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* Background: achieving fast charging

* Impact of active material and carbon-black/binder
domain (CBD) on tortuosity

* What is the optimal CBD loading ?

* Experimental and macroscale P2D modeling results
on low and high CBD content cells
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Achieving fast charging
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Post-mortem
observation reveals
material degradation
| due to over-utilization
of the electrode at
the electrode front
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Deposition of lithium at the particle
surface (Lithium plating) — capacity loss

Predicted by macro-scale
model, and linked to
microstructure parameters

F. Usseglio-Viretta et al, ECS trans., 77 11 1095-1118 (2017)
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* Strong incentive to reduce tortuosity

* Although, it is one option among
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Impact of active material and carbon-black.binder.({CBD).on tortuosity
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F. Usseglio-Viretta et al., Resolving the Discrepancy in Tortuosity Factor Estimation for Li-lon Battery Electrodes through
Micro-Macro Modeling and Experiment, J. Electrochem. Soc, 2018
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CBD nanostructure and model representation

Our approach: X-ray CT large field of

S. R. Daemi et al., ACS Appl.

b, Energy Mater. 2018, 1, 8, 3702~ view with CBD numerically generated
(heterogeneous distribution)
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Zielke et al., Adv. Energy
Mater. 2015, 5, 1401612
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< e ; : . . o« o
s S| ; Nenoporosity of CED I CED filed Cathode,’ and effective electrolyte diffusivity)
g y.- : through reverse homogenization.

2 Sk o~ ‘l : pnano s fitted until known macroscale electrolyte
R T L I diffusivity is reached using microstructure
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i F. Usseglio-Viretta et al., Carbon-binder weight loading optimization for
CBD nano pores range frOm 5to 150 nm improved lithium-ion battery rate capability, J. Electrochem. Soc, 2022
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Heterogeneous CBD distribution

Cell manufacturing (ANL), o

X-ray CT imaging (UCL), s. R.Daei et al,, ACS App,

then segmentation, particle Energy Mater. 2018
identification, and Particles are connected

_ through CBD in gaps
separation (NREL) befween thergn i

Open-source code
with user-friendly GUI

F. Usseglio-Viretta et al., Carbon-binder weight loading optimization for improved lithium-ion battery rate capability, J. Electrochem. Soc, 2022
F. Usseglio-Viretta et al., MATBOX: An Open-source Microstructure Analysis Toolbox for microstructure generation, segmentation, characterization, visualization, correlation, and meshing, SoftwareX, 2022
F. Usseglio-Viretta et al., Quantitative Relationships Between Pore Tortuosity, Pore Topology, and Solid Particle Morphology Using a Novel Discrete Particle Size Algorithm, J. Electrochem. Soc, 2020
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Different connectivities

* We know now how to
represent/generate CBD.
 How to quantify it?

Early classification of connectivity
provided by Joos et al., JPS, 246
(2014): connected, unknown and
isolated clusters

Proposed subclassification (I-1V)
for the connected clusters to
discriminate between different
effective conductivities

F. Usseglio-Viretta et al., Carbon-binder weight loading optimization for improved
lithium-ion battery rate capability, J. Electrochem. Soc, 2022
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lithiation state, Amin et al.,
JES 2016 and (right) CBD

for different volume strain,

Trembacki et al., JES, 2017
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Connected clusters

. Connected from separator to current collector (S-CC)

. Connected to current collector (CC)

Unknown clusters
. Not connected, but located at the FOV’s edges (UC)

CBD: 0.02 to 0.3 S.cm™ (0.15
S.cm used in this work)

Separator

Current collector

Active material particles (poor conductivity)
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. Not connected to both separator and current collector (I1)

eff W;
CBD particles (high conductivity) Z K

e path provided only by active material particles .
(poor effective conductivity) (AM) To avoid
e path provided by active material and CBD particles A/
m senal (poor effective conductivity) (AM-CBD)
¢ path provided by CBD particles (high effective
conductivity) (CBD) —

Desired
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F. Usseglio-Viretta et al., Carbon-binder weight loading optimization for improved lithium-ion battery rate capability, J. Electrochem. Soc, 2022

Percolation threshold... (NMC)
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10.09

Percolation w/o constraint is
achieved even with very little CBD

Desired connectivity requires
~3.9-5.8vol% (~2.9-4.2wt%) CBD

Which roughly corresponds to CBD
percolation if considered alone

Percolation threshold
calculated for a ‘thin’
(600 nm) and a
‘wide’(1200 nm)
separation region.
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... and its impact on effective solid conductivity.(NMC)
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High NMC conductivity (Li,, NMC, x=0.75)

Incremental improvement, uncorrelated with percolation

threshold, same trend as a rule of mixture

» For active material with high bulk conductivity (NMC at low
lithiation, graphite), CBD only need to connect all particles
together, no matter how

Low NMC conductivity (Li,., NMC, x=0.0, 0.1):

Sharp increase within percolation transition region, then more
incremental (without a percolating CBD network, the effective
conductivity is drastically limited by the poor NMC bulk
conductivity).

