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Background

*  Petroleum diesel has been broadly utilized in heavy-duty transportation applications.

*  Approximately 47 billion gallons of petroleum diesel fuel were consumed by the U.S.
transportation sector in 2021, which resulted in about 472 million metric tons of CO, emission.

e  This amount was equal to about 26% of total U.S. transportation sector CO, emissions and equal
to about 10% of total U.S. energy-related CO, emissions in 2021.

It is urgent to develop solutions to reduce petroleum diesel-derived carbon emissions.
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Background

Renewable diesel or green diesel (hydrotreated vegetable oil, HVO)
Feedstock: oilseed crops

) ) = ASTM D975
* Edible materials » Produced through hydrotreating triglycerides (oil and fats).
* Limited availability = Existing refinery infrastructures

= Can be used in 100% concentration
= Existing diesel engines

Traditional biodiesel (fatty acid methyl ester, FAME)

= ASTM D6751

= Produced through transesterification

= Must be blended with petroleum diesel (5-20%)
= High levels of NOx emissions

= Risk of damage to existing diesel engines

Our objective is to produce high-quality renewable diesel
from non-food biomass with a large abundance.
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Strategy

Feedstock: woody biomass Renewable Diesel Gasoline
e Abundant
* Domestically available
* Inedible
* Fractionation
|
Catalytic Fast Stand-alone :
|
Pyrolysis 4 Hydrotreating » el ol
CFP oil
(Pt/TiO, with co-fed H,)
(Sulfided NiMo/CoMo)
- 20 vol%

50% Clean pine &

50% forest residues Co-hydrotreating —} Renewable diesel

80 vol% *

Straight Run Diesel
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CFP = catalytic fast pyrolysis



Catalytic Fast Pyrolysis Oil

CFP oil produced from woody biomass over a bifunctional metal-acid catalyst (Pt/TiO,) with co-fed H,

) , Chemical Composition by GC-MS
CFP Oil Elemental Analysis 15 P y
12.91
C, wt% db 76.4% W Phenols
B Methoxyphenols
H, wt% db 7.8% °§ 10 ® Naphthols/Indenols
M Ketones
[0) 0,
O, wt% db 15.6% = Aldehydes
N, wt% db 0.2% > = Furans
Acids+Esters
H,0, wt% 2.8% 110 5 48 W Aromatic HC
0 ]

* CFP step produced stable bio-oil with low oxygen content.
* Bifunctional CFP catalyst enables hydrogenation of coke precursors

* Compared to zeolite catalyst, metal-acid catalyst resulted in a higher oil carbon yield, more phenols,
and less aromatic hydrocarbons.
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Co-hydrotreating

Continuous Hydrotreater System
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Ideal for co-hydrotreating
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Co-hydrotreating

Straight Run Diesel (SRD) ====  Hydrotreating T Co-hydrotreating # Hydrotreated oil ﬁ Renewable Diesel

(Feed rate: 10 mi/h) (36 h) (24 h)

ig:c’g Hydrotreating conditions:
(16% O) 325 °C, 55 bar, WHSV 1 g oil/(g cat h),
(Feed rate: 2 mi/h) sulfided NiMo or CoMo
Feed SRD SRD+CFP SRD SRD+CFP
Catalyst NiMo NiMo CoMo CoMo
H, consumption, g/g CFP oil 0.1 1.4 0.0 1.1
Oil mass yield, wt% 100 94 100 91
Oxygen content, wt% <0.1 0.1 <01 0.1

Co-hydrotreating with CFP oil increased H, consumption due to deoxygenation of CFP oil.

Compared to CoMo, NiMo resulted in a higher H, consumption indicating enhanced hydrogenation reactions.
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Co-hydrotreating

Feed SRD SRD+CFP SRD SRD+CFP
Catalyst NiMo NiMo CoMo CoMo
O, wt% <0.3 <0.3 <0.3 <0.3
N, wt% 0.03 0.04 0.02 0.04
S, wt% 0.01 0.03 0.02 0.04
H:C, mol/mol 1.86 1.82 1.86 1.79

Oxygen content was below detection limit compared to 15.6 wt% of oxygen content in CFP oil.

