and the router queue size limit.

4) Goal State: When at least Ng packets are successfully
received at the DA from each DC.

B. OpenDSS SIMULATOR
OpenDSS is an open-source electric power distribution sys-
tem simulator developed for grid modernization with the
integration of DERs. This work focuses on developing an RL
environment leveraging the OpenDSSDirect.py to interface
with the OpenDSS modeled distribution feeder for executing
the contingencies and restoring them using network reconfig-
uration using a sectionalizing switch, an automated switching
device that is intended to isolate faults and restore loads.
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The optimal network reconfiguration is modeled as an MDP,
where the variability is introduced at the beginning of each
episode through random selection of different load profiles
along with a contingency.

1) NETWORK RECONFIGURATION MDP MODEL
1) State Space The system states are the critical load bus

per-unit voltage magnitude, V . In the IEEE 123-bus
system, based on a certain set of line faults, one or two
critical load buses are picked from each of the seven
zones.

2) Action Space The actions with the discrete action
MDP depend on the action of either opening or closing
one of the available sectionalizing switches at a given
step of an episode; hence, the dimension of the action
space is Nsw, where Nsw is the number of sectionalizing
switches.

3) Reward Model The reward model is defined based on
the number of critical load buses yet to be restored,Nres.

R(s) =

{
20 if Nres = 0
−1 ∗ Nres if elsewhere

4) Goal State When all the critical loads in the distribu-
tion grid are within the required voltage range.

5) Contingencies N − 1, N − 2, N − 3 line outages, and
N − 1 DER outage.

2) VOLT-VAR CONTROL MDP MODEL
Due to distribution losses, voltage drops accross transmis-
sion lines, possibly causes voltage violations, hence Volt-Var
optimization is adopted. Primarily, voltage regulators, capac-
itor banks, batteries, etc are controlled in this optimization
under various constraints. In this work, the PowerGym [27]
environment is considered for the Volt-Var control in the
power distribution systems. The objective of the problem
is to minimize voltage violations, control loss, and power
loss, while the physical network constraints are maintained
by running the power flow in the OpenDSS simulator. The
device constraints are usually integer constraints formulated
in the action space. In RL, conventionally sequential deci-
sion making problems of two kinds are solved: a) Episodic
b) Finite Horizon i.e. fixed length episode. The network
reconfiguration problem introduced previously have a goal
state where an episode terminates when the goal is achieved.
While in the Volt-Var MDP model a finite horizon problem
is solved where the control elements need to operate with
varying load profile for a span of a day or 24 Hrs where
the control actions are executed every one hour making finite
horizon steps to 24. The MDP model for the Volt-Var control
problem is given by:

1) State Space The system states are the bus voltages,
capacitor status, voltage regulator tap number, state of
charge and discharge power of the battery.

2) Action Space The actions are a mix of discrete
and continuous control: a) Capacitor Bank: On/Off ,

b) Regulator Tap Number: Discrete 0, ..,Nreg_act − 1,
where Nreg_act is the number of taps of a regulator,
c) Battery Discharge: Discrete 0, ..,Nbat_act − 1,
where Nbat_act is the number of discrete battery’s
discharge power. d) Battery Discharge: Continuous
[−1, 1].

3) Reward Model Since, the objective of the problem is
to minimize voltage violation, power loss and control
loss, the reward model is given by:

R(s) = −fvolt (s) − fctrl(s) − fpower (s)

The definition of the functions fvolt , fctrl , and fpower are
given in details in the PowerGym [27].

C. INTERCONNECTION
The cyber-physical co-simulation within the environment is
performed through passing Queue as a shared variables
across multiple threads. The events across both the simulator
and the triggers generated from the events are carried out
depending on the dynamic updates in the shared variables.
There are two shared variables created for this purpose:
Phy-Cyb Queue and Cyb-Phy Queue.

1) Phy-Cyb Queue: This queue is used to schedule event
in the cyber environment based on the control com-
mand on re-configuring is given by the DSO in
the physical environment. While a control action is
selected in theOpenDSS environment, the switch infor-
mation along with the location is put inside the queue,
which is processed by the cyber environment to gener-
ate a control command in the respective zone.

