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Background

Source: U.S. Energy Information Administration (EIA)

• Petroleum diesel has been broadly utilized in heavy-duty transportation applications.

• Approximately 47 billion gallons of petroleum diesel fuel were consumed by the U.S. 
transportation sector in 2021, which resulted in about 472 million metric tons of CO2 emission.

• This amount was equal to about 26% of total U.S. transportation sector CO2 emissions and equal 
to about 10% of total U.S. energy-related CO2 emissions in 2021.

It is urgent to develop solutions to reduce petroleum diesel-derived carbon emissions.
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Background

Feedstock: oilseed crops
• Edible materials
• Limited availability

Renewable diesel or green diesel (hydrotreated vegetable oil, HVO) 
 ASTM D975
 Produced through hydrotreating triglycerides (oil and fats).
 Existing refinery infrastructures
 Can be used in 100% concentration
 Existing diesel engines

Traditional biodiesel (fatty acid methyl ester, FAME)
 ASTM D6751
 Produced through transesterification
 Must be blended with petroleum diesel (5-20%)
 High levels of NOx emissions
 Risk of damage to existing diesel engines

Our objective is to produce high-quality renewable diesel 
from non-food biomass with a large abundance. 
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Strategy

Catalytic Fast 
Pyrolysis

CFP oil

Stand-alone
Hydrotreating Hydrotreated oil

Straight Run Diesel

Co-hydrotreating Renewable diesel

Fractionation

Renewable Diesel Gasoline

20 vol%

80 vol%

(Pt/TiO2 with co-fed H2)

50% Clean pine & 
50% forest residues

(Sulfided NiMo/CoMo)

Feedstock: woody biomass
• Abundant
• Domestically available
• Inedible

★

★
CFP = catalytic fast pyrolysis
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• CFP step produced stable bio-oil with low oxygen content.
• Bifunctional CFP catalyst enables hydrogenation of coke precursors
• Compared to zeolite catalyst, metal-acid catalyst resulted in a higher oil carbon yield, more phenols, 

and less aromatic hydrocarbons.

Catalytic Fast Pyrolysis Oil
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CFP Oil Elemental Analysis

C, wt% db 76.4%

H, wt% db 7.8%

O, wt% db 15.6%

N, wt% db 0.2%

H2O, wt% 2.8%

CFP oil produced from woody biomass over a bifunctional metal-acid catalyst (Pt/TiO2) with co-fed H2
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Reactor Temperature Profile

Co-hydrotreating
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• Isothermal zone
• Ideal for co-hydrotreating

Continuous Hydrotreater System
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Co-hydrotreating 

Co-hydrotreating with CFP oil increased H2 consumption due to deoxygenation of CFP oil. 

Compared to CoMo, NiMo resulted in a higher H2 consumption indicating enhanced hydrogenation reactions. 

Hydrotreating conditions: 
325 °C, 55 bar, WHSV 1 g oil/(g cat h), 
sulfided NiMo or CoMo 

Feed SRD SRD+CFP SRD SRD+CFP

Catalyst NiMo NiMo CoMo CoMo

H2 consumption, g/g CFP oil 0.1 1.4 0.0 1.1

Oil mass yield, wt% 100 94 100 91

Oxygen content, wt% < 0.1 0.1 < 0.1 0.1
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Co-hydrotreating 

Oxygen content was below detection limit compared to 15.6 wt% of oxygen content in CFP oil. 

Compared to CoMo, NiMo resulted in a higher H:C ratio of 1.82 and a lower sulfur content of 0.03%

Feed SRD SRD+CFP SRD SRD+CFP

Catalyst NiMo NiMo CoMo CoMo

O, wt% <0.3 <0.3 <0.3 <0.3

N, wt% 0.03 0.04 0.02 0.04

S, wt% 0.01 0.03 0.02 0.04

H:C, mol/mol 1.86 1.82 1.86 1.79
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Co-hydrotreating

• Co-hydrotreating with CFP oil increased volatile compounds. 
• ICN of hydrotreated oil was within US on-road specifications.
• Density within 0.82-0.86 g/ml is considered ideal.

