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ABSTRACT: A necessary transformation for a sustainable
economy is the transition from fossil-derived plastics to polymers
derived from biomass and waste resources. While renewable
feedstocks can enhance material performance through unique
chemical moieties, probing the vast material design space by
experiment alone is not practically feasible. Here, we develop a
machine-learning-based tool, PolyID, to reduce the design space of
renewable feedstocks to enable efficient discovery of performance-
advantaged, biobased polymers. PolyID is a multioutput, graph
neural network specifically designed to increase accuracy and to
enable quantitative structure−property relationship (QSPR)
analysis for polymers. It includes a novel domain-of-validity
method that was developed and applied to demonstrate how
gaps in training data can be filled to improve accuracy. The model was benchmarked with both a 20% held-out subset of the original
training data and 22 experimentally synthesized polymers. A mean absolute error for the glass transition temperatures of 19.8 and
26.4 °C was achieved for the test and experimental data sets, respectively. Predictions were made on polymers composed of
monomers from four databases that contain biologically accessible small molecules: MetaCyc, MINEs, KEGG, and BiGG. From 1.4
× 106 accessible biobased polymers, we identified five poly(ethylene terephthalate) (PET) analogues with predicted improvements
to thermal and transport performance. Experimental validation for one of the PET analogues demonstrated a glass transition
temperature between 85 and 112 °C, which is higher than PET and within the predicted range of the PolyID tool. In addition to
accurate predictions, we show how the model’s predictions are explainable through analysis of individual bond importance for a
biobased nylon. Overall, PolyID can aid the biobased polymer practitioner to navigate the vast number of renewable polymers to
discover sustainable materials with enhanced performance.

■ INTRODUCTION
Replacing fossil-based with biobased plastics can play a key
role in developing a circular materials economy and in
reducing greenhouse gas (GHG) emissions from polymer
manufacturing, which are expected to grow from 5 to 15% of
the global carbon budget from 2015 to 2050.1,2 Market
penetration of biobased polymers is less than 1% of the plastics
market with polylactic acid possessing the largest production
volume at 282 kilotonnes annually as of 2021.3,4 Increasing the
adoption rate of polymers containing biobased monomers will
help meet climate and sustainability goals and can be driven by
improvements to properties critical to performance and
production at competitive pricing.5−7

Balancing performance across multiple material properties
remains a challenge in polymer discovery and redesign.8 By
leveraging the inherent chemical functionality afforded by
biobased feedstocks, it is possible to improve polymer
properties to optimize material performance and ultimately

drive market adoption.5,9,10 However, the design space for
material discovery is vast with monomers accessible from
biological and chemical transformations of biobased feedstocks
exceeding >1 × 105, which can be combined in a combinatorial
number of polymers. Thus, there is a clear need for rapid and
accurate property prediction tools to facilitate the development
of biobased polymers.

High-throughput machine learning tools can provide an
accelerated, data-driven approach to material discovery,
including for sustainable polymers.11,12 Polymer property
prediction based on molecular structure has evolved from
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group contribution theory to advanced molecular descrip-
tors.13−16 However, these descriptors use static featurization
kernels or rules to abstract the chemical environment. Modern
data science techniques can be applied to better “featurize”
biobased polymers that exhibit unique chemical functionality
relative to traditional polymers. To this end, recent advances
have extended the featurization task to enable “end-to-end”
learning on molecules.17,18 End-to-end learning allows for both
feature extraction and prediction to be handled simultaneously,
and these methods achieve state-of-the-art prediction accu-
racies for both small-molecule and polymer properties.19−21

In this study, we developed an end-to-end learning,
multioutput, message-passing neural network, PolyID, that
was specifically designed for polymer prediction. We ensured
confidence in prediction accuracy through experimental
validation. An intuitive and interpretable domain-of-validity
method is developed to ensure relevant training data are used
for the desired prediction task. As an illustrative example of
biobased polymer discovery, we used property predictions and
the developed domain-of-validity method to screen for
performance-advantaged replacements of poly(ethylene ter-
ephthalate) (PET) from 1.4 × 106 biobased polymers, yielding
five potential candidates. One of the five PET replacements
were synthesized experimentally and demonstrated properties
close to model predictions. Finally, we show how structure−
property relationships can be explored by using the developed
message-passing network. Using end-to-end machine learning
methods and experimental validation, this work demonstrates
that the discovery of performance-advantaged biobased
polymers can be catalyzed by leveraging data science.

■ RESULTS
Development of a Polymer Property Prediction Tool.

