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Abstract—The accurate detection and isolation of faults is 
critical for the reliable operation of microgrids (MGs). Tra-
ditional protection approaches are even more challenged for 
100% renewable MGs because inverter-based resources (IBRs) 
are the only sources for fault current which are usually low 
and unpredictable/non-uniform. This calls for new protection 
scheme that can identify IBR fault responses and detect faults 
in MGs. Data-driven based protection can learn the pattern of 
IBR fault responses and make the correct decision to identify 
faults. Therefore, this paper presents a data-driven approach for 
fault localization in island MGs. The approach builds a training 
dataset of comprehensive fault scenarios that can be used to 
learn fault characteristics from processed measurements. The 
localization task is modeled as a binary classifcation problem 
at each relay, which simplifes the learning process. Then, a 
hierarchical decision mechanism is used to identify the fault 
location. The proposed approach is assessed using an exemplary 
MG with several grid-forming (GFM) and grid-following (GFL) 
inverters, where accurate estimation of fault location is achieved. 
The data-driven based protection approach developed in this 
paper provides a generic framework and useful guidance for 
power system protection engineers to achieve reliable protection 
for MGs with 100% renewables. 

Keywords—Microgrids, renewable integration, protection, fault 
localization, data-driven methods. 

I. INTRODUCTION 

Protection of microgrids (MGs) is the most critical chal-
lenge to be resolved to ensure their reliable and safe operation 
for power system resilience. As more MGs become 100% 
renewables, this challenge is magnifed [1]. Because inverter-
based resources (IBRs) are the only source of fault current 
in such MGs, and their fault currents are usually low and 
unpredictable/non-uniform [2]. Especially the fault current 
levels of IBRs tend to be close to normal operation when the 
MG is in islanded mode. Such low current levels hinder the 
ability of traditional protection schemes to detect and isolate 
faults. In addition, the various control algorithms of inverters, 
which are dictated by the inverter control algorithms and by 
the MG operational conditions, make the fault response of 
inverters hard to characterize and detect. This calls for new 
protection scheme that can identify IBR fault responses and 
detect faults in MGs [3]. 

Due to the varying fault characteristics, classical protection 
schemes such as over-current or under-voltage protection may 
fail to perform accurate identifcation and isolation of faults. 
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Additionally, adapting the settings of the protective relays often 
fails due to the fault responses variations depending on oper-
ational conditions that cannot be completely observed by the 
operator. For example, the fault response can change drastically 
with varying renewable energy penetration, which requires 
relays to obtain state information of renewable energy sources 
if it was to change the relay settings [4]. Recently, machine 
learning approaches have been proposed for fault classifcation 
and localization tasks [5], [6], [7], [8], [9], [10]. Existing 
work developed approaches that either assume centralized 
computations and learning [6], [7], [8], [10], which requires 
massive communication between relays, or approaches that 
focus on fault localization and classifcation in very small 
MGs, which can be protected by a single relay [5], [9]. 
Unfortunately, the majority of machine learning approaches 
proposed in the literature for identifcation and localization 
of faults suffer also from being trained under fxed loading 
and renewable penetration levels, which limits the approaches 
ability to perform accurately when these conditions change. 
These limitations hinder the applicability of the machine 
learning methods in MGs with varying sizes. 

In this paper, we introduce a novel approach for fault lo-
calization in islanded MGs with 100% renewable penetration. 
The proposed method leverages a local learning technique, 
followed by a hierarchical localization approach to accurately 
identify fault locations. Our primary objective is to design a 
fault localization approach that can be effectively scaled for 
MGs with varying sizes and can adapt to diverse operational 
conditions and fault scenarios. To achieve this, we begin by 
developing a robust dataset generation process for simulat-
ing faults in MGs with signifcant inverter-based resource 
(IBR) penetration, ensuring the approach’s applicability under 
varying conditions. The generated datasets are then used to 
train classifers capable of distinguishing between upstream 
and downstream faults at any relay, irrespective of the fault 
characteristics. Furthermore, we introduce a hierarchical lo-
calization scheme that utilizes the results from local relay 
classifers to pinpoint the fault location. This not only enables 
relays to localize faults without excessive data exchange but 
also ensures scalability for larger MG systems. The proposed 
method establishes a standardized approach that can be readily 
deployed in other MGs, offering a robust and effcient solution 
for fault localization in renewable-dominated microgrids. 

