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Material Flows Through
Industry (MFI)

Team Members: Taylor Uekert, Swaroop Atnoorkar,
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Materials Flows through Industry (MFl)

Tool

What are the material, energy, and
greenhouse gas emissions impacts
associated with the supply chains of
industrially-significant commodity
materials?

Approach: cradle-to-gate supply chain
modelling tool containing detailed United
States-specific inventory data

mfitool.nrel.gov

External-Facing Web Application
[175 new accounts added in FY22 Q1]

MFl is a key part of the
BOTTLE Consortium
analysis portfolio
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Seven published journal
articles using MFI analysis,
with several more under

development
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[In-house R model provides
greater customization]
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MFI Case Study: Wind Energy Technology

Research Question: What are the amounts of supply chain energy use, GHG emissions, and critical materials associated with the
production pathways of wind turbine components in the US?

AMO MYPP: Sustainable Manufacturing Technology Area
Advance technologies and tools to improve resource efficiency in the manufacturing industries, including recycling and reuse, and lower
the lifecycle cost and cross-sectoral energy impacts of manufactured products.

Project Goals:

#1 Renewable Energy and Energy Efficiency

Supply chain analysis of industrial production of wind turbine components can aid in the sustainable production of
wind generated electricity

#7 Low-carbon Fuels, Chemicals, and Materials
MPFI analysis can quantify the GHG emissions, fuel, and energy use as well as critical materials

Ceramic

used in the production of wind turbine components as well as highlight opportunities for improvement

#8 Sustainability through Circularity Carbon
Recyclable composite materials used in wind turbine blades can advance the implementation etk
of the circular economy and provide embedded energy savings SRR

variable

ooog

Project highlights: Particle
reinforced

* Blades made from CFRP composites and thermoplastic Elium resin compared with
traditional fiberglass reinforced epoxy blades. I — Fiber reinforced |

* Study evaluates supply chain impacts at component level, single turbine level, and

Structural

at the level of the entire wind sector e

e Future electricity production scenarios according to NREL's ReEDS model applied
Project PI: Alberta Carpenter Project Researcher: Shubhankar Upasani



Supply Chain Energy and Greenhouse Gas Analysis Using the Materials Flows through Industry (MFI) Tool:

Decarbonization Technology Scenarios for the U.S. Iron and Steel Manufacturing Sector

|
* Essential for building critical infrastructure * Modeled technology and electricity grid scenarios in
+ Wil play vital role in the energy transition the Materials Flow Through Industry (MFI) Tool
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Bio-based circular carbon economy
Environmentally-extended Input-Output
Model (BEIOM)

Team Members: Andre F. T. Avelino



BEIOM: Bio-based circular carbon economy Environmentally-extended Input-Output Model

Pl: Andre F. T. Avelino, NREL | Sponsors: DOE BETO

Method & Datasets
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EEIO: established method to assess
impacts of products or product
portfolios (e.g., by Amazon)

Uses national-level datasets from
federal agencies (EPA, USDA, etc.)
Traces structural changes in the US
economy

Analyzes sector interactions
Includes feedback effects

Does not apply system cut-offs
within US geographical boundaries

Defining new [industries/paradigm

Output: Environmental releases and impact potentials (16 metrics)
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Economic linkages

Output: Jobs, GDP

US economy definitions

- Business-as-usual/baseline
- Low carbon economy scenario 1 LCA: Life Cycle Assessment (data)
- Low carbon economy scenario 2 TEA: Techno-Economic Analysis (data)

Using process-level techno-economic and life cycle inventory data, we can define
any new technologies (or portfolios thereof) and assess their net socioeconomic
and environmental effects at industrial scale in an economy-wide context.
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Pumped Storage Hydropower LCA (PSH)

Team Members: Daniel Inman



NREL Pumped Storage Hydropower LCA

* PI: Daniel Inman, PhD. NREL
* Funding: DOE-WPTO

1 Materials and manufacturing I

Stored

electricity I
delivered to

the nearest

grid substation I
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Losses due to round-
I trip efficiency of 80%

CLOSED-LOOP PUMPED-STORAGE HYDROPOWER
Projects that are not continuously connected to a naturally flowing water feature

Penstock/Tunnel —e




The Global Warming Potential of Closed-Loop PSH is Estimated to be 58 to 302 g CO,e

kWh-1

Process Contribution Base
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NREL PSH
LIB

VRFB
CAES
PbAc

Global warming potential (GWP) of
closed-loop PSH compared to lithium-ion
battery storage (LIB), vanadium redox
flow batteries (VRFB), compressed-air
energy storage (CAES), and lead-acid
battery energy storage (PbAc).

Emissions from the source of stored electricity
account for most of the Greenhouse Gas Emissions
from closed-loop PSH.



Lifecycle Analysis Integration into Scalable
Opensource Numerical models

(LIAISON)

Team Members: Patrick Lamers (Pl), TJ Ghosh,
Shubh Upasani



IPCC scenarios (background) Emerging EERE technologies (foreground)

GHG emission pathways 2000-2100: All AR5 scenarios
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Solid Oxide Fuel Cell

* Mitigation & adaptation (RCP) ’
* Socio-economic development (SSP) L/ |\
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eolbector

* Global with regional detail
e All sectors
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Life cycle sustainability of solid oxide fuel cells: From methodological aspects to system implications, Mehmeti et. al Journal of Power Sources 325:772-785
Pure hydrogen production by PEM electrolysis for hydrogen energy, Grigoriev et. al, https://doi.org/10.1016/j.ijhydene.2005.04.038

2020203020402050 20602070208020902100

year
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https://www.researchgate.net/journal/Journal-of-Power-Sources-0378-7753
https://doi.org/10.1016/j.ijhydene.2005.04.038

Lifecycle
Analysis
Integration
into Scalable
Opensource
Numerical
models
(LIAISON)

NREL Team:

Patrick Lamers
(PI1), TJ Ghosh,
Shubh Upasani

EERE Pillar:
Decarbonizing
Energy Intensive
Industries

NREL Goal: Future
Energy Systems

Temperature change (°C)
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RQ: What are the future impacts and tradeoffs of
present-day novel technologies accounting for
transitions in the energy and manufacturing sectors
as well as technology improvements?