Feed SRD SRD+CFP SRD SRD+CFP

Catalyst NiMo NiMo CoMo CoMo

ICN 50 45 48 42

Density, g/ml 0.83 0.83 0.83 0.83
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ICN = Indicated Cetane Number
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Co-hydrotreating
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• Co-hydrotreating increased aromatics due to the aromatic nature of CFP oil.
• Compared to CoMo, NiMo promoted the conversion of aromatics into cycloalkanes. 
• Calculated results indicated synergy during co-hydrotreating (e.g., hydrogen transfer).
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Co-hydrotreating

• 91-97% of biogenic carbon was incorporated from CFP oil to hydrotreated oil (C-14 analysis).

vs.

Consumes CO2 from atmosphere

Biogenic carbon

20% of biogenic carbon

Geologic 
carbon

SRD

91-97%
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• The whole co-hydrotreated oil product has great potential to be used as renewable diesel.

• Sulfied NiMo was a preferable hydrotreating catalyst compared to sulfided CoMo.

• NiMo was chosen for the following stand-alone CFP oil hydrotreating study. 

Conclusion from Co-hydrotreating
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Stand-alone Hydrotreating
Continuous Hydrotreater System
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Stand-alone Hydrotreating

Reactor Temperature Profile
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• Two-stage process
• Prolonged transition zone
• More complete hydrogenation
• Reducing the risk of plugging
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Stand-alone Hydrotreating

Hydrotreating conditions:

385 ℃, 125 bar, WHSV 0.16 h-1, over sulfided NiMo.

• The two-stage process achieved more complete hydrogenation reactions of CFP oil.
• Better results compared to previous study under more severe conditions.

Condition 385 °C, 125 bar
Oil, g/g CFP oil 75%
Aqueous, g/g CFP oil 25%
Gas, g/g CFP oil 9%
H2 consumption, g/g CFP oil 0.13
Mass balance, g/g (CFP oil+H2 consumption) 97%
Oil carbon yield 89%
Gas carbon yield 10%
Carbon balance 99%
Product O content, wt% <0.1%
H:C, mol: mol 2.01
Calculated HHV, MJ/kg 49.25
Density, g/ml 0.739

Compared to previous study (400 ℃, 130 bar)
H2 consumption of 0.04 g/g CFP oil

Oil carbon yield of 89%

Oxygen content of 0.4 wt%

H:C ratio of 1.71
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Stand-alone Hydrotreating
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• Hydrotreated oil consisted of compounds of a broad range of volatilities. 
• An improvement compared to the previous study. 
• The ICN of diesel fraction was 45, which was vastly improved compared to 24 in the previous study. 
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n-Alkane 5.7 wt%

Isoalkane 4.5 wt%

Cycloalkane 88.8 wt%

Unidentified 1%

Distillation fractions

Gasoline 49 wt%

Diesel 45 wt%

Residue 4 wt%

Losses 2 wt%

Compared to previous study (400 ℃, 130 bar):

45% of gasoline 

39% of diesel

16% of residue
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Conclusion

Co-hydrotreating of SRD (80 vol%) and CFP oil (20 vol%) was studied in an isothermal configuration. 
• Up to 100% of carbon yield of hydrotreated oil was produced with an oxygen content of 0.1 wt%. 
• Up to 97% of biogenic carbon was incorporated from CFP oil to hydrotreated oil.
• The whole hydrotreated oil product could be used as renewable diesel with ICN up to 45. 
• NiMo was a preferable hydrotreating catalyst due to a better ability to enhance hydrogenation. 

Stand-alone hydrotreating of CFP oil was studied in a two-stage process. 
• Up to 89% carbon yield of hydrotreated oil was produced with an oxygen content < 0.1 wt%. 
• 45 wt% of diesel and 49 wt% of gasoline were obtained through fractionation of hydrotreated oil product. 
• The distilled diesel fraction included 88.8% of cycloalkane.
• The ICN (45) of diesel fraction was vastly improved compared to previous study.

Both stand-alone and co-hydrotreating of CFP oil produced high-quality renewable diesel products. 
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Supplement
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Zeolite (Ex-situ)
• Favors the formation of aromatic hydrocarbons and phenols
• Coke formation-deactivate catalyst
• Highest gasoline fraction due to the high aromatic content

Pt/TiO2 (Ex-situ)
• Favor the formation of phenols and cyclopentenone
• Enables hydrogenation of coke precursors
• Requires co-fed H2
• High carbon efficiency

Red mud (In-situ)
• Low deoxygenation
• High carbon efficiency

CFP Catalyst
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