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Abstract—This paper proposes a virtual oscillator-based con-
trol architecture for a grid-forming converter with an inner
current control loop. In general, the virtual oscillator is based on
a Lienard type of oscillator equation with a cubic nonlinearity.
A virtual oscillator alone cannot accommodate unbalanced or
harmonic mitigation while operating converters in grid-forming
mode. Therefore, to accomplish better tracking performance,
incorporating the provision for nonlinear and/or unbalanced
loads, an inner current control loop is utilized that is based
on the Lyapunov energy function type control architecture. To
reduce the overall cost of implementation and ensure proper
phase difference in the generated voltages, the implemented
virtual oscillator operates with only one voltage feedback from
the point of common coupling. To verify the effectiveness of
the proposed approach, the overall system has been modeled
in MATTLAB/Simulink and PLECS domain. This paper also
presents case studies showing the successful production of low
harmonic load voltages under nonideal loading conditions, along
with other important results.

Index Terms—Three-phase grid forming inverter, Nonlinear/
unbalanced loads, Single voltage sensor, Dual second order gen-
eralized integrator (DSOGI), Photovoltaic (PV ) system, Point
of common coupling (PCC).

I. INTRODUCTION

THE focus on reducing dependence on fossil fuel for
power production has enabled the usage of renewable

energy resources like PV or wind energy in recent years [1]–
[7]. The most commonly used renewable resource is PV for
power conversion due to its abundance and easy availability.
However, power available from a PV generation system is
highly intermittent and a function of the solar potential or
irradiation, moisture, weather conditions, etc. Therefore, to
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operate the overall system in the most optimal manner, ad-
vanced control architecture is needed [8]–[11]. Several control
architectures for PV converters have been reported in various
literature based on virtual synchronous machines (V SM ), di-
rect power control (DPC), virtual oscillators (V O), etc. [12]–
[14]. V SM or synchronverters are converters that are oper-
ated in a manner to emulate the mechanical dynamics of a
synchronous machine. This ensures a virtual inertia to distur-
bances from the point of common coupling (PCC), mostly in
the frequency. However, V SM suffers from two major issues:
(1) the attainable bandwidth for this type of control is low,
which slows the operation of the converter, and (2) traditional
V SM cannot operate under PCC unbalance/distortion and
needs additional control loops to cater this problem, which
thereby enhances the complexity of the overall system [6].
Traditional V SM -based control architecture has a very slow
response to reactive power support based on the non-minimum
phase behavior of the reactive power loop [15]. The DPC
architecture is based on the control of the overall system,
based on computation of the power to be transferred from the
converter to the PCC. Several architectures for DPC have
been presented in literature [16]–[18]. However, DPC similar
to V SM needs either the information of the PCC voltage,
which can be accomplished using a phase locked loop (PLL),
or if the system is operating without a PLL like a V SM it
requires a startup scheme to be connected to the PCC in order
to avoid huge current spikes, resulting in protection circuit to
trip the overall system.

In this paper, a virtual oscillator (V O)-based control ar-
chitecture is investigated, which is based on nonlinear oscil-
lators proven to accomplish stable limit cycle when certain
conditions are met, as presented in [14], [19]. V O-based
architecture dynamics are used to generate the references for
the inner current control loops based on a Lyapunov energy
function, which has been utilized in this work for better
tracking performance as well as to accommodate operation
under nonideal PCC conditions. Lyapunov energy function-
based architectures have already been presented in various
literature [10], [11], [20], [21] for grid-forming as well as grid-

This report is available at no cost from the National Renewable Energy Laboratory at www.nrel.gov/publications.

1



Fig. 1: Implementation of modified V O with inner current and voltage control loops for
better operational capabilities

following applications. However, a Lyapunov energy function-
based control architecture using V O as the outer loop to
generate the necessary dynamics as well as references has not
been reported in any literature. It is reported in [14], [19] that
operating V O for three-phase application requires generation
of proper phase shifted voltage waveform, which with tradi-
tional architecture is challenging. Therefore, in this work, at
the converter level the generation of voltage is accomplished
at one of the phases of the converter, and the other phases are
generated by proper phase shifting. Such an architecture has
the advantage of reduced number of sensors—consequently,
a lower implementation cost. However, this architecture also
introduce non-negligible dynamics for the generation of the
phase voltage waveform, which in turn limits the attainable
bandwidth of the overall control architecture.

The rest of the paper is organized as follows: Sec-
tion II presents the step by step derivation of the virtual
oscillator-based control architecture with inner Lyapunov en-
ergy function-based control loops, Section III presents the need
and methodology to estimate the other voltage components,
Section IV presents the results and discussion, followed by a
conclusion in Section V.