To build and apply the machine learning tool, three
components were needed: (1) a labeled database with polymer
properties and a prediction database of bioaccessible
monomers, represented using the Simplified Molecular-Input
Line-Entry System (SMILES), (2) in silico polymerization
schemes for automated generation of high-fidelity polymer
structures from the monomer SMILES, and (3) a message
passing neural network architecture tuned for polymer
property prediction, all of which are shown in Figure 1A.
Details for the curation and splitting of the labeled database,
containing 1791 unique polymers, and for the curation of the
prediction database are provided in the Methods section. The
curated data set contains 8 polymer properties: glass transition
temperature (Tg), melt temperature (TM), density (ρ),
modulus (E), and the permeability of O2, N2, CO2, and H2O
(PM‑Od2

, PM‑Nd2
, PM‑COd2

, PM‑Hd2O). During message passing, atom,
bond, and molecular “states” are initialized as one-hot
encodings, and these vectors differentiate themselves during
message passing based on local environments, which is ideal
for embedding chemical structures as they are affected by this
environment. From Figure 1B, increased differentiation of ester
and amide bonds in the latent space is visible as message
passing proceeds through the network, and further analysis of
the ester bonds revealed clustering based on polymer type, as
shown in Figure S1.

To develop PolyID specifically for polymers, we made
design decisions around the structural representation of the
polymer and the network architecture to improve performance
and interpretability. We show how larger representations of

polymer structures in conjunction with deeper message-passing
neural networks can be used to improve network accuracy.
Often neural networks are seen as “black-box” tools; therefore,
we constructed the network architecture to enable structure−
property relationship interpretation by pooling each bond into
a single value at the end of the network and making the sum
over all bond values result in the predicted property. Finally, a
domain validity method was developed as part of the tool to
ensure the accuracy of the predicted values. To validate the
tool, we experimentally synthesized and characterized the
thermal properties of 10 polyesters and 12 polyamides in
addition to withholding a random 20% of our polymer
database as a test set (vide infra).

Considerations for Using AI in Polymer Discovery.
End-to-end learning approaches for polymers should consider
both the structural representation of the polymer and the
network architecture to improve accuracy, which is demon-
strated in Figures 2A−C and S2. Details for the generation of
these figures are provided below Figure S2. Rather than
representing polymer structures as simple repeat units, which
does not capture random comonomer order or regio-
orientations in the polymer, we react monomer SMILES into
detailed polymer structures to better represent the structural
heterogeneity present in the polymer. For training and

Figure 1. (A) Components required for the machine learning tool
included a training set where the monomer structure was mapped to
the polymer property, an in silico polymerization scheme, and a
message-passing neural network for prediction. (B) Principal
components of the bond feature vector as the polymer structures
are passed through each layer show greater bond differentiation as the
message passing proceeds. Amide, ester, and all other bonds are
shown in green, orange, and gray, respectively.
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prediction tasks, the polymer chain length and the number of
polymer chains, “replicates”, can be increased or decreased to
capture the multitude of monomer configurations found in a
polymer structure and balance computational expense against
prediction accuracy. The in silico polymerization scheme is
therefore capable of incorporating structural differences that
arise from random comonomer insertion, random regio-
orientation, and varying comonomer composition. Details of
the polymer structure building algorithm are provided in the
Methods section. Figure 2A compares a 1-mer and 6-mer of
polypropylene where the former has no structural hetero-
geneity and the latter has structural heterogeneity that arises
from random regio-orientation. Results in Figures 2C and S2
demonstrate that the prediction error can be reduced by
moving beyond simple repeat unit representations to
representations with greater structural fidelity. Performance
can also be improved by increasing the number of message-
passing layers, which increases the size of the environment
from which an atom or a bond can infer chemical information,
as shown in Figure 2B. However, improvements to prediction
accuracy as a function of the number of message-passing layers
eventually saturates, as shown in Figures 2C and S2. The

saturation of performance could be attributed to over-
smoothing or oversquashing, which are known issues in
graph networks, and further increasing of network depth could
eventually degrade performance.22,23 Atom and bond feature
vector lengths have an optimal range, as shown in Figures 2C
and S2, which is likely due to a trade-off between bias and
variance for a given training database size, network size, and
regularization. Figures 2D and S3 demonstrate the relationship
between polymer size and network depth. As the number of
monomers in a polymer chain is increased, the depth of the
message-passing network must also increase to encode
additional structural information across larger and more
diverse local environments. Table S1 provides the optimized
hyperparameters that were used to make the predictions in this
work. While others have shown multitask can outperform
single-task performance in polymer property prediction, Table
S2 shows no consistent performance improvement when the
number of properties used in training are increased.24,25 By
considering the trends from polymer chain length and message
layer depth, we show that end-to-end learning on polymers can
be improved through improved structural representation and
by increasing network depth.

Validating Predictions through Domain of Validity,
Test Sets, and Experiment. Before using the polymer
prediction tool to identify performance-advantaged biobased
polymers, we aimed to validate the model and ensure
confidence in the predicted values through two approaches.
First, we confirmed prediction structures were in a similar
chemical domain as the training set used to parametrize the
model by developing an interpretable, structure-based domain
of validity method. Second, we synthesized new polymers that
were not in the training set, measured their properties, and
compared the experimental and predicted values.