Our contributions in this research have signifcant impli-
cations for the protection and operation of microgrids, partic-
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ularly those with high renewable energy integration. Firstly, 
we address the pressing challenge of fault localization in 
islanded microgrids, which becomes even more critical as MGs 
transition to 100% renewables. By utilizing local learning and 
hierarchical approaches, our method overcomes the limitations 
of traditional protection schemes and global machine learning 
approaches that often rely on data measured from different 
locations. Secondly, we propose a scalable fault localization 
approach that requires only minimal communications between 
neighboring relays, offering a versatile solution that can be 
adapted to different microgrid confgurations. Thirdly, our 
proposed dataset generation process ensures that the classifers 
are trained on a wide range of fault scenarios, enhancing 
the robustness and accuracy of fault localization in diverse 
operational conditions. Fourthly, the localized communication 
requirement among neighboring relays signifcantly reduces 
the overhead and complexity of data transmission, leading 
to more cost-effective implementation of fault localization 
in large microgrid systems. Overall, our work provides a 
promising and practical solution to the most critical challenge 
of microgrid protection, contributing to the reliable and safe 
operation of future power systems with high renewable energy 
penetration. 

II. MICROGRID MODEL 

An example MG is selected to develop data-driven based 
protection method for 100% IBR MGs. This MG under study 
is based on Feeder 2 of the Banshee MG which is a bench-
mark MG system to evaluate MG controller, protection, and 
cybersecurity. A schematic representation of the example MG 
is depicted in Fig. 1; more details on this MG can be found 
in [11]. 

This MG includes three grid-following (GFL) photovoltaic 
(PV) inverters and two grid-forming (GFM) battery invert-
ers.Both GFL and GFM inverters are modelled as an average 
switching model with fxed DC voltage. This is to better 
represent the inverter dynamics than the controlled voltage 
source model for fault study and protection design. The GFL 
inverters can operate in different control modes, including 
external PQ control, volt-volt ampere reactive (VAR) control 
and fxed power factor control under maximal power point 
tracking (MPPT). The solar irradiance profles are obtained 
from historical data, and it is assumed that all three PV systems 
have the same solar irradiance at any point in time. Eight 
representative days out of a year are selected to represent the 
yearly solar profles. The GFM battery inverters work in both 
grid-connected and islanded operation with voltage control. 
The loads include both balanced and unbalanced loads. All 
the circuit breakers include a delay of 5 cycles to emulate the 
mechanical delay in real-world circuit breakers. In this section, 
we will discuss the modeling of GFM inverters, GFL inverters 
and loads in details. 

A. GFM inverter modeling 

Fig. 2 shows the control diagram of the GFM inverter. 
The GFM battery inverters are modeled in PQ control in 
grid-connected mode and VF control in islanded mode. And 
the GFM inverter uses droop control for both grid-connected 
(active and reactive power tracking) and islanded control 
(voltage and frequency control). So, there is no need to switch 

Fig. 1: Single-line-diagram of the example microgrid under 
study. 

between grid-connected current control and islanded voltage 
control. This control is developed according to the latest 
GFM control technology of an inverter manufacture. Virtual 
impedance control is also added to improve the stability of the 
GFM inverter especially during contingency and fault events. 
Because it can adjust the voltage reference to have the GFM 
control reach the appropriate target voltage, thus not saturating 
the inverter and causing instability [12]. For voltage control, 
the traditional double-loop control structure is used, with outer-
loop voltage control and inner-loop current control. This is 
typical control structure for droop based GFM control. 

Note that the droop coeffcients mp and np are both 1e-5, 
and all variables are not in per unit. S1 is the circuit breaker 
of the microgrid point of common coupling (PCC), and the 
integrator is only enabled if the microgrid is grid-connected. 
For the islanded microgrid, Pref and Qref are set to be zero, 
so that the GFM inverters operate in droop control to share 
power. 