II. STEP BY STEP DERIVATION OF THE VIRTUAL
OSCILLATOR-BASED CONTROL ARCHITECTURE WITH

INNER CURRENT AND VOLTAGE CONTROL

In this section, modified V O-based control of grid-forming
converter is derived and presented. The concept of V O is
based on a nonlinear Lienard type of oscillators as presented
in [14], [19], where the electrical equivalent of the circuit is
presented by a parallel resonant RLC circuit with dependent
voltage and/or current sources. This paper presents the pos-
sibility of using this concept for grid-forming methodology,
where the primary objective is to obtain low harmonic volt-
age at the PCC under nonlinear and/or unbalanced loading
conditions. The mathematical model of a standard V O is
presented in [14], [19], where the nonlinear functions are
defined elaborately. The per-phase electrical equivalent of the
V O-based control presented in Fig. 1 has been elaborated
in Fig. 2. It is observed from Fig. 1 that only one ac
voltage van = vαn has been sensed. The quadrature filter

Fig. 2: Series RLC equivalent of the virtual oscillator

for a dual second order generalized integrator (DSOGI) [22]
architecture is used inside the V O to estimate the β axis
voltage. The series RLC equivalent of the V O is presented
in Fig. 2. More details along with the block diagram of the β
axis voltage estimation via DSOGI architecture are presented
in the next section.

..
io +εf (io)

.
io +ω2io = εω

.
u (t) (1)

The V O of Fig. 2 consists of two dependent voltage sources,
the inputs to which are the actual ac circuit voltage and a non-
linear function of the series RLC circuit current g(io) = kii

3
o.

The oscillator output voltage vcosc is used as the reference for
the inner current control loop based on a Lyapunov energy
function. Dynamics of the V O is presented in (1), which
is in the standard Lienard form as presented in [14], [19].
In (1), ε =

√
1
Lo

, ω =
√

1
LoCo

, f(io) =
√

1
Lo

(
Ro−3kii2o√

Lo
), kv

and ki are user defined constants based on the gains between
the sensing circuit and the microcontroller, u(t) = van. A
V O-based control architecture with time domain incorporates
droop within itself as presented in [14], [19]. Therefore,
successful power sharing when several of these are connected
in parallel to form a microgrid can also be accomplished. In
this paper, to accomplish better operation capability, an inner
control loop based on the Lyapunov energy function [10] has
been implemented due to its reported advantages [11], [20],
[21]. To reduce the number of equations, the inner loop is
accomplished in a stationary two-phase (αβ) domain. Con-
sidering symmetry, only the α axis dynamics are presented.
Similar expressions can also be obtained for the β axis. The
dynamics of the capacitor voltage and the inductor current are
presented in (2) and (3), respectively, for the reference and the
actual quantities.

L
direfiα
dt = −Rirefiα +mref

α
Vdc
2 − vrefαn

C
dvrefαn

dt = irefiα − irefoα
(2)

Ldiiαdt = −Riiα +mα
Vdc
2 − vαn

C dvαn
dt = iiα − ioα

(3)

Ldx1

dt = −Rx1 + ∆mα
Vdc
2 − x2

C dx2

dt = x1
(4)

Define: x1 = vαn−vrefαn and x2 = iiα−irefiα . Considering sine
pulse width modulation (PWM ), the instantaneous inverter
voltage can be defined as viα = mα

Vdc
2 . Using these defini-

tions, the error dynamics of the overall system is presented
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in (4), where ∆m = mα −mref
α . An energy function based

on these errors satisfying all the criteria presented in [10] is
defined as presented in (5). Differentiating (5) with respect to
time, we have:

V =
1

2
Lx21 +

1

2
Cx22 (5)

.

V = −Rx21 + x1∆mα
Vdc
2

(6)

Equation (6) satisfies all the criteria to ensure negative definite-
ness as per the definition with the choice of ∆mα = − 2Rc

Vdc
x1.

Therefore, the overall control law is obtained and is given
by mα = mref

α + ∆mα = 2
Vdc

(
L
direfiα
dt +Rirefiα + vrefαn

)
+

Rc

(
irefiα − iiα

)
where Rc > 0 is the Lyapunov energy

function-based gain and is a user input. The reference in-
ductor current for a specified capacitor voltage is given by
irefiα = irefoα + C

dvrefαn

dt with vrefαn = vcosc . The next section
shows the methodology and utility for estimating the β axis
voltage for the inner loop using the sensed voltage from the
PCC.