The domain of validity method that was developed sums the
number of Morgan fingerprints (substructures) in a predicted
polymer that are not found in the training set.26,27 Figure 3A
shows that the mean absolute error is reduced for structures
with high overlap in substructures with the training data. When
a target polymer contains many substructures that are not
found in the training data, then the predictions should be
disregarded. Based on the observed increase in the variance
above seven substructures outside the training set in Figure 3A,
a value of seven was selected as the threshold for which
polymers were considered outside the domain of validity for
this work.

Building on this domain of validity method, we used two
separately trained models to show how prediction accuracy is
substantially impacted by the structural overlap between the
training and prediction sets. One model was trained on a
database with no polymers containing cis,cis-muconic acid (c,c-
muconic acid), a biobased monomer,28 and the other model
was trained on a database with a single instance of a c,c-
muconic acid-containing polymer in the training set, poly(1,4-
butanediol-co-c,c-muconic acid).29 By adding a single, task-
relevant data point to the training set, the mean absolute error
of the glass transition temperature (Tg) for three c,c-muconic
acid-containing polymers excluded from the training set was
reduced from 40 to 23 °C, as shown in Figure 3B. Upon
addition of the c,c-muconic acid-containing polymer, the
chemical substructures outside the training set dropped from
7 to 4 and from 4 to 0 for the polyamide and all polyesters,
respectively. The only polymer with a worse mean absolute
error, poly(1,6-hexamethylenediamine-co-c,c-muconic acid),

Figure 2. (A) Ability to incorporate regiovariability in the SMILES
representation of polypropylene is shown by increasing the number of
monomer units from 1 to 6. (B) Increasing the structural fidelity and
message layers reduces error. When the number of message-passing
layers is 5, atoms 1 and 5 (local environment A) as well as atoms 6
and 11 (local environment B) can share information, but atoms 1 and
11 do not share information. When the number of message layers is
increased to 11, the local environment is expanded, and atoms 1 and
11 can share information (local environment C). (C) Increasing
monomers in the polymer chain and the number of message-passing
layers reduces error. Optimizing atom and bond feature vector length
reduces error. Numerical data for this figure are provided in Table S3.
(D) Validation set loss (low is better) as a function of network depth
and polymer size shows that as polymer size is increased, network
depth must also be increased to improve performance.

Macromolecules pubs.acs.org/Macromolecules Article

https://doi.org/10.1021/acs.macromol.3c00994
Macromolecules 2023, 56, 8547−8557

8549

https://pubs.acs.org/doi/suppl/10.1021/acs.macromol.3c00994/suppl_file/ma3c00994_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.macromol.3c00994/suppl_file/ma3c00994_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.macromol.3c00994/suppl_file/ma3c00994_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.macromol.3c00994/suppl_file/ma3c00994_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.macromol.3c00994/suppl_file/ma3c00994_si_002.xlsx
https://pubs.acs.org/doi/suppl/10.1021/acs.macromol.3c00994/suppl_file/ma3c00994_si_003.xlsx
https://pubs.acs.org/doi/suppl/10.1021/acs.macromol.3c00994/suppl_file/ma3c00994_si_003.xlsx
https://pubs.acs.org/doi/10.1021/acs.macromol.3c00994?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.macromol.3c00994?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.macromol.3c00994?fig=fig2&ref=pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.macromol.3c00994/suppl_file/ma3c00994_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.macromol.3c00994?fig=fig2&ref=pdf
pubs.acs.org/Macromolecules?ref=pdf
https://doi.org/10.1021/acs.macromol.3c00994?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Figure 3. (A) Mean absolute error (MAE) decreases as the level of substructure overlap between training and prediction structures increases.
Numerical data are provided in Table S5. (B) Glass transition prediction accuracy for c,c-muconic acid-containing polymers when the training set
contains no c,c-muconic acid-based polymers (red) vs when it contains one c,c-muconic acid-based polymer (green). Co-monomers used with c,c-
muconic acid were ethylene glycol (EG), 1,3-propanediol (1,3-PDO), and 1,6-hexanediamine (1,6-HDA). The dashed bar is the data point that
was added to the training set while the other c,c-muconic acid-based polymers were in neither training set. Numerical data are provided in Table S6.
(C) Circled substructures not contained in the training set when no c,c-muconic acid-containing polymers are in the training set vs one c,c-muconic
acid-containing polymer is in the training set. (D) Experimental synthesis schemes for polyesters and polyamides. (E) Parity plot for the glass
transition temperature of predicted and experimentally determined values for synthesized polyesters and polyamides and test set data. Numerical
data are provided in Table S7.