B. GFL inverter modeling 

In this study, the three PV GFL inverters can operate in any 
of the three operation modes. Fig. 3 shows the control diagram 
of the GFL PV inverters. The PV inverters use a phase-
lock-loop (PLL) to synchronize to the grid voltage and inject 
active and reactive power into the grid based on the selected 
operation mode. Based on the selected operation mode, the 
corresponding power reference (P ∗ and Q∗) will be generated, 
and then the corresponding current reference in synchronous 
frame (I∗ and I∗ ). Note that dynamic current limiters withod oq
d-axis priority are applied in current references. The solar 
irradiance is used to add as the available power constraint to 
the PV inverters. Note that the PV inverters are modelled for 
IEEE 1547-2018 compliant, which means the fault current may 
vary depending on the terminal voltage/the signifcance of the 
fault situation. The detailed modeling of control and PWM 
of GFL PV inverters are necessary to capture the actual fault 
responses. 
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Fig. 2: Control diagram of the GFM battery inverters. 

Fig. 3: Control diagram of the GFL PV inverters. 

C. Load modeling 

In general, there are three types of load, including the 
constant impedance, constant current and constant power loads. 
This benchmark microgrid includes both constant impedance 
and constant power loads. The constant power load is usually 
modelled as a current source to track the load profles, however, 
the load may contribute fault current as it is grid voltage 
dependent. Therefore, all the loads are modelled as constant 
impedance loads, and their load values are modifed externally 
through a script. Eight representative days out of a year are 
selected to represent the yearly load profles. Note that the PV 
solar irradiance and load profles are selected from the same 
days. 

To make the load modelling more realistic, unbalanced 
loads are added in some of the big loads (e.g., P2). For those 
loads with unbalanced load, the total balanced and unbalanced 
load match the load capacity. The unbalanced load is assigned 
randomly between 0 and 0.3 p.u. of the total load, and the rest 
is for the balanced load. For the unbalanced load, the active 
and reactive power for each phase is assigned randomly with 
a factor smaller than 1, but total three phase is equal to 1. 

III. FAULT LOCALIZATION TASK 

In the considered microgrid, the fault location can be 
in one of 13 possible locations. Naturally, different circuit 
breakers are responsible for isolation of faults depending on 

TABLE I: Circuit breakers responsible for clearing each fault. 

Fault Circuit Breaker(s) Fault Circuit Breaker(s) 
Fault 2 CB201, CB202 Fault 9 CB208 
Fault 3 CB205 Fault 10 CB204 
Fault 4 CB211 Fault 11 CB209, CB219 

Fault 5 CB201, CB205, 
CB206, CB207 

Fault 12 CB219 

Fault 6 CB202, CB209, 
CB210, CB211 

Fault 13 CB210, CB212 

Fault 7 CB206 Fault 14 CB212 

Fault 8 CB204, CB207, 
CB208 

(a) Fault 2 voltage. (b) Fault 5 voltage. 

(c) Fault 2 current. (d) Fault 5 current. 

Fig. 4: The fault response recorded by CB207 in response to 
the same LLG at different locations (fault inception at time 0). 

its location. Table I lists the relays that are responsible for 
clearing (isolating) each fault. 

One major challenge faced in the protection of microgrid 
networks, especially when operated in isolation from the main 
grid, is the unidentifability of the fault responses. That is, 
similar fault responses can be observed by a specifc relay after 
different faults. This often leads to data-driven approach being 
unable to identify the appropriate relaying action in response 
to faults. The short distance between buses in microgrids also 
exaggerates this issue so that multiple relays in the same area 
can see similar fault responses. For example, the observed 
responses for fault 5 and fault 2 at circuit breaker (CB) 207 are 
almost identical; however, CB207 is supposed to isolate fault 
5, but not fault 2 which is isolated by CB201. Fig. 4 shows 
the recorded fault responses of fault 5 and fault 2 for the same 
LLG fault with a very small fault resistance. 
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Fig. 5: Decentralized learning process. 