Compared to CoMo, NiMo resulted in a higher H:C ratio of 1.82 and a lower sulfur content of 0.03%
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Co-hydrotreating

Simulated Distillation

450
o 350 Feed SRD SRD+CFP SRD SRD+CFP
2 250 Catalyst NiMo NiMo CoMo CoMo
g A —e— SRD/NiMo ICN 50 45 48 42
2 150 ," —@— SRD/CoMo
- -& - SRD+CFP/NiMo Density, g/ml 0.83 0.83 0.83 0.83
- -& - SRD+CFP/CoMo
50
0 20 40 60 80 100 ICN = Indicated Cetane Number

% Distilled

*  Co-hydrotreating with CFP oil increased volatile compounds.
* ICN of hydrotreated oil was within US on-road specifications.
* Density within 0.82-0.86 g/ml is considered ideal.

NREL | 10



Co-hydrotreating

GC-VUV Analysis
120
80 20.32 23.48 24 32 24.16
60
40
20
0 15.35 14.63 16 16 13.59
SRD SRD + CFP SRD SRD + CFP SRD + CFP
Calculated
NiMo | CoMo | NiMo
M n-alkanes M Iso+cycloalkanes Aromatics B Phenolics

*  Co-hydrotreating increased aromatics due to the aromatic nature of CFP oil.
* Compared to CoMo, NiMo promoted the conversion of aromatics into cycloalkanes.
* Calculated results indicated synergy during co-hydrotreating (e.g., hydrogen transfer).
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Co-hydrotreating

* 91-97% of biogenic carbon was incorporated from CFP oil to hydrotreated oil (C-14 analysis).

{) Diesel

Consumes CO, from atmosphere

91-97%

20% of biogenic carbon NREL | 12




Conclusion from Co-hydrotreating

* The whole co-hydrotreated oil product has great potential to be used as renewable diesel.
 Sulfied NiMo was a preferable hydrotreating catalyst compared to sulfided CoMo.

* NiMo was chosen for the following stand-alone CFP oil hydrotreating study.
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Stand-alone Hydrotreating

Continuous Hydrotreater System

Gas
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Stand-alone Hydrotreating

* Low-temperature hydrogenation:
C=0 - C-OH
Reactor Temperature Profile «  Two-stage process o
OH
50 * Prolonged transition zone @ . @
—@— Concurrent .
£ *  More complete hydrogenation
g 40 N Reducing the risk of plugging * High-temperature deoxygenation:
o OH
O—O
I Transition zone
S (Hydrogenation) ] ] .
T 20 CFP Oil Chemical Composition
o
© 12.91
§ 10 Isothermal zgne H Phenols
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0 % 10  Naphthols/Indenols
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Temperature, °C ¥ Aldehydes
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Stand-alone Hydrotreating

CFP oil  wm licdadog * Hydrotreated oil ===  Fractionation q Renewable Diesel & Gasoline

Hydrotreating

(Feed rate: 2 mi/h)

Hydrotreating conditions:

385 °C, 125 bar, WHSV 0.16 h-1, over sulfided NiMo.

Condition 385 °C, 125 bar
Oil, g/g CFP oil 75%
Aqueous, g/g CFP oil 25%
Gas, g/g CFP oil 9%
H, consumption, g/g CFP oil 0.13 Compared to previous study (400 °C, 130 bar)
Mass balance, g/g (CFP oil+H, consumption)  97% H2 consumption of 0.04 g/g CFP oil
Qil carb ield 89%
1l carbon yle.: 0 Oil carbon yield of 89%
Gas carbon yield 10%
Carbon balance 99% Oxygen content of 0.4 wt%
Product O content, wt% <0.1% H:C ratio of 1.71
H:C, mol: mol 2.01
Calculated HHV, MJ/kg 49.25
Density, g/ml 0.739