Figure 4. (A) Combinatorial set of polyesters, polyamides, and polycarbonates synthesized from four databases of metabolites. Numerical data are
provided in Table S9. (B) Theoretical yields for bioaccessible metabolites based on BiGG metabolic flux models. (C) Histogram of the theoretical
percent yield for 55 metabolites that can participate in polyester, polyamide, or polycarbonate synthesis. (D) Screening for performance-advantaged
biobased (PABP) PET replacements via scatter plot of oxygen permeability and glass transition temperature. Green dots indicate polyesters
predicted to be PABP PET replacements within the domain of validity (DoV). Red circles indicate polyesters with determined theoretical yields
within the DoV. Gray dots indicate polyesters within the DoV that were predicted to not be PABP. (E) Diacids were from candidate PET
replacements. (F) Venn diagram and inset table showing breakdown of polyesters based on DoV criteria, PABP criteria, and calculatable theoretical
yields.
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contains amide linkages with conjugation to an unsaturated
bond, which is a substructure that was still not in the training
set, Figure 3C. Targeted augmentation of the database to
incorporate an amide linkage next to an unsaturated bond
would likely further improve the predictive performance.
Substructure analysis enabled by the developed domain of
validity method can easily identify task-relevant data for
targeted data extraction.30,31

To validate the accuracy of the trained network, we used a
20% holdout test set, and additionally, we experimentally
synthesized and characterized 22 polymers (10 esters and 12
amides) that were not in the database. Table S4 contains the
validation set and the test set mean absolute errors. Figure 3D
shows the general synthesis scheme for producing polyesters
and polyamides. The parity plot in Figure 3E shows the
experimental and predicted glass transition temperatures for
the synthesized materials and test set. For the experimentally
synthesized polymers, Table S7 and Figure S4 contain the
thermal data and selected nuclear magnetic resonance (NMR),
respectively. Model predictions for synthesized polyesters and
polyamides were slightly less accurate than predictions for the
same polymer classes in the held-out test set, with a mean
absolute error in Tg of 26.4 and 17.3 °C for the experimental
and test sets, respectively. This was expected, as the average
number of the substructures outside the training set was 1.6 for
the experimental set and 0.5 for the held-out test set. With the
experimentally validated model and domain of validity method
in-hand, the machine learning tool was then applied to
discover new performance-advantaged biobased polymers.

Coupling Machine Learning with Metabolic Model-
ing to Discover Performance-Advantaged Biobased
Polymers. The discovery of biobased polymers can be
enabled by coupling computational methods that identify
performance-advantaged polymers with methods based on
metabolic models that predict efficient routes for their
production. Figure 4A shows a lower bound for the number
of potential biobased polymers that was determined for the
polyesters, polyamides, and polycarbonates that could be
synthesized from compounds in four metabolite data-
bases.32−35

To identify monomers that can be produced efficiently,
constraint-based metabolic reconstruction and analysis was
used to determine theoretical yields of analytes that could be
synthesized into biobased polymers.36,37 Calculated theoretical
yields for annotated metabolites are shown in Figure 4B from
glucose in Escherichia coli (E. coli), Saccharomyces cerevisiae (S.
cerevisiae), and Pseudomonas putida KT2440 (P. putida) and
from CO2 in Arabidopsis thaliana.38−40 It was found that 102 of
the 328 analytes with determined theoretical yields had the
necessary functionality to participate in polyester, polyamide,
or polycarbonate condensation chemistries. Of these, 55 were
predicted to exhibit theoretical yields above 90%, which
provides a subset of metabolites with the potential for carbon-
efficient production. Figure 4C shows the distribution in the
theoretical percent yield for the 147 metabolites. For
comparison, lactic acid, which is produced at commercial
scale through fermentation, has a theoretical yield of 100%
from glucose, and metabolic engineering efforts have achieved
a 93% yield in practice.41 Numerical data for theoretical yields
are provided in Table S8.

To validate our predictions, a performance-advantaged
biobased polymer (PABP) analogue of PET was targeted
with a Tg above the boiling point of water and with equivalent

or improved O2 barrier properties. PET is the world’s largest
condensation polymer with a market of 26 million tons in
2021, and its primary uses include carpets, clothing, single-use
beverage bottles, and food packaging.42,43 Improvements to
thermal or barrier properties of biobased PET replacements
could expand its application domain and drive market
adoption through superior performance. Using monomers
from the KEGG database that met the prescreening criteria
described in the Methods section, we screened 22,447
polyester candidates and identified 5 polymers that met the
domain of validity and desired performance criteria based on
predicted performance, which are plotted in Figure 4D (green
circles) and illustrated with associated data in Figure S5.32 The
improved material properties can be attributed to 3 diacids,
4,5-dihydroxphthalate, 4-hydroxpthalate, and 5-carboxyvanil-
late, which are shown in Figure 4E. The diacids are structural
analogues of phthalic and isophthalic acid with additional
oxygen functionalities imparted from biochemical trans-
formations that likely contribute to enhanced predicted
performance. Investigation of the biosynthetic pathways
found that the phthalate analogues have been implicated in
polycyclic aromatic hydrocarbon and phthalate catabolism
while 5-carboxyvanillate is found in the lignin biphenyl
pathways.44−46 A standard and an extended synthesis protocol,
which is described in the Methods section, is performed to
synthesize poly(ethylene 5-carboxyvanillate) (PEC). The
standard protocol had a shorter reaction time that produced
lower molecular weight material with a Tg of 85 °C. For the
extended protocol that had a longer reaction time, a higher
degree of conversion was achieved that produced insoluble
product with a Tg of 112 °C. The extended protocol produced
a polymer with a Tg value within the predicted range of 106 ±
9 °C, which is higher than the Tg of PET. The model could not
capture the molecular weight dependence of the Tg. This
dependence is described by the Flory−Fox equation and could
be incorporated into future, physics-informed prediction
models. The synthesis of PEC proved to be challenging as
the phenoxy and methoxy groups likely contributed to
recalcitrant polymerizations, resulting in difficulties with
standard polyester synthesis techniques. For further details,
the characterization data and analysis are provided in Figure
S6A−F.

