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Application of Performance Polymers and Composites
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* Can we design and tailor high performance polymer and

Performance and End-of- composite materials for energy relevant applications?

Life for Energy-relevant

dppllCCﬂ'thS * Can we enable material circularity in a wide variety of
energy relevant applications?

* Can we couple material performance and circularity with
renewable feedstocks?

Driving Research Questions
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Coupling Performance and Feedstock
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A Brief Aside: NREL History in Biomass to Polymer
Our work attempts to enable the biorefinery by utilizing the entirety of biomass
. Recent work has also included the conversion of ‘waste’ plastics (e.g. PET) into the same monomers

Early work focused on direct replacements (e.g. Adipic and Terephthalic acid) however, as our worked evolved we started to target
“Performance Advantaged Bioproducts” (PABPs)

. We classify performance advantages in three areas: Manufacturing, Performance, End-of-Life



Coupling Performance and Feedstock
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Maintaining Biomass’ Functionality

Adding or removing functionality, especially heteroatom functionality, from chemicals (biobased or petrochemical) requires energy
and emits GHG

* Thus, the heteroatom functionality of biomass makes it ideal for PABPs, notably performance polymers



- Plastics are Ubiquitous
7 with Modern Life

- Supply Chain Energy
- GHG Emissions
- US Consumption

US plastics consumption
exceeds 360 MMT per year
requiring 3.2 quads of
energy and emitting 104
MMT a year

US Consumption, MMT/year

Scaled Supply Chain Energy, PJ/year
Scaled GHG Emissions, MMT COe/year
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PET — An Engineering Polymer With Commodity
Prices

US PET
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* This total represents all clean flake sold into end markets by US reclaimers. See figure 7 for detail on total flake produced by US
reclaimers from bottles.

Even our most recycled plastics are not fully recycled

NAPCOR PET Reports



PET — An Engineering Polymer

With Commodity Prices

Recycling also depends on form factor leaving
opportunities for further research into utilization

* When looking at a global picture across all PET
uses, PET is the second largest consumed plastic
annually

* This is main driven by textiles and the way that
consumption is tracked

* Thus, there is still a huge opportunity to study PET
recycling and re-use to keep carbon in the
economy
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Unsaturated Polyesters from rPET

Short Life Applications
PET
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Long Life Applications
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Driving Research Question: Can we selectively depolymerize PET and use it in subsequent second life
applications?

Rorrer et al. Joule 2019
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Unsaturated Polyesters from rPET
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Muconate, a bioderived building block with two crosslinking sites, always performance better than its
petrochemical counterparts

*  Storage modulus tracks stiffness while loss modulus tracks fiberglass adhesion
Rorrer et al. Joule 2019
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Unsaturated

Polyesters from rPET
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The FRPs with styrene exhibit poor compatibility at higher olefinic loadings, alongside an excess of crosslink

sites. Methacrylic acid is more compatible with all UPEs

Cywar et al. Forthcoming NREL | 12



Unsaturated Polyesters from rPET
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Properties are consistent with molecular weight, or extent of deconstruction, until the PET starts to exhibit gross
incapability with the reactive diluent

rPET Molecular Weight, g/mol
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Unsaturated

Polyesters from rPET
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As thermosets don’t have to crystallize and are already additive laden, their performance is constant regardless
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Unsaturated Polyesters from rPET
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When both reclaimed plastics and bioderived monomers are used, performance can exceed the petrochemical
incumbent in stiffness (storage modulus) and fiberglass adhesion (loss modulus)
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Unsaturated Polyesters from rPET
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Process intensity can be reduced in all cases with the reduction depending on analysis technique, composition,
and starting material

*  GHG emissions follow similar trends to supply chain energy

Rorrer et al. Joule 2019 NREL | 16



Unsaturated Polyesters from rPET

Traditional PET Synthesis and Recycling
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Carbon should be kept in the economy. Utilizing materials for their second life can enable lower GHG
emissions and supply chain energies, alongside multiple profit avenues.

Rorrer et al. Joule 2019
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Targeting Other
Thermosets

Today’s energy-relevant thermosets are typically sourced from epoxy-amines

* This materials enable robust performance but can be easily cured at low to moderate temperatures

* Like UPE, these materials are used for long-lives but have minimal circularity options

NREL | 18



A Path to RBD Thermosets?
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Epoxy-Anhydride chemistry has been demonstrated to enable circularity and performance in a wide variety of
thermosets

Wang et al. Forthcoming, Rognerud et al. Forthcoming NREL | 19
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This work demonstrates the capability of using PET

Short Life Applications Long Life Applications
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(e.g. a return to multilayers)
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Thank Youl!
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