IV. PROPOSED LEARNING APPROACH 

Correctly identifying faults and performing the correct fault 
isolation procedure are crucial for the viability and resilience 
of MGs. The proposed approach tackles a multi-class classi-
fcation problem where each class represents a possible fault 
location. Such problems are often notoriously hard to tackle 
especially when the number of possible locations increases. 
As mentioned, relays often observe identical fault responses 
for faults at different location, which makes tasking individual 
relays with identifying exact fault location an impossible task. 
Therefore, instead of using a completely centralized or decen-
tralized data-driven fault localization method, we propose a 

To have representative load profles and PV generation, we 
use a data set of eight representative days from the measured 
data in [13]. During each simulation, one time instant is 
chosen at random from these days, where the load values as 
well as the PV irradiance are used to set the parameters in 
the simulations; therefore, the generated scenarios represent 
different operational conditions of the microgrid. In addition, 
for each scenario, the operational mode of each inverter is set 
to be external PQ control, volt-volt ampere reactive (VAR) 
control, or fxed power factor control at random. As a result 
of this diversity in the scenario generation process, in some 
scenarios the energy storage units are providing power to 
satisfy the loads, whereas in other scenarios the PV generation 
is exceeding the load demand and hence the energy storage 
units are absorbing power. Here, we do not vary the state of 
charge of the energy storage units because this timescale is 
beyond the protection relays’ operational timescale. 

In each scenario, after randomly setting the operational 
conditions, we select one of the 13 fault locations according 
to a discrete uniform distribution. In addition, we set the type 
of the fault randomly, i.e., the faulty phases (a, b, c, g), from 
a total of 11 possible fault types following a discrete uniform 
distribution. Then, the fault resistance value is set using: 

∗ (100 − 0.01),zfault = 0.01 + β 11 ,4 4

decentralized-learning hierarchical-localization approach. The 
approach simplifes the process of localization into two steps: where β is a realization from a Beta distribution with11 ,4 4 

i) a decentralized learning phase where a classifer at each 11 ). This distribution is chosen to model bothparameters ( ,4 4
relay learns to classify faults into upstream and downstream cases of low-impedance and high-impedance faults. Therefore, 
faults, i.e., a binary classifcation problem, and ii) a hierarchical 
localization phase where the results of classifers at the relays 
are combined to determine the location of the fault. 

The main advantages of the proposed approach are as 
follows: i) the measurements at each relay are only processed 
locally instead of sharing all relays data with a centralized 
computing unit, ii) the learning task at each relay is a simple 
binary classifcation that is easy to learn with reduced number 
of data samples, and iii) combining the classifcation results 
amounts to only sharing 1 bit between neighboring relays, and 
thus, the localization can be done in a timely manner to isolate 
faults. We explain the details of the learning process and then 
explain the hierarchical localization approach next. 

A. Decentralized Learning Process 

In order to obtain classifers that can classify faults into 
upstream and downstream faults, we utilize a training process 
that does not require sharing measurements between relays 
enabling it to be done in a distributed fashion. 

1) Data generation process: To learn an effective repre-
sentation of fault responses, data samples that are diverse 
and representative need to be collected. In general, many 
factors affect the fault response; these can be categorized into 
operational conditions and fault characteristics. The goal is 
to generate samples that cover very diverse scenarios of fault 
characteristics and operational conditions. The operational 
conditions include the load demand, the renewable generation 
availability, and the mode of operation of the grid-following 
inverters. The fault characteristics include the fault location, 
the fault type, and the fault impedance. 

the generated scenarios include samples of fault scenarios 
that are diverse and representative of faults possible to be 
encountered in operations. 

2) Data processing and feature extraction: In each simula-
tion, the voltage and current instantaneous values are measured 
at 6 KHz at each relay. These raw data include the voltage and 
current of all phases for the duration of the simulation, which is 
set to be 8.2 seconds. For each scenario, the fault is randomly 
placed at different points of time during the simulation period. 
After collecting the data measured by each relay, these mea-
surements are post-processed to obtain variables that can aid 
relays in identifying faults. In our experiments, the following 
features are extracted for fault pattern recognition, including 
voltage and current sequence components (positive, negative 
and zero sequence), and voltage and current dq0 components. 
Those features are input to the classifers. 