Results from the yield analysis, property prediction, and
domain of validity screening reveal opportunities to improve
our ability to combine computational tools for the discovery of
performance-advantaged biobased polymers. Figure 4F shows
that while 205 of the 22,447 candidate polyesters from the
KEGG database could outperform PET, only 5 of them were
within the domain of validity. Similarly, only 8 of the 339
polymers had yields that could be calculated using the available
metabolic models for both monomers used in the polymer-
ization reaction and were within the domain of validity, which
are provided in Table S10 and are shown as red dots in Figure
4D. The table inset of Figure 4F indicates how many of the
22,447 candidates were (yes) or were not (no) inside the DoV,
PABP, or were able to calculate yields.

Using Machine Learning to Understand QSPRs for
Biobased Polymer Design. The development of perform-
ance-advantaged biobased polymers can be accelerated as the
relationship between unique biobased molecular structures and
material performance is better understood.47 This work
developed two approaches to leverage an end-to-end learning
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algorithm for the exploration of quantitative structure−
property relationships.

The first approach involved correlating individual bond
contributions to the polymer properties. This was achieved by
pooling each bond vector from the last message-passing block
into a single value. The sum of all bonds is then used as the
prediction value, which forces the algorithm to assign a relative
contribution for all bonds, and has been exemplified using the
two nylon polymers shown in Figure 5A.18 The β-ketone in β-

ketoadipate is known to increase Tg relative to that in the
adipic acid−based polyamide. Molecular dynamics has shown
that the experimentally verified increase in Tg is attributed to
decreased rotational freedom around the β-ketone, which
increases the rigidity of the carbon polymer backbone.48,49

While PolyID cannot provide the same mechanistic insights as
molecular dynamics, the increase in Tg is appropriately
assigned to the β-ketone, and thus, some structure−property
relationship can be inferred by the high-throughput prediction
algorithm. The second approach aimed to inform biobased
polymer design by understanding how individual monomers
independently affect material properties. Heat maps based on
the predicted property, as shown in Figure 5B, can be used to
identify trends in monomer contribution and aid in the
selection of monomers with the desired performance. By
studying bond contribution to properties and monomer impact
on materials, the ability to understand QSPRs for new
biobased materials can be improved and used to enhance the
performance of these biobased materials.

■ DISCUSSION
The aim of this work is to accelerate the transition to polymers
derived from sustainable feedstocks by applying high-

throughput property prediction to identify performance-
advantaged biobased polymers. Experimentally screening the
1.4 × 106 biobased polymers identified from four biomolecule
databases is not feasible. High-throughput computational tools
for predicting material performance, such as PolyID, are thus
necessary to hasten the transition to biobased polymers. Figure
4F identifies two clear gaps in computational analyses that, if
filled, can improve the screening of performance-advantaged
biobased polymers. (1) The number of biobased polymers that
fall within the domain of validity needs to be increased by
expanding the size and chemical diversity of training databases
so there is coverage in chemical space relevant to biobased
polymers. (2) The yields of biobased monomers that can be
determined from constraint-based metabolic models need to
be increased by expanding the pathways incorporated into
these models.

The design space can be further expanded if additional
polymer chemistries, automated network generation, synthesis
planning tools, and/or reinforcement learning approaches are
applied to available bioaccessible molecules.50−53 Here, an
initial attempt toward coupling constraint-based metabolic
modeling with machine learning-based property prediction was
pursued to identify polymers with performance advantages and
carbon-efficient production routes. However, increased cover-
age of bioaccessible chemical motifs in training sets and
expansion of modeled metabolic pathways will be needed
before the combination of these computational methods can
play a significant role in the development of biobased
polymers. Further, maximum theoretical yields for biological
transformations are rarely achieved experimentally, and
technoeconomic models for these products will need to
account for lower yields and separations costs. In practice,
downstream chemical modification of bioderived products is
common. Incorporating retrosynthesis methods where bio- and
chemo-transformations are combined would further expand
the available chemical domain and is an opportunity to link
property prediction to an even broader set of carbon-efficient
production pathways.53