III. METHODOLOGY FOR VOLTAGE ESTIMATION

The methodology to estimate the β axis voltage from
the sensed PCC voltage is elaborated in this section. The
quadrature filter for the DSOGI architecture has been utilized
to estimate the β axis terminal voltage. It has been presented
in [14], [19] that the voltage generated from a V O is a
function of initial condition for both the magnitude and phase.
Therefore, to accomplish the implementation of the V O in α
and β axes, precise choice of initial condition to accomplish
90o phase shift between the generated voltages is a necessary
prerequisite. However, having such precise initial condition
becomes an immense challenge to accomplish as this would
require solving the circuit equation every time the interrupt
activates the sensing circuit and new data is obtained to the
overall controller code. Therefore, to avoid such an issue, in
this paper, the α axis PCC voltage is sensed and the β axis
is estimated. The sensed ac voltage is van = vαn as presented
in Fig. 1, which is true for αβ domain with proper phase
orientation where β axis leads α. As mentioned earlier, the
DSOGI architecture’s quadrature filter is used to generate
the β axis voltage as shown in Fig. 3, whose mathematical
expression is presented in (7).

Gquad =
Kω2

s2 +Kωs+ ω2
(7)

where K is the damping coefficient, and ω is the PCC
frequency. The input to the filter is the sensed PCC voltage,
and the output is the quadrature voltage, which can be used
as the β axis voltage for the controller architecture. The
step response of the estimator is presented in Fig. 3. It is
observed from this result that the filter architecture is able
to generate the quadrature axis voltage successfully with the
chosen bandwidth and with zero attenuation of the signal. The
parameters of the quadrature filter and other control parameters
are presented in Table I. The generated β axis voltage is used

Fig. 3: Dynamic performance of the DSOGI-based estimation architecture

TABLE I: Plant and Compensator Parameters

Parameter Value
Power Rating 300 KVA

Vdc 450 V
Ro −0.8 Ω
Lo 3.99 mH
Co 0.001 763 F
kv 0.1
ki −0.0001
R 1.0 Ω
L 4.2 mH
fsw 20 kHz
vac 208 V(L − L))
Rc 80 Ω

for the inner loop, and the overall controller is implemented.
The next section presents the verification of the overall system
via computer simulations for important case studies.

IV. RESULTS AND DISCUSSIONS

The presented system is modeled in MATLAB/Simulink and
PLECS domain, and various case study results have proven

Fig. 4: Generated and estimated voltages from the V O-based architecture
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Fig. 5: Step change in unsymmetrical load at the converter terminals

Fig. 6: Step change in nonlinear load at the converter terminals

Fig. 7: Reference and actual current for step change in linear unsymmetrical load

Fig. 8: Reference and actual current for step change in nonlinear load

the efficacy of the system. The values of the parameters for
simulation are presented in Table I. The results showing the
voltage buildup for both the α axis as well as the estimated
oscillatory voltage of the β axis are presented in Fig. 4. From
this result it is observed that with the chosen parameters of
the oscillator, it is possible to accomplish voltage buildup.
The result showing the operation of the overall system for
a worst case transient of step change in unsymmetrical load is
shown in Fig. 5, where a step change in the load is presented.
This result shows that the architecture with the inner loop is
able to successfully accomplish the overall control objective.
The next result shows the terminal voltage and current during
a step change with a nonlinear load as presented in Fig. 6.
This result shows that it is still possible to maintain balanced
low harmonic terminal voltage, which proves the efficacy of
the proposed architecture. The next results show the reference
and the actual currents from the inner loop for the α axis, as
presented in Fig. 7 and Fig. 8 for linear and nonlinear loads,
respectively. Similar results can also be obtained for the β axis.
It is observed that the generated and actual currents in both
the cases track each other with negligible difference, indicating
the efficacy of the inner loop. The total harmonic distortion of
the generated voltages from the V O are < 5%, as prescribed
in [23], indicating the efficacy of the overall system.

V. CONCLUSION

This paper presents a modified virtual oscillator with a Lya-
punov energy function-based inner control loop. The dynamics
of a Lienard type virtual oscillator with equivalent series RLC
circuit representation has been accomplished in this paper.
The parameters for this oscillator are chosen such that the
fundamental frequency of the system remains at 60Hz. It
is observed from the results that during transients of load
switching in grid-forming mode, the overall system is able
to maintain low harmonic terminal voltage with unbalanced
loading condition. Similar performance can be accomplished
for the terminal voltage with nonlinear load step change.
Finally, the reference and actual currents generated for the
inner loops also track each other without any appreciable
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steady state errors, indicating the efficacy of the proposed
approach.
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