2) Phy-Cyb Queue: This queue is used to schedule event
in the cyber environment based on the control com-
mand on re-configuring is given by the DSO in
the physical environment. While a control action is
selected in theOpenDSS environment, the switch infor-
mation along with the location is put inside the queue,
which is processed by the cyber environment to gener-
ate a control command in the respective zone.

Fig. 1 shows the sequential diagram of the steps that takes
place within each episode of both the cyber and physical
environment. The interconnection in blue indicates the com-
munication between the SimPy and OpenDSS simulators.
The interconnects indicates:

1) Indicates the passage of physical-side information to
cyber network for determining the packet size.

2) Indicates the passage of cyber and physical contin-
gency to each others environment. Currently, a physical
fault adds an event in cyber emulator to generate a fault
information to send to the aggregator.

3) Indicates the merge of the cyber and physical state
information to feed to the RL algorithm or the Agent.

4) Based on the policy, implement the action by segregat-
ing respective action of routing policy and control of
sectionalizing switch.
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FIGURE 1. Steps in an episode created in the cyber-physical RL
environment.

5) Evaluating the goal GP and GC for terminating the
episode when both goals are reached.

A cyber-physical episode with physical contingency and
cyber threat can be visualized as shown in Fig. 2. At time
t0 the OpenDSS environment starts with a random load pro-
file selected for all the load buses. Depending on the zones
where the aggregate load injection value is changed, the DC
of that zone generates a packet to be send to the DA at time
t1. This information from OpenDSS to SimPy is shared with
the use of Phy-Cyb Queue. At t2, a physical contingency is
caused which can be a single or multi-line outage. A packet
is generated corresponding to this outage from the DC of
the zone to which the contingency belongs at t3. A cyber-
threat of exhausting a single or multiple routers through DoS
attack is performed at t4. Further this threat information from
SimPy is passed to the OpenDSS through Cyb-Phy Queue
at t5, which flags the information regarding which zone is
currently secured to be controlled. Then at t6, both cyber and
physical action are randomly taken and at t7 the cyber and
physical states are obtained from the simulators and merged.
The steps taken at t6 and t7 are carried until the goals GP and
GC are reached.

IV. VALIDATION EXPERIMENTS
The communication network of the IEEE 123 bus case is
based on the geographical segregation of the feeder into seven
zones. Within each zones there is a data concentrator that
forwards the information to the DSO, or data aggregator.

A. SimPy-BASED CYBER EXPERIMENTS
The experiments in this section focuses on the impact of the
cyber network parameters such as channel bandwidth, router
queue size, number of core routers compromised, etc on the
average episode length, packet drop rates, latency etc. All the
results shown are the average of 1000 episodes run with a
unique scenario. The goal of each episode is achieved, when
atleastNg packets successfully received at the data aggregator
from each data concentrator.

1) EFFECT OF CHANNEL BANDWIDTH ON EPISODE
TERMINATION RATE AS WELL AS THE AVERAGE
EPISODE LENGTH
The states considered in the MDP model for the re-routing
plays a major role in determining optimal action. The com-
munication channel gets impacted by threats such as DoS
or DDoS and also due to network congestion caused by
benign background traffic such as firmware updates. Hence,
in the RL environment the channel is modeled and the impact
of varying channel bandwidth on the a) average episode
length in reaching the goal, b) success rates in reaching
the goal within a certain threshold of steps, as well as, the
c) latency are evaluated. The overall latency depends on the
transmission, propagation, queueing, and processing delay.
The processing and the queuing delay is effected at the routers
and the transceiver nodes. While the propagation delay is
based on the distance andmedia of communication.While the
transmission delay depends on the packet size and the channel
bandwidth. Fig. 3 shows how the latency reduces from 8.7 s
to 8.45 s with the increase in channel bandwidth. The channel
propagation delay being set to 1 s and the router’s processing
rate set at 400 bits/sec, considering an average of 4 to 5 hops
from source to destination with the average packet size of
25 bytes, the net propagation delay in the channels amounts
to 4-5 s, while router’s processing delay around 2.0-2.5 s, the
rest being transmission delay, the overall latency is more than
8 s. Further, improved bandwidth assist in reaching goal in
less episodes increasing the success rate.

