

The Feedstock-Conversion Interface Consortium – Understanding and Mitigating the Impacts of Feedstock Variability in Bioconversion Processes

Edward J. Wolfrum, FCIC Principal Investigator

October 27th, 2022 ABLCNEXT2022

U.S. DEPARTMENT OF ENERGY

1-slide guide to the FCIC

The Feedstock-Conversion Interface Consortium is led by DOE as a collaborative effort among researchers from 9 National Labs

Key Ideas

- Biomass feedstock properties are **variable** and **different** from other commodities
- **Empirical** approaches to address these issues have been **unsuccessful**

The FCIC uses **first-principlesbased science to de-risk** biorefinery scale-up and deployment by understanding and mitigating the impacts of **feedstock variability** on bioenergy conversion processes.

<http://energy.gov/fcic>

FCIC Task Organization

Task 8: TEA/LCA

Task 3: Materials Handling

Task 4: Data Integration

Task X: Project Management

Task 3: Materials Handling: Develop tools that enable continuous, steady, trouble free feed into reactors

Task 1: Materials of Construction: Specify materials that do not corrode, wear, or break at unacceptable rates

Task 5: Preprocessing: Enable well-defined and homogeneous feedstock from variable biomass resources

Task 2: Feedstock Variability: Quantify & understand the sources of biomass resource and feedstock variability

Task 4: Data Integration: Ensure the data generated in the FCIC are curated and stored – FAIR guidelines

Task 6 & 7: Conversion (High- & Low-Temp Pathways): Produce homogeneous intermediates to convert into marketready products

Task 8:Crosscutting Analyses TEA/LCA: Valuation of intermediate streams & quantify variability impact

Task X: Project Management: Provide scientific leadership and organizational project management

Quantifying Effects of Variability to Assess Risk

- An example using low-temperature conversion
	- –Corn stover Feedstock
	- –Deconstruction with Deacetylation & Mechanical Refining and Enzymatic Hydrolysis (DMR/EH)
	- –Upgrading Sugars to mixed organic acids, lignin monomers to muconate
- **How does corn stover variability present a risk to biorefineries?**

Organisms

Facilities

Products

Rhodosporidium toluloides

Zymomonas nobilis

Pseudomonas

Clostridium

yrobutyricun

Feedstock Variability is an Economic Risk

Analysis courtesy of Ryan Davis (NREL)

Risk ~ slope and shape of the lines

COMPOSITION COST CONVERTIBILITY

140% 130% MFSP (\$/GGE)
MFSP 120%
E 110% 100% 90% \$70 \$80 \$90 \$100 60% 80% 65% 70% 75% **Biomass Feedstock Cost (\$/ton) Glucan/Xylan EH Conversion (% of theor.)**

5

Composition Variability is a Risk

Effect of corn stover compositional variability on minimum ethanol selling price (MESP), *Bioresource Technology 140:426 (2013), Tao et al,* <https://doi.org/10.1016/j.biortech.2013.04.083>

Conversion Variability is a Risk

Data courtesy of Xiaowen Chen (NREL), analysis courtesy of Ryan Davis (NREL)

Quality by Design

Quality by Design (QbD) to Assess Risk

- Key operating concept and organizing principle
- Widely used in pharmaceutical manufacturing – FDA-endorsed
- Chemical processes are collections of specific unit operations
- Unit operations are discrete but $\frac{1}{2}$ connected
- Need fundamental understanding of
	- Unit operation
	- Input & Output streams

Moving from feedstock NAMES to feedstock ATTRIBUTES

hayandforage.com

QbD for the Biomass Value Chain

11

- **CQAs**:
	- Soluble Sugar Content
- Residual substrates
- Inhibitors

erature e Loading ence Time

Representative Accomplishments

Review Article: Flow Behavior Characterization of Biomass Feedstocks

- Existing powder processing/handling equipment are mostly designed for coal and pharmaceutical ingredients, rather than for biomass
- Biomass encounters flow stoppages in these repurposed equipment, hampering process economics
- Lack of knowledge on the unique flow behavior of biomass feedstocks

Current Knowledge Gap

Achievement

- **Discussed** how powder flow behavior depends on the inherent properties, the environment, and the processing equipment
- **Reviewed** literature on the characterization of biomass powder flow behavior using shear testers and powder rheometers
- **Proposed** complementing powder rheometry with surface energy measurements, tribometry and DEM modeling to better understand the flow behavior of biomass powders

Industry Impact

This review article educates audiences working on powder flow characterization in both industrial and academic settings, and provides them with insights on future research directions

It's imperative to test each powder because the flow behavior of a powder is determined by its inherent properties, the environment, and the processing unit it's in.