Method: Coded, prospective life cycle assessment
using long-term, coherent scenarios of the energy-
economy-land-climate system to quantify the effects
of background system changes and foreground
technology improvements for various technologies.

Value-add: Inform R&D prioritization for novel
technologies and preemptively address potential
tradeoffs and unintended consequences of their large-
scale deployment.

Example: Power-to-Hydrogen technologies (1 kg H,)
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Circular Economy Life cycle Assessment
visualization (CELAVI)

Team Members: Rebecca Hanes, TJ Ghosh, Julien
Walzberg, Alicia Key, Annika Eberle (P1)



Circularity assessments: regional impacts & uncertainty
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The Circular Economy Life Cycle Assessment and Visualization (CELAVI)
Framework models impacts of supply chain circularity transition (SCCT)
CELAVI provides regionalized life cycle inventories of the wind blade SCCT
The techno-economic parameters that condition SCCT are uncertain
creating uncertainty on future circularity and impacts of wind blade end-

of-life management

Ghosh, T, et al. (2022). Resources, Conservation and Recycling, 185, 106531. doi:https://doi.org/10.1016/j.resconrec.2022.106531



Plastic Parallel Pathways Platform (4P)

Team Members: Taylor Uekert (Pl), TJ Ghosh, Julien
Walzberg



Plastic Parallel Pathways Platform (4P)

Research question: Develop a framework capable of quantitatively comparing the plastic end-of-life

strategies that generate different products.

Tracking the flow of plastics in the economy within

single and multiple life cycles. Implementing metrics for
measuring circularity for complex systems. Process-
based life cycle assessment to compare circular
solutions' environmental impacts. Techno-economic
analysis of end-of-life pathways.
* The ABM simulates households’ waste disposal
behavior and forms an integral part of a system
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ABM model for recycling behavior

dynamics model for plastic recycling

?This study links with NREL’s Circular Economy for Energy
Materials critical objective and goal 8: Sustainability
through Circularity

* Closing the linear flow of plastics ensure reduction of
plastic waste in the environment as well as carbon
mitigation by displacement of virgin material

production.

NREL | 17



Additional NREL presentations

at ACLCA 2021

- Title: "A comparative analysis of closed-loop recycling technologies for
most common plastics” — will be on Nov 8% during the 2:30-4pm ET

session. Authors: Taylor Uekert.

« Title: “Plastic Parallel Pathways Platform” will be on Nov 10t during the
4:30 — 6 pm ET sessions. Authors — Tapajyoti Ghosh, Taylor Uekert, Julien

Walzberg, Alberta Carpenter.

« Title: “Supply chain energy and greenhouse gas tradeoffs associated with

United States wind turbine technology improvement opportunities in the
context of net-zero emissions target by 2050.” will be on Nov 9t during the

2:30-4pm ET Authors — Shubh Upasani

NREL | 18



Publications / Submissions

Ghosh, T., Hanes, R., Key, A., Walzberg, J., & Eberle, A. (2022). The Circular Economy Life Cycle Assessment and
Visualization Framework: A Multistate Case Study of Wind Blade Circularity in United States. Resources,
Conservation and Recycling, 185, 106531.

The inclusion of uncertainty in circularity transition modeling: a case study on wind turbine blade end-of-life
management. Full author list: Julien Walzberg; Rebecca Hanes; Tapajyoti Ghosh; Alicia Key; Kristi Potter; Annika
Eberle (Submitted)

Towards a circular economy for PET bottle resin using a system dynamics inspired material flow model. (Submitted
and Accepted) Tapajyoti Ghosh, Greg Avery, Arpit Bhatt, Taylor Uekert, Julien Walzberg, Alberta Carpenter.

Linking life cycle and integrated assessment modeling to evaluate technologies in an evolving system context: a
Power-to-Hydrogen case study for the United States. Patrick Lamers, Tapajyoti Ghosh, Shubhankar Upasani,
Romain Sacchi, Vassilis Daioglou. (Submitted)

Technical, economic, and environmental comparison of closed-loop recycling technologies for most common
plastics Taylor Uekert, Avantika Singh, Jason S. DesVeaux, Tapajyoti Ghosh,Arpit Bhatt Geetanjali Yadav, Shaik
Afzal, Julien Walzberg, Katrina M. Knauer, Scott R. Nicholson, Gregg T. Beckham, and Alberta C.

Carpenter (Submitted)

Uekert, Taylor, Jason S. DesVeaux, Avantika Singh, Scott R. Nicholson, Patrick Lamers, Tapajyoti Ghosh, John E.
McGeehan, Alberta C. Carpenter, and Gregg T. Beckham. "Life cycle assessment of enzymatic poly (ethylene
terephthalate) recycling." Green Chemistry 24, no. 17 (2022): 6531-6543

Arpit H. Bhatt, Yimin Zhang, Anelia Milbrandt, Emily Newes, Kristi Moriarty, Bruno Klein, Ling Tao. 2022. Evaluation
of performance variables to accelerate the deployment of sustainable aviation fuels at a regional scale. Energy
Conversion & Management.
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www.nrel.gov
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