Each fault is classifed by each relay whether it is down-
stream or upstream from the relay location. For example, the 
relay at CB210 should aim to classify any instance of faults 
F13 and F14 as downstream faults, and classify all other 
instances as upstream faults. Notice that this is a simpler task 
than identifying a specifc fault such as F13 because of the 
similar response observed for F14. To prepare the data for 
training, we attach the labels information according to which 
faults are upstream or downstream from each relay. In our 
simulation, we obtained 1000 samples representing different 
fault scenarios. The data of each relay is composed of the 
voltage and current measurements for a total of 8 cycles 
including two pre-fault cycles and 6 post-fault cycles. Given 
the 6 kHz sampling rate, this represents a total of 800 samples 
for each measured signal. 
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TABLE II: Decision rules for Decision Zone #1. 
CB201 CB202 Decision 

0 0 Fault 2 
0 1 DZ #4 
1 0 DZ #2 Fig. 6: Data-driven relay components. 
1 1 Inadmissible 

3) Learning SVM classifers to localize faults: We utilize 
support vector machine (SVM) classifers that are trained on 
700 fault samples that represent all fault types, locations, 
and impedances under diverse operational conditions. The 
remaining 300 are utilized for evaluating the performance of 
the proposed approach. The modelling and training of the 
classifers is done using the sklearn package in Python. We 
utilize a polynomial kernel with degree 2. The regularization 
parameter is set separately for each relay using a k-fold 
validation procedure. 

Due to the high-dimensional nature of the data, we use 
principal component analysis as a dimensionality reduction 
technique before passing the data to the classifer. To ensure a 
fair assessment of the performance, we use the training samples 
only to perform the principal component analysis, whereas the 
dimensionality reducing matrix is also used in testing. The 
number of features is reduced in all data samples to 300; thus, 
all support vector machine classifers have the same size of 300 
inputs. Fig. 6 shows the structure of the data-driven approach 
designed inside each relay to estimate if the fault is upstream 
or downstream relative to the relay location. 

B. Hierarchical Fault Localization 

Given how the local classifers are designed, the location 
of the faults cannot be completely determined by any single 
classifer decision in many scenarios; therefore, it is required to 
combine the classifcation results of each relay to determine 
the fault location. In general, the 12 classifers will provide 
an estimate on whether each fault is upstream or downstream 
from each relay. By combining the results of these classifers, 
the location of the fault can be detected. For example, fault 
11 should be classifed as an upstream fault in all classifers 
except those at relays 202 and 209, which should have this 
fault classifed as a downstream fault. However, determining 
the fault location based on all 12 classifers requires centralized 
operation, which can be challenging to perform in microgrids. 

Therefore, we propose a decentralized operation method 
that can be used to determine the location of faults with com-
munications only between neighboring relays. The proposed 
approach partitions the microgrid into multiple decision zones. 
Within each decision zone, a group of relays combine their 
classifcation results identify the fault location or the zone that 
needs to be checked. The decision zones are designed based 
on relays distance from the point of common coupling, are 
depicted in Fig. 7a, where decision zone #1 includes relays 
R201 and R202, and decision zone #2 includes relays R205, 
R206, and R207, and decision zone #3 includes R204 and 
R208, decision zone #4 includes R209, R210, and R211, 
decision zone #5 includes R219 only, and fnally decision zone 
#6 includes R212 only. 

For each zone, upon obtaining the classifcation results, 
a decision is taken regarding the fault location. If the result 
identifes the fault the location, the algorithm should trigger 
the necessary tripping actions. If the result of the classifcation 
indicates that the fault is downstream in another decision zone, 
then this decision zone is triggered to perform its localization 
procedure. The process will continue until a fault is localized. 
Table II lists the decisions taken based on the relay classifers 
in decision zone 1. If both relays 201 and 202 detect that 
the fault is upstream, then the fault is declared to be fault 2; 
however, if only relay 201 classifes the fault as downstream, 
then the decision zone 2 relays are informed that the fault 
localization task is passed down to them. Similarly, if only 
relay 202 classifes the fault as downstream, then the relays 
in decision zone 4 are informed. Notice that because the 
classifers can have classifcation errors, there could be a 
scenario where both relays classify the fault as downstream. A 
maximum likelihood estimate can be used in this case, where 
we use a metric to quantify the confdence of each classifer 
based on their empirical accuracy. Note that if one utilize a 
soft classifcation approach, the result of the classifer can be 
used as an indication of the confdence of the model in the 
classifcation result. 