Task 3 – Material Handling

Flow Behavior Characterization of Biomass Feedstocks. Powder Technology (2021) 387, 156-180, DOI: [10.1016/j.powtec.2021.04.004](https://doi.org/10.1016/j.powtec.2021.04.004)

Continuum Modeling of Hopper Flow

Current Knowledge Gap

- The mechanical flow behavior of compressible pine chips is not systematically investigated
- Flowing pine chips through hopper experiences inconsistence manifested as hopper arching, rat-holing, and surging flow

Achievement

The knowledge can be directly applied to prepare the charging process of wedge-shaped hopper and to operate hopper in terms of inclination angle and outlet opening for handling pine chips.

- Conducted **physical experiments** and **numerical simulations** to investigate the influence of pine CMAs and hopper CPPs on hopper flow performance.
- Found hopper outlet width linearly controls the mass flow rate while the hopper inclination angle controls the critical outlet size.
- Found feedstock initial packing determines whether the flow is smooth or surging, and the surcharge-induced compaction creates flow impedance.

Industry Impact

Investigated pine CMAs & Hopper CPPs on mass flow rate and critical arching width using experimental data validated continuum-model

Flow and Arching of Biomass Particles in Wedge-Shaped Hoppers, ACS Sustainable Chemistry & Engineering (2021) 9:45, 15303–15314, [DOI:10.1021/acssuschemeng.1c05628](https://doi.org/10.1021/acssuschemeng.1c05628)

Real-Time Feedstock Image Analysis Model

Description

• Utilized a 26,000 image dataset from processing corn stover in a pretreatment reactor captured using **inexpensive digital cameras**.

Machine Learning Methods - Neural Network (NN) and Pixel Matrix Feature Parameterization (PMFP) used to analyze data

Value of new tool

- Neural Network (NN) model can detect anomalies (coarseparticle segregation that can cause feed interruption) even when camera lens obscured by dust.
- PMFP method reveals statistically significant image textural features such as surface roughness, shade variations, and particle angular direction variations that are proxies for particle size distribution variation.
- NN and PMFP approaches are complementary to one another and can describe why feedstock images are classified a certain way.

Automated machine vision technique detects and quantifies corn stover feedstock particle quality in real-time to enable process control

¹conical feed-hopper cyclically refilled every ~30 min

Tools

Real-Time Biomass Feedstock Particle Quality Detection Using Image Analysis and Machine Vision. <http://dx.doi.org/10.1007/s13399-020-00904-w>

MFSP: Minimum Fuel Selling Price; **FP**: Fast Pyrolysis; **CFP**: Catalytic Fast Pyrolysis; **TEA**: Techno-Economic Analysis

Computational Framework For High-Temperature Modeling – CFD to TEA

Machine learning (ML) style regression analysis develops correlations for evaluation in process modelling software (e.g., Aspen Plus)

Task 6 – High Temperature Conversion

Process

Feedstock CMAs

Eedstock

A simplified integrated framework for predicting the economic impacts of feedstock variations in a catalytic fast pyrolysis conversion process <https://doi.org/10.1002/bbb.2319>

Combining Particle-, Reactor-, and Process models facilitates rapid TEA assessments of feedstock and process variability

Key Take-Aways

- **Feedstock variability** across the Bioenergy Value Chain is a Risk to **Biorefineries**
- **FCIC** Researchers are using elements of the **Quality -by -Design** approach to understand and mitigate the impacts of **feedstock variability** on bioenergy conversion processes.
- Deep subject matter expertise, detailed chemical, physical, and mechanical characterization, and robust and validated modeling is providing **knowledge and tools** to bioenergy stakeholders

Visit us online for highlights, publications, webinars, and more <http://energy.gov/fcic>

Want to get in touch? Contact fcic@nrel.gov

This work was authored [in part] by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE -AC36 - 08GO28308. Funding provided by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Bioenergy Technologies Office. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid -up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.

NREL/PR -2800 -84342

U.S. DEPARTMENT OF ENERGY