2) EFFECT OF THE THREAT INTENSITY
In a DoS attack usually a single server or resource is targeted
at a time, while more stealthier attacks such as DDoS tar-
get multiple resources. Hence, the threat intensity is varied
by targeting different numbers of core routers in the envi-
ronment to study its impact on the episodic length. From
Fig. 4, under no threat scenario, increased channel bandwidth
reduces episode length, but increased threat targets resulted
in longer episodes. Though there is reduction of episode
length from 47 to 36 in the case of two routers compro-
mised, still it is not substantial. Hence, it is essential to train
an intelligent agent to reach goal by performing re-routing
correctly. Moreover, with higher threats such as four routers
being targeted, the episode length rose towards almost 90 to
95 episodes.
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FIGURE 2. This is a sequence diagram of an episode in the co-simulation RL framework.

FIGURE 3. Impact of the channel bandwidth on the latency, episode
length, success rates.

3) EFFECT OF ROUTER’s QUEUE LIMIT
Every router have got a processing time, hence it creates
a queue of the incoming packets. There is a limit on the
queue size of the forwarding device, beyond which if a packet
arrives it drops the packet. Hence, the DES simulator is
validated, by varying the queue limit, RQL . It can be observed
from Fig. 5 that the packet drop rate reduces with increase in
the queue limit, but this drop is not prominent under threat
scenarios.

4) IMPACT OF RE-ROUTING
To evaluate the impact of re-routing under cyber-threat first
a miniature cyber network is considered as shown in Fig. 6,

FIGURE 4. Effect of varying threat intensity through number of routers
targeted.

where the benign user is transmitting packet from PG1 to PS,
while the attacker PG2 exhaust the resources in the router
R2. The goal of the re-routing is to make sure the edge router
R1 re-routes the packets towards R3. To validate the effec-
tiveness of re-routing, the selection probability of R3 over
R2 is considered for varying Router queue limits. It can be
observed from Fig. 7 that with the increase in selection of R3,
the average episodic length in the MDP reduces. Moreover
increasing the queue limit further improves the performance.
When an RL agent is trained, it would prefer to select R3 over
R2, when it moves from exploration to exploitation phase.
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FIGURE 5. Impact of the router queue size on the packet drop rate.

FIGURE 6. A simple network where router R2 is compromised.

FIGURE 7. Effect of selection of router R3 over R2, when R2 is
compromised.

B. COMPARISON WITH MININET
Mininet is a widely known tool that enable creation of a
virtual network and control through Software-Defined Net-
work. The communication network developed for the IEEE
123 system is emulated and compared with the SimPy-based
model. Static routes with priorities have been configured
in the core routers. The 8 edge routers are configured to
connect with the 7 DCs and 1 DA. For the experiment, the

FIGURE 8. Comparison of latency between the data concentrator and the
aggregator in the SimPy and Mininet simulators.

DA would simultaneously communicate with the DCs using
the nping package and obtain the statistics of round trip time.
The net latency between the DA and DC has been evaluated
for varying channel conditions. In comparison to Fig. 3, the
latency for the SimPy-based model reduced from 8 s to 1.6 s
as observed from Fig. 8 since the channel propagation delay
of 1 sec was reduced to 1 ms and the router processing rate
increased from 400 Bits/s to 40 KBits/s. Such translation
is performed, since in the Mininet network no propagation
delay is introduced and also the router processing delay is
negligible. The payload size of 25 bytes is considered for both
the experiments.

C. OpenDSS BASED POWER DISTRIBUTION SYSTEM
EXPERIMENTS
The goal in the network reconfiguration problem, for a single
episode is reached, when all the critical loads in the distribu-
tion grid are restored following a contingency. The critical
load buses considered in the IEEE 123 bus case includes:
37,39, 48, 50 (zone 3), 58, 59 (zone 4), 78, 88, 93, 94, 99
(zone 5), 111, 114 (zone 7). There are 6 DERs added to the
base case at bus 35, 48, 64, 78, 95 and 108.

1) EFFECT OF TYPE OF CONTINGENCIES ON EPISODE
LENGTH
Depending on the type of contingencies number of episodes
for the restoration of voltages of the critical load buses would
vary. For instance it is hypothesized that anN−x contingency,
with higher x would require more actions for restoration in
comparison to a lower one. For the experiments, four types
of contingencies are considered. N − 3 indicates three line-
faults, N −2 indicates two line-faults, N −1 being one, while
N − 1,DER outage indicates one line-fault along with a set
of DER outages. The selection of switching is randomly done
but as an agent is trained, the action would be based on the
trained policy. It can be observed from Fig. 9 with the random
action selection, the N − 3 contingency need more than
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FIGURE 9. Effect of different physical contingency on the episode lengths
to successfully reach the goal of restoring critical load bus.