Fig. 7b shows an example of the hierarchical localization 
method, where the relays in zone #1 (i.e., R201 and R202) see 
fault 8 as downstream from R201 and upstream from R202. So, 
the decisions in zone #2 are checked where only R207 detects 
the fault as downstream. Finally, in zone #4, both relays (i.e., 
R208 and R204) detect the fault as upstream, and hence, the 
location of the fault is determined to be fault 8. Note that for 
different locations, other zones in the hierarchy can be checked 
to determine the fault location. 

V. NUMERICAL RESULTS 

In this section, we demonstrate the effcacy of the proposed 
fault localization approach. We used support vector machine 
classifers at all relays. The implementation was done using 
the sklearn [14] using the polynomial kernel with the value 
of the regularizer chosen between 10 and 1000 using a k-fold 
cross-validation procedure. We frst assess the performance of 
each classifer separately. Then, we present the accuracy of 
each decision zone. 

A. Individual Relay Performance 

As discussed, the classifer at each relay is a binary clas-
sifer that aims to differentiate between upstream and down-
stream faults. For each classifer, we assess the performance 
using the accuracy, precision, and recall on a dataset of 300 
fault testing scenarios recorded under varying operational con-
ditions and fault characteristics. These measures are essential 
to fully assess the performance of each relay. 

Table III presents the performance of each classifer. Note 
that in the data generation process, the probability of each 
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(a) 

(b) 

Fig. 7: The decision zones defned in the MG and an example 
of the hierarchical localization for Fault 8. 

1fault is ; thus, some classifers have unbalanced data in the 13 
training, i.e., the ratio of positive samples is much less than 
negative samples. This emphasizes the importance of metrics 
such as recall and precision. 

B. Hierarchical Decision Approach Performance 

In the proposed approach, the identifcation of the fault 
location uses a hierarchical approach based on the decision 
zones defned in in Section IV-B. The hierarchical approach 
starts from a decision zone, then other decision zones are 
queried based on the results of the classifers until the location 
of the fault is identifed. We assess the performance of each 
decision zone to measures the accuracy of the overall approach. 
The localization of faults was carried out in 22.16 ± 9.9 
milliseconds, which is less than two electric cycles. 

The number of possible outcomes for each decision zone 
depends on the number of relays within the decision zone. For 
example, decision zones 2 and 4 encompass three relays, and 

TABLE III: The performance of each classifer on the testing 
samples. 

Classifer Precision Recall Accuracy 
CB201 81.00% 72.39% 82.06% 
CB202 77.38% 80.25% 80.45% 
CB204 72.22% 76.47% 94.97% 
CB205 97.96% 100% 99.81% 
CB206 100% 100% 100% 
CB207 88.89% 66.67% 88.83% 
CB208 59.09% 72.22% 92.18% 
CB209 27.08% 54.17% 74.30% 
CB210 81.81% 93.10% 95.53% 
CB211 70.00% 70.00% 96.64% 
CB212 100% 100% 100% 
CB219 100% 60.53% 87.70% 

TABLE IV: The accuracy of decisions in each decision zone. 

Decision Zone # of Relays Accuracy 
DZ #1 2 76.1% 
DZ #2 3 82.6% 
DZ #3 2 92.0% 
DZ #4 3 73.7% 
DZ #5 1 95.0% 
DZ #6 1 99.3% 

hence the number of possible outcomes is eight; therefore, an 
accurate decision for these two decision zones requires all three 
relays within the zone to correctly identify whether the fault 
is upstream or downstream from each relay. Table IV presents 
the results of the accuracy of each decision zone. For instance, 
in the hierarchical approach, if the fault is located at F4, in 
DZ#1 R201 and R202 will detect that the fault is upstream and 
downstream, respectively. Then, DZ#2 which includes R209, 
R210, and R211 will detected the fault upstream, upstream, 
and downstream, respectively. Thus, the fault can be localized 
as F4. 