Significant change from NMC near-full Iithiationv to NMC full
lithiation : for low CBD loading, cathode effective conductivity
at the end of discharge is expected to increase during cycling (due
to loss of lithium at the anode side, i.e., SEl growth, that will
prevent full re-lithiation at the cathode side)

F. Usseglio-Viretta et al., Carbon-binder weight loading optimization for improved lithium-ion battery rate capability, J. Electrochem. Soc, 2022

MNATIOMAL RENEWABLE ENERGY LABORATORY 9



Experimentally investigated cells

Table I11. Electrodes experimentally investigated.

High CBD*’ Low CBD
Anode (graphite) Components (wt%) Superior Graphite SLC1506T 91.83 95.83
Timcal C45 carbon 2 0.5
Kurcha 9300 PVDF 6 35
oxalic acid 0.17 017
Porosity (%) 38.2 374
Coating loading (mg cm ?) 9.38 9.57
Coating density (g cm o) 1.34 1.37
Coating thickness (pm) 70 70
Cu foil thickness (pm) 10 10
Total electrode thickness (pm) 80 80
Arcal capacity (mAh cm %) Reversible C/10; 0.005 to 1.5 V vs Li/Li" 2.98 3.05
Cathode (NMC532) Components (wt%) Toda NMC532 90 96
Timcal C45 carbon 5 2
Solvay Solef 5130 PVDF 5 2
Porosity (%) 35.6 349
Coating loading (mg cm ) 18.57 17.24
Coating density (g cm ) 2.62 2.87
Coating thickness (pm) 71 60
Al foil thickness (jem) 20 20
Total clectrode thickness (ppm) 91 80
Arcal capacity (mAh cm %) Reversible C/10; 3 to 4.2V vs Li/Li" 2.54 2.54
Cell N/P rangc Jto41V 1.04 to 1.17 1.10 to 1.20

NMC532

F. Usseglio-Viretta et al., Carbon-binder weight loading optimization for improved lithium-ion battery rate capability, J. Electrochem. Soc, 2022
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Expected beneficial impact on tortuosity.(graphite)
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active material volume

Bruggeman exponent is the most relevant metric for comparison as 3 cases does not have exactly the same
porosity. All 3 cases agree on a -0.3 to -0.36 decrease.

* Experimental confirmation that a better electrolyte effective diffusion coefficient can be achieved
by lowering the CBD loading, even though the porosity has been decreased
Diffusion penalty of a CBD element of volume > diffusion penalty of an AM element of volume
Volume fractions are all not the same

F. Usseglio-Viretta et al., Carbon-binder weight loading optimization for improved lithium-ion battery rate capability, J. Electrochem. Soc, 2022
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Rate capability at beginning of life
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F. Usseglio-Viretta et al., Carbon-binder weight loading optimization for improved lithium-ion battery rate capability, J. Electrochem. Soc, 2022
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Performance improvements due to
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Performance improvements are
attributed to the reduced electrode
tortuosity, cathode film resistance,

and cathode thickness.

F. Usseglio-Viretta et al., Carbon-binder weight loading optimization for improved lithium-ion battery rate capability, J. Electrochem. Soc, 2022
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CBD impacts negatively effective diffusion, more than active material for the same volume

o) Rebalancing loading between active material and CBD can improve effective diffusivity even with a lower porosity
o) Anode: 8wt% - 4wt% CBD — Bruggeman exponent reduction ~2.5 to ~2.1

o  Cathode: 10wt% - 4wt% CBD — Bruggeman exponent reduction ~2.0 to ~1.8

High CBD loading are not required to achieve desired percolation (cathode: ~3.9-5.8vol%, ~2.9-4.2wt% CBD loading).

Impact of CBD loading on solid conductivity:
o  10wt% CBD: K’;’#C almost insensitive with NMC lithiation: 0.5e2 to 1e2S.cm™?

o 4wt% CBD: KQ’#C dependent with NMC lithiation: low lithiation (0.25): 3.5e3 S.cm™1, near maximum lithiation (0.9): 3.5e -
5.5e*S.cm%, full lithiation (1.0): 0.3e*—1.6e* S.cm™

Higher polarization for high CBD content cells for charging rate >1C. Single layer Pouch cell capacity improvement:
from 37% (80%) to 55% (86%), respectively for high and low CBD cells at the cutoff voltage (and at the end of the 10
min 6C CC-CV). Model predicts no lithium plating.

Area-specific impedance (electrochemical impedance spectroscopy) 20% lower for low CBD cell, mostly attributed to
lower cathode impedance. In agreement with hybrid pulse power characterization measurement, and coherent with
the 25% NMC-CBD interface area reduction.

Low loading increases risk of delamination, especially anode side. Recommendation based on cycling experiment:
keep 8wt% loading for graphite but reduce to 4wt% for cathode
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Particle separation impact on volume fractions
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to particle isolation

F. Usseglio-Viretta et al., Carbon-binder weight loading optimization for improved lithium-ion battery rate capability, J. Electrochem. Soc, 2022
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Particle identification
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F. Usseglio-Viretta et al., MATBOX: An Open-source Microstructure
Analysis Toolbox for microstructure generation, segmentation,
characterization, visualization, correlation, and meshing, SoftwareX, Wate rSh ed m et h Od
2022
F. Usseglio-Viretta et al., Quantitative Relationships Between Pore
Tortuosity, Pore Topology, and Solid Particle Morphology Using a
Novel Discrete Particle Size Algorithm, J. Electrochem. Soc, 2020
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