1.5 times of episodes in comparison to theN−1 contingency.
Since restoration of critical load buses is the primary target,
N − 1, DER have similar behavior with N − 1 types. If one
consider, to maintain the voltage within a stringent limit, the
outage of DER will effect the episodic length dramatically.

2) EFFECT ON GRAPH CENTRALITY BASED RESILIENCE
METRIC
The dynamics of the resilience metric is evaluated for every
switching action in the environment to quantify the effective-
ness of agent’s action towards reaching a more resilient topol-
ogy. In Fig. 10 the first three scores are the centrality-based
resilience metric Betweenness Centrality (BC), Closeness
Centrality (CC), Edge Betweenness Centrality (EBC) and the
next three is their sensitivity to every switching action. BC of
a node is the sum of the fraction of all the pairs of shortest
paths that pass through the node, while EBC of an edge is the
sum of the fraction of all the pairs of shortest paths that pass
through the edge. CC of a node is the inverse of the average
shortest path to the node from all the reachable nodes in the
network. For N−2 contingencies, the resilience is lower, still
the positive sensitivity indicates switching action improves
resilience.

D. SimPy-CUM-OpenDSS BASED MIXED DOMAIN
EXPERIMENTS
The goal in the mixed-domain experiment in an episode is
reached, when both critical loads in the distribution grid are
restored and minimum number of packets are successfully
received at the destination. Here the impact of both channel
bandwidth and physical contingency on the episodic length
and success rate is evaluated. Unlike the individual envi-
ronment, the episodic length of the combined environment
require more steps to accomplish the goal. More impact-
ful contingencies such as N − 3 have expected behavior
of increased episodic length as evaluated in the physical-
environment. Similar observation of reduced episode length
under increased channel bandwidth is witnessed, as seen from
Fig. 11.

FIGURE 10. Topological Resilience Metrics Betweenness Centrality,
Closeness Centrality, Edge Betweenness Centrality alongwith their
sensitivity to each step in an episode.

FIGURE 11. Effect of different physical contingency under varying channel
bandwidth on the episodic length of the cyber-physical RL environment.

Fig. 12 shows the impact of both cyber threat strength,
as well as, the physical contingencies, on the episode length.
Episodic length are primarily dominated by the cyber envi-
ronment since the physical contingency type didn’t impact
the average episode length much like the attack strength. This
indicates that, if a non-compromised path is found among
the DA and DCs, then all the critical load could be restored,
through successful command packet transmission to close
the sectionalizing switch. If the re-routing is not successful
to transmit the command, then although the physical RL
environment execute the step, the goal is still unreached.

E. TRAINING RL AGENTS
The MDP models will be now utilized to train some
well-known RL agents such as DQN, PPO, A2C, etc. While
DQN is a value learning based method, Proximal Policy
Optimization (PPO) [28] is a policy gradient technique while
Advantageous Actor Critic (A2C) [29] use both value learn-
ing and policy gradient in the process of learning critic and
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FIGURE 12. Effect of different physical contingency under varying cyber
threat strength on the episodic length of the cyber-physical RL
environment.

actor function respectively. The DQN method does not fare
well for the scenario with large state and action space. More-
over, existing libraries such as stable-baselines [30] does not
support MultiDiscrete action space for DQN.

1) RE-ROUTING
In this problem, aMultiDiscrete action is formulated, because
an agent has to learn which router to re-route as well as
based on the selected router determine the next-hop router.
The action space size for the re-routing problem is of the
order of O(mn) where m is the number of routers and n is the
degree of the router node. Hence, before training the agent for
a large-scale network for the IEEE 123 case with 18 routers
as shown in Fig. 15, the PPO and A2C-based agents are first
trained for the small network with 4 nodes (Fig. 6) as well
as, a few mid-sized networks (Fig. 13). Table 1 shows the
results of the average episode length without training and
with trainingwith PPO andA2C agent for four different cyber
network. Though there is reduction in average episode length
with training, still for the larger network the reduction is
not quantifiably high. Training each router separately using
multi-agent RL framework is a viable solution, but this is
currently out of scope of this paper.