Developing high-throughput property prediction tools that
are both accurate and interpretable is challenging for
chemically complex systems, such as polymers. This work
demonstrated that machine learning methods applied to
polymers can achieve greater accuracy when the depth of the
network architecture is increased and when the structural
representation of the polymers moves beyond simple repeat
units. This greater accuracy is demonstrated in Table S11
which compares the performance of the message passage
neural network with other reported embedding and prediction
models using the same training and test set. The lack of
benchmark data sets in polymer informatics makes direct
comparison challenging across models and remains a challenge
for the field. With precise control over polymer topology,
future end-to-end learning on polymers could incorporate
molecular weight or sequence (e.g., stereo-, regio-) controlled
polymers while being coupled with coarse-graining type
methods, such as BigSMILES, to enable computationally
tractable machine learning on macromolecular architectures
(e.g., block copolymers).54,55 Design principles for biobased
polymers are nascent compared to their petro-based counter-
parts, which is in part due to the vast structural diversity
available through bio- and chemo-catalytic transformations.
Quantitatively determining the direction and magnitude of
performance changes due to bioaccessible structural mod-

Figure 5. (A) Relative bond contribution to the glass transition
temperature for nylon-6,6 and nylon with adipic acid replaced with β-
keto adipic acid. (B) Selection of diacid (y-axis) and diol (x-axis) can
be tuned to impact the glass transition. Monomer structures are
provided in Figure S7.
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ifications, such as adding hydroxy and methoxy groups to
isophthalic acid, in a high-throughput method can aid in
developing biobased alternatives to petrochemical incumbent
materials. In this work, we have shown how to build high-
throughput machine learning tools that can elucidate
quantitative structure−function relationships at the bond or
monomer level. Advanced machine-learning algorithms, such
as variational autoencoders or self-attention models, could
further increase the interpretability of latent-space embedding
representations and help to develop design principles for
biobased polymers.56,57

■ CONCLUSIONS
In this work, a new, high-throughput polymer property
prediction tool, PolyID, was developed using an end-to-end
learning approach. The prediction accuracy of the multioutput,
message-passing neural network was improved by coupling
neural network architecture design and polymer structure
representation. The tool was validated through in-house
experimental synthesis of 10 polyesters and 12 polyamides
that were not contained in the training set. The discovery of a
biobased, performance-advantaged PET analogue was achieved
by screening >22,000 polyester candidates for improved
thermal and barrier performance using PolyID. The improved
thermal performance of the PET analogue was confirmed
experimentally. By using high-throughput property prediction
tools to identify materials that have enhanced performance and
are accessible from biobased or waste-based substrates, the
transition to polymers derived from renewable feedstocks can
occur more quickly.

■ METHODS
Preparation of the Labeled Database. A labeled database was

constructed by aggregating existing polymer databases58−61 and
literature reports resulting in 1,791 unique polymer structures, Table
S12, across the 5 polymer classes, Figure S7, and 8 polymer
properties. Data, monomer structures, and polymer structures
generated from the structure building code that were curated from
literature reports are provided in Table S13 in machine-readable
format. The database was created by compiling monomers
represented as SMILES with one or more of the following polymer
properties: glass transition temperature (Tg), melt temperature (TM),
density (ρ), modulus (E), and the permeability of O2, N2, CO2, and
H2O (PM‑Od2

, PM‑Nd2
, PM‑COd2

, PM‑Hd2O). Data statistics are provided in
Table S4. During data aggregation, monomer SMILES strings were
matched with the corresponding polymer properties, and entries with
multiple values for the same monomer set and property were
averaged. Data quality was ensured for each monomer set through
manual data review to ensure correctness of monomer structure and
property value and by verifying monomers would undergo the desired
chemistry using automated polymer reaction schemes.62 From each
monomer set, a polymer structure was generated using known
polymer chemistries. The polymer structure and corresponding vector
of property values were used for training.

Polymer Structure Building Algorithm. The polymer structure
building code, dubbed “monomers to polymers” (m2p), reacts
monomers together to produce a polymer chain that are all
represented as SMILES. To generate polymer SMILES from
monomer SMILES, 5 polymer reaction chemistries were encoded in
RDKit’s reaction SMARTS, which are provided in Figure S8. To
initiate the polymerization reaction, two monomers that are known to
undergo the specified chemistry are probabilistically selected based on
the molar ratios provided. If no molar ratios are provided, equal molar
is assumed. This creates a polymer chain with a degree of
polymerization of 2. A new monomer is selected using the same
probabilistic selection process and is reacted with the growing

polymer chain. This process continues until the specified degree of
polymerization is reached. Each monomer is inserted into the growing
chain with random regio-selectivity. The structure building algorithm
can build polymer structures with varying degrees of polymerization,
molar ratios, and stereochemistry based on user input. The code is
also able to generate replicate structures based on the same monomer
set wherein monomer order within the polymer chain varies due to
random sampling based on the monomer molar ratios. m2p and an
example jupyter notebooks are available at www.github.com/NREL/
m2p. The python package may also be installed via pypi: pip install
m2p. In this work, a single polymer chain was generated for training,
and 7 replicate polymers were generated when making new
predictions. MAE did not improve by increasing the number of
replicate polymers for training, and the prediction variability was
sufficiently reduced when 7 or more replicate structures were used in
the prediction of new polymers.