* The two-stage process achieved more complete hydrogenation reactions of CFP oil.
* Better results compared to previous study under more severe conditions. NREL | 16



Stand-alone Hydrotreating

Distillation fractions

Diesel Fraction GCxGC

GC-VUV 200 Simulated Distillation
350 Residue
8) 300
“;250 | Diesel 182-338 °C
g 200
9150
5 100 Gasoline < 182°C
50
0

0 20 40 60 80 100
Percent Distilled

Phenolics
= Aromatics
m Iso+Cycloalkanes
M n-Alkanes

Gasoline 49 wt%
Diesel 45 wt%
Residue 4 wt%
Losses 2 wt%

n-Alkane 5.7 wt%
Isoalkane 4.5 wt%
Cycloalkane 88.8 wt%
Unidentified 1%

Compared to previous study (400 °C, 130 bar):

45% of gasoline
39% of diesel
16% of residue

Hydrotreated oil consisted of compounds of a broad range of volatilities.

An improvement compared to the previous study.

The ICN of diesel fraction was 45, which was vastly improved compared to 24 in the previous study.
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Conclusion

Co-hydrotreating of SRD (80 vol%) and CFP oil (20 vol%) was studied in an isothermal configuration.
* Up to 100% of carbon yield of hydrotreated oil was produced with an oxygen content of 0.1 wt%.

* Up to 97% of biogenic carbon was incorporated from CFP oil to hydrotreated oil.

* The whole hydrotreated oil product could be used as renewable diesel with ICN up to 45.

* NiMo was a preferable hydrotreating catalyst due to a better ability to enhance hydrogenation.

Stand-alone hydrotreating of CFP oil was studied in a two-stage process.
* Up to 89% carbon yield of hydrotreated oil was produced with an oxygen content < 0.1 wt%.

* 45 wt% of diesel and 49 wt% of gasoline were obtained through fractionation of hydrotreated oil product.

* The distilled diesel fraction included 88.8% of cycloalkane.
* The ICN (45) of diesel fraction was vastly improved compared to previous study.

Both stand-alone and co-hydrotreating of CFP oil produced high-quality renewable diesel products.
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Supplement

Mass yields, wt% . Biogenic
Catalyst H, . - 0il Oxygen carbon Density,
Feed consumption, ) carbon content, | . " ICN |
type Wi 0il  Aqueous Gas yield e lnﬂnrp;ra on, g/m
o
SRD NiMo 0.1 100 - 0.3 100 <0.1 - 50 0.83
SRD+CFP | NiMo 1.4 94 54 1.4 100 0.1 a7 45 0.83
SRD CoMo 0.0 100 - 0.0 100 <0.1 - 48 0.83
SRD+CFP | CoMo 1.1 21 6.0 1.4 05 0.1 21 42 0.83
C, H. H:C, HHYV,
Feed Catalyst Wit Wi% Q, wt% N, wit%a 5, wi% mol/mol  MJ/kg
SRD NiMo £6.34  13.39 <0.3 0.03 0.01 1.86 48.57
SED+CFP NiMo 56,98 13.22 =(.3 0.04 0.03 1.82 48.54
SRD CoMo B7.01 1348 <0.3 0.02 0.02 1.86 48.93
SRD+CFP CoMo £6.77 12.95 =0.3 0.04 0.04 1.79 48.08
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Refinery Fuel
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CFP Catalyst

Zeolite (Ex-situ)

* Favors the formation of aromatic hydrocarbons and phenols
* Coke formation-deactivate catalyst

* Highest gasoline fraction due to the high aromatic content

Pt/TiO, (Ex-situ)

* Favor the formation of phenols and cyclopentenone
* Enables hydrogenation of coke precursors

* Requires co-fed H2

* High carbon efficiency

Red mud (In-situ)

* Low deoxygenation
* High carbon efficiency
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