The RL based method are further compared with heuristic
approach. Alg. 1 presents the algorithm for selecting one of
the optimal action for the re-routing method for communica-
tion under threat scenarios. An action in this MDP is defined
by a tuple < r, rnh > where the first element represent the
router, r , selected to update the route while the rnh is the next
hop router selected to update in the router r routing table.
It can be observed from Table 1 that the RL based approach
is at par with the number of steps to goal in comparison with
the heuristic approach.

2) NETWORK-RECONFIGURATION
For the network-reconfiguration problem, the state space
model with continuous variable representing the critical load

Algorithm 1 Re-Routing Expert Heuristic Method
1: From MDP states infer compromised router set Rcomp
2: Initialize the set of possible optimal policies 5

3: for r ∈ Rcomp do
4: Extract the parent routers, Par in forward path toDA.
5: for pr ∈ Par do
6: Extract all paths to DA from pr , that doesnt

include r .
7: From paths get the immediate next hop routers.
8: Select next hop router with lowest channel packet

drop rate, Ch∗
pr .

9: 5 = 5
⋃
(pr ,Ch∗

pr )
10: end for
11: end for
12: r, rnh = Sample a policy from 5

FIGURE 13. Two mid-sized communication network with 5 and 6 routers
with 3.4 and 3 average node degree.

TABLE 1. Evaluation of PPO & A2C based RL agent for varying size
network for re-routing.

bus’s p.u. voltage had challenges in training agents. Hence,
the state space is represented through the restoration status
of the critical load bus, through one-hot encoding. Since the
state space is discrete for this problem, DQN is considered
for training under 4 different types of contingencies as intro-
duced in the OpenDSS based experiments section. Table 2
shows the reduction in average episode length for different
contingency scenarios. In most of the scenario there is atleast
40% reduction in episode lengths when compared without the
DQN training.

A spanning tree based approach (STA) [31] is adopted for
optimal network reconfiguration for the reference. Due to the
radial structure of a distribution network it is represented as a
spanning tree. The switching operations is based on adding an
edge to the spanning tree to create a cycle and deleting another
edge within this cycle for a transition to a new spanning tree.
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TABLE 2. Evaluation of DQN based RL agent for different contingencies
type on IEEE 123 distribution system.

TABLE 3. System details with the type of controls and their quantities.

TABLE 4. Average episodic reward.

The optimal final topology along with the sequential order of
switching is provided by the proposed method [31]. Based
on the different line outages considered in this work, the
sequence of switching is obtained and it can be observed from
Table. 2 that adopting STA’s approach, the episode length is
almost one-third of the random agent and even better than
DQN. Use of advanced policy gradient technique can better
improve the performance. But since such STA methods can-
not be leveraged when the physical environment is combined
with cyber, RL based framework is developed.

3) VOLT-VAR CONTROL
For the Volt-Var control problem, four benchmark distribu-
tion systems are considered: a) IEEE 13 bus b) IEEE 34 bus
c) IEEE 123 bus, and d) 8500 nodes cases, as presented in
the PowerGym [27]. For the experiments, only the discrete
controls from Section III-B2 are considered. The control
elements of each distribution system is shown in the Table 3.
Since the problem is formulated as 24 step-sized fixed hori-
zon problem for control action for a single day i.e. 24 Hours
with varying load profile, the environment is evaluated on
the basis of average episodic reward with the trained A2C ,
PPO and a random agent. Table 4 shows the evaluation of the
A2C and PPO agents considered for the four systems. As the
grid size increases, the state and action space increases, but
with the use of A2C RL agent the performance is still better
in comparison to PPO. But since PPO prevent large gradient
updates it can be preferred overA2C in the continuous control
environments.

F. VISUALIZATION/ENVIRONMENT RENDERING
Most of the RL environment present a rendering applica-
tion to visualize how a trained agent can assist in reach the
goal fast. Following the similar approach, the proposed RL
environment also presents visualization platform for both

the SimPy and OpenDSS environments. The application is
developed using the PyQT5 python package.
To visualize the RL environment under threats and con-

tingencies, that varies the topology and resilience metrics,
a rendering application (Fig. 14) is developed that shows in
real-time the execution of every steps within an episode while
training the agent. The color-map in the figure indicates the
p.u. voltage of the buses in the IEEE 123 system.