Splitting Training, Validation, and Test Sets. Twenty percent
of the labeled database was set aside as a test set. The remaining data
was segregated using a 10-fold cross-validation strategy using scikit
learn, which resulted in 10 trained models for prediction.63 Prediction
uncertainties for new polymer structures are calculated by taking the
mean of the predictions from all 10 models. Error bars for predicted
values indicate the standard deviation for predictions made by the 10
trained models produced from the 10-fold cross-validation. Training,
validation, and test sets were stratified across polymer classes to
ensure splits and performance were not biased toward a specific
polymer class. Data values were scaled by using the robust scaler from
Scikit-Learn.

Preparation of the Prediction Database. To source a database
of biobased monomers for prediction, four metabolic analyte
databases, MetaCyc, MINE, KEGG, and BiGG, were used to identify
compounds that are bifunctional for thermoplastics condensation
polymerization, which have a molecular weight below 300 Da for
processability, and which only contain only CHNO atoms.32−35 After
monomer screening, the number of fully biobased polyesters,
polyamides, and polycarbonates was determined for each database,
Figure 4A. The total number of polymers, after considering database
overlap, was 1.4 × 106, Table S9.

Graph Neural Network Architecture, Training, and Hyper-
parameter Optimization. The graph neural network used in this
work is based on previously developed message-passing neural
networks and used the neural fingerprints python library.64 Figure
S9 provides a diagram of the PolyID pipeline and the PolyID network
architecture. The loss function used the mean absolute error across all
8 material properties, and missing values were masked. Each model
was trained using gradient descent by iterating over the data set for
1000 epochs with the ADAM optimizer, which was sufficient for the
validation loss to achieve an asymptotic value. Exemplary loss and
validation loss plots as a function of epoch number are provided in
Figure S10. Hyperparameter optimization was performed for network
design parameters and polymer structure: batch size, initial learning
rate, decay rate, atom and bond feature vector length, degree of
polymerization, and number of message-passing layers. Parameter
ranges and optimal values are provided in Table S1, and test set loss
vs parameters’ values is provided in Table S3. Optimal values were
selected based on test set performance wherein test loss no longer
improved by increasing the parameter or an optimal value for the
parameter was found.

Domain of Validity. A domain of validity method was established
to measure the structural similarity between polymers in the training
and prediction sets. This was achieved using Morgan fingerprints,
available through RDKit, to generate hashes associated with chemical
substructures in a polymer structure.27 All hashes within the training
data set were generated, and hashes were then generated for the
polymer structures that were being predicted. The number of hashes
in the prediction structure that were not found in the training
database were summed. The radius for molecular fingerprinting was 2.
For a polymer to be considered within the domain of validity, a
threshold of ≤6 was selected for the number of hashes not in the
training set.

Macromolecules pubs.acs.org/Macromolecules Article

https://doi.org/10.1021/acs.macromol.3c00994
Macromolecules 2023, 56, 8547−8557

8553

https://pubs.acs.org/doi/suppl/10.1021/acs.macromol.3c00994/suppl_file/ma3c00994_si_003.xlsx
https://pubs.acs.org/doi/suppl/10.1021/acs.macromol.3c00994/suppl_file/ma3c00994_si_003.xlsx
https://pubs.acs.org/doi/suppl/10.1021/acs.macromol.3c00994/suppl_file/ma3c00994_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.macromol.3c00994/suppl_file/ma3c00994_si_003.xlsx
https://pubs.acs.org/doi/suppl/10.1021/acs.macromol.3c00994/suppl_file/ma3c00994_si_003.xlsx
https://pubs.acs.org/doi/suppl/10.1021/acs.macromol.3c00994/suppl_file/ma3c00994_si_001.pdf
http://www.github.com/NREL/m2p
http://www.github.com/NREL/m2p
https://pubs.acs.org/doi/suppl/10.1021/acs.macromol.3c00994/suppl_file/ma3c00994_si_003.xlsx
https://pubs.acs.org/doi/suppl/10.1021/acs.macromol.3c00994/suppl_file/ma3c00994_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.macromol.3c00994/suppl_file/ma3c00994_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.macromol.3c00994/suppl_file/ma3c00994_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.macromol.3c00994/suppl_file/ma3c00994_si_002.xlsx
https://pubs.acs.org/doi/suppl/10.1021/acs.macromol.3c00994/suppl_file/ma3c00994_si_003.xlsx
pubs.acs.org/Macromolecules?ref=pdf
https://doi.org/10.1021/acs.macromol.3c00994?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Polyamide Synthesis. Stock solutions of 1.5 M imidazole, 1.5 M
triphenylphosphite (TPP), 0.25 M diacid, and 0.25 M diamine were
prepared for synthesis reactions. All solutions used dimethylforma-
mide (DMF) as a solvent and were sonicated as necessary to dissolve
constituents.65 Equal volumes of TPP, imidazole, diamine, and diacid
were added to a glass reactor vessel and placed on a stir plate for 24 h.
After reaction, 4−6× the reaction volume of acetone was used to
precipitate the contents. To purify the polymer, the precipitate was
vacuum-filtered and rinsed with water and acetone 5× each, while
crushing the powder further between each rinse. The powder was
then dried in a vacuum oven overnight at 60 °C. The acetone/water
rinse and vacuum drying were repeated 3×. Alternatively, if the
precipitate was water-soluble, the contents were placed in a 50 mL
centrifuge tube with ∼40−50 mL acetone. The contents were
centrifuged for 3 min at 10,000 rpm, and the acetone was decanted.
Fresh acetone was added, and the contents were stirred and allowed
to centrifuge. The precipitate was centrifuged for a total of 3×. The
contents were placed in the vacuum oven overnight at 60 °C. The
centrifuge and vacuum oven process were repeated 3×. Polymer
samples were then prepared for analysis.