The results of the fault localization accuracy are com-
parable to those reported in the literature in [8], [5], [7], 
[6]; however, the proposed approach tackles two additional 
challenges. First, all the scenarios considered here are from 
islanded operation with 100% renewable penetration, which 
leads to a reduced magnitude of the fault currents and signif-
cant nonlinearity in the fault responses. Second, the scenarios 
used contain many high-impedance fault scenarios, that are 
challenging to detect and classify because they might not cause 
a noticeable change in the voltage and current levels. 

VI. DISCUSSIONS 

The proposed approach uses an ML method to differentiate 
between upstream and downstream faults at each location to 
localize the faults in the MG. Designing a generic framework 
for data-driven-based protection in other MG systems requires 
several considerations. First, it is critical to develop a reliable 
and accurate model of the MG. This model should capture the 
dynamic behavior of the MG components, including inverters, 
energy storage systems, and loads. By simulating various 
fault scenarios on this model, it becomes possible to generate 
datasets for training the fault classifers. The dataset generation 
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process should also refect the varying operations of the 
MG under consideration, such as variation in the load and 
renewables profles as well as the fault characteristics. 

Due to the radial (tree) structure of the considered MG, 
the defnition of upstream and downstream directions at every 
relay can be simple. That is, the if the path between the fault 
and the point of common coupling (PCC) includes a specifc 
relay, then the fault has to be considered downstream for the 
specifc relay. Otherwise, if the path between the fault and 
the PCC does not include a relay, then the fault is considered 
upstream for the relay. Clearly, this approach is not applicable 
in networks with loops because the path between the fault 
and the PCC can be non-unique. This will require further 
developments to identify fault directions with respective to the 
relays in order to maintain the classifcation process as a simple 
binary classifcation. One option can be to use directions based 
on the current fows in pre-fault conditions, but this will require 
modifcations of the labelling process in the data generation. 

In the proposed approach, the communication requirements 
are limited to neighboring relays. This means that relays 
need to exchange information only with their adjacent relays 
to perform fault localization. This localized communication 
approach signifcantly reduces the amount of data transmission 
and ensures scalability for larger MG systems. As part of the 
generic framework, it is important to defne the communication 
protocol and establish the necessary infrastructure to facili-
tate seamless information exchange between communicating 
relays. One advantage of the proposed approach is that the 
shared information between relays is only the classifcation 
results, i.e., 1-bit. This reduces the burden of establishing 
high-bandwidth communication link between relays which is 
required if measurements need to be shared, for example. 

By considering the aforementioned points, the proposed 
data-driven approach can be adapted as a generic frame-
work for designing data-driven-based protection in other MG 
systems. The framework provides a systematic and scalable 
approach for fault localization, leveraging local learning tech-
niques and hierarchical decision-making processes. With the 
appropriate MG model, standardized differentiation of up-
stream and downstream faults, and addressing the communica-
tion requirements, the framework can be successfully deployed 
in various MG confgurations, ensuring reliable and safe op-
eration while accommodating different operational conditions 
and fault scenarios. 

VII. CONCLUSIONS AND FUTURE WORK 

The protection of MGs with 100% penetration from IBRs 
remains a challenge with the adoption of MGs in future 
power networks. This paper discusses a machine learning-
based approach to identify fault locations within MGs. A 
comprehensive dataset of fault scenarios was generated by 
varying the operational conditions as well as the fault char-
acteristics. Next, a machine learning approach was developed 
that simplifes the task of each relay into a binary classifcation. 
Then, a hierarchical approach was presented to localize the 
faults using the decisions of the simple classifers at the relays. 
While tackling challenging scenarios, the approach showed 
performance levels that match performance of approaches de-
veloped in the literature for much simpler distribution network 
protection tasks. 

Future works include a localized decision making process 
that enable relays to make localization decision without re-
quiring all relays in the network to classify fault locations. 
In addition, incorporating the proposed approach with a relay 
framework that also include a detection mechanism is required 
to establish data-driven relay architectures. 
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