A visualization application is implemented for the
Simpy-based Cyber RL environment (Fig. 15). For every
steps in the episode, the tool visualize the channel utilization
rates on the channels connected to the core and edge router.

V. DISCUSSION
The proposed CP-RL environment can assist in faster gen-
eration of data pertaining to various threat and contingency
scenarios, in comparison to the emulated RL environment.
For instance thousands of episodes in a SimPy environment
could be run in less than 5 minutes, while an emulation
platform like Mininet would take more than an hour. Since
training efficiently with RL algorithms is a data-hungry pro-
cess, this DES based simulation platform is proposed, which
is not purely simulation or emulation based, since unlike sim-
ulators it has event handlers, and unlike emulators it doesn’t
run in synchronization with real-time clock. The pipeline
between the environments is not comprehensive like a
co-simulation platform, HELICs, but still it assist in devel-
oping use-cases such as incorporating cyber-induced threats
and its impact on the distribution feeder in the OpenDSS
space, and DER outage or line-faults from the OpenDSS
space to the SimPy, through handling the event by generating
a packet in cyber space. Since majority of the power distribu-
tion system simulator such as OpenDSS or GridLab-D are
Windows operating system supportable, integration of this
cyber environment can assist power system RL researcher to
overcome the challenges of co-simulation and the necessity
to connect with UNIX-based network simulators.

There are numerous scope of improvement in the current
environment. For instance, in the rerouting problem, each
action within an episode were executed at an interval of
50 sec. If this interval is reduced, the steps to reach the goal
may reduce but it will result in more unstable solution were
the router’s policy are changed quite frequently. While if it’s
increased, the network restoration will be delayed as more
steps would be required to reach the goal. Hence, deciding
an ideal interval between steps can be an another research
question.

In the MDP model, how efficiently an agent learns also
depends on the states considered in the MDP. For the
re-routing experiment, first the channel utilization rates was
considered, which were not impactful, hence each router’s
packet drop rates was incorporated in the state-space model.
In a realistic scenario, identifying an ideal state-space, reward
and goal is a challenging problem. In future, we are envi-
sioning to work on adaptively learning a reward depending
on varying scenarios through inverse reinforcement learning.

127226 VOLUME 11, 2023



A. Sahu et al.: Reinforcement Learning Environment for Cyber-Resilient Power Distribution System

FIGURE 14. Visualization of IEEE 123 bus network and the respective resilience metric, with interaction through the RL environment.

FIGURE 15. Visualization of the communication network for the IEEE 123 system.

The code base for the proposed RL framework is cur-
rently available for peer-review at the following Github
repository [32].

The time taken for training an RL agent is dependent on
the MDP model. An MDP model with large state-space and
action-spacemodel would require more amount of simulation
data to learn an optimal policies. For instance, a network
reconfiguration for a IEEE 13 bus case with one breaker in the
model, can be trained faster in comparison to a IEEE 123 bus
case with 8 sectionalizing switches. Similarly, training time
for a cyber network with routers having large number inter-
faces will be more in comparison to a network constituting
of routers with less interface. The exact time complexity
cannot be defined, since it will depend on the RL algorithm

considered. Moreover, the training time would also depend
on the time taken by the simulator to execute the action and
obtain the next state. The evaluation of the time complexity of
training various RL algorithm is not the scope of this paper.
Since after a model is trained, the accuracy of learned policy
in the testing scenario is more essential.

VI. CONCLUSION
In this paper, an OpenDSS-cum-SimPy based Gym environ-
ment is presented, that simplifies the usage of reinforcement
learning for solving problems in the area of cyber-physical
security. This is achieved by interconnecting the OpenAI
Gymwith the OpenDSS and SimPy based network simulator.
As the framework is generic, this work can be extended to
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other power system problem such as state estimation or other
threat scenario simulation. For the future, it is planned to
extend environment to support multi-agent training, which
can expedite the process of learning for larger test sys-
tem. Utilizing this environment, both re-routing and network
reconfiguration are implemented using both value function
learning and policy gradient methods. This light-weight cyber
environment would enable power system RL researcher to
incorporate cyber threat scenarios without the hassle of envi-
ronment issues, since majority of the network simulator are
UNIX based.
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