Polyester synthesis. Prior to polyester synthesis, each diacid of
interest was converted to the corresponding dimethyl ester via reflux
in methanol with sulfuric acid as a catalyst. Post esterification, the
dimethyl ester was purified via silica gel chromatography. All
polyesters used the standard synthesis protocol except in the case
of poly(ethylene 5-carboxyvanillate) wherein the standard and
extended synthesis protocols were performed.
Standard Synthesis. Polyesters were synthesized by adding a

dimethyl ester, a diol, and a catalyst (titanium(IV) butoxide/
antimony(III) oxide) at a 1:1.1:0.025 molar ratio to a round-bottom
flask, respectively. A short-neck distillation apparatus was fixed to the
flask, and the reactants were heated to 140 °C under nitrogen and
held for at least 12 h. Still under nitrogen, the temperature was
increased to 220 °C for 4 h. Finally, the pressure was reduced to ∼50
mTorr while remaining at 220 °C for an additional 4 h. The reaction
mixture was cooled to room temperature for purification. The
polymer was purified by initially solubilizing the material in a minimal
amount of chloroform, followed by reprecipitation in excess cold
methanol. The solution was stored at 4 °C overnight to encourage
further precipitation. The precipitated polymer was vacuum-filtered,
and the purification process was repeated once more.
Extended Synthesis. The dimethyl ester of 5-carboxy vanillic acid

was charged into a round-bottom flask with a stir bar, ethylene glycol,
and titanium(IV) butoxide at a 1:1:0.05 molar ratio. A short-neck
distillation apparatus was fixed to the flask, and the reactants were
heated under nitrogen to 150 °C for 24 h. Still under nitrogen, the
temperature was increased to 200 °C for 22 h. The product was
brought to room temperature overnight and then heated again at 200
°C for 7 h under vacuum (∼10 mTorr). The reaction mixture was
analyzed without purification due to the insolubility of the material.

Polymer Characterization. Polymer thermal analysis was
performed on a TA Discovery 25 Digital Scanning Calorimeter
(DSC). Samples were first annealed with the instrument through an
initial temperature cycle, and then thermal properties, glass transition
temperature, and melt temperature were extracted from the second
cycle thermograms. A scan rate of 10 °C/min was used, and TA
Universal Analysis software was used to extract the property values
from the generated thermograms. Prior to DSC analysis, samples were
analyzed via thermogravimetric analysis (TGA), TA Q5500 TGA, to
verify that residual solvent had been removed and determine
degradation temperatures. NMR was also used to determine the
polymer molecule weight via end-group analysis. Specifically, the
polymers were dissolved in d-CDCl3 or d-TFA and subject to analysis
on a Bruker Advance III HD 400 MHz NMR spectrometer. A
relaxation time of 30 s across 16 scans was used to collect 1H NMR
spectra. A Bruker Advance III HD 400 MHz NMR spectrometer was
used for structural identification.

Metabolic Modeling. The cobrapy python package was used to
calculate maximum theoretical yields using the iJO1366 E. coli model,
the S. cerevisiae consensus model v8.4, the P. putida model, and an

Arabidopsis model.38−40,46 Metabolite yields were calculated by
adding a demand reaction for each metabolite contained in the
model and optimizing the flux through that reaction while
maintaining ATP constraints defined by each model. The carbon
yield was defined as the carbon flux for the metabolite of interest
divided by the total carbon flux in. For S. cerevisiae, P. putida, and E.
coli the primary carbon source was glucose, with some products also
involving uptake of CO2. For Arabidopsis, the carbon source was CO2.
All metabolites consisting of CHNO, with at least two carbon atoms,
a molecular weight less than 300 Da, and a carbon yield greater than
10% were considered for further yield analysis.

■ ASSOCIATED CONTENT
Data Availability Statement
Polymer structure building code is available at www.github.
com/NREL/m2p. The code for building the message-passing
neural network is available at www.github.com/NREL/nfp.
The code for building the message-passing neural network is
available at www.github.com/NREL/polyid. Pypi packages nfp,
m2p, and polyid are also available for installation. A web-based
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available at https://polyid.nrel.gov/. A set of examples for
generating and training a message-passing neural network,
generating polymer structures, predicting with a trained neural
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