

ThermoFisher SCIENTIFIC

Cryogenic EM Across Length Scales for Li Metal Anode **Batteries**

Katherine L. Jungjohann MRS Spring Meeting April 12, 2023

Dr. Renae Gannon Dr. Dave Johnson

Dr. Steven Randolph Dr. Katharine Harrison

Dr. Laura Merrill

ग गा

THEF

iss set

市置

Militian Report

The Millipego

NREL | 3

 \mathbf{L} and \mathbf{L}

Standard Li-Ion Batteries

Discharging Battery

- Li⁺ from the anode through the electrolyte and into the cathode
- e- move through the external circuit from the anode to the cathode (from $-$ to $+$ charge)

Variation on Performance of Identical Coin Cells

Storage

48 Batteries cycled to Failure

S. J. Harris, D. J. Harris and C. Li, J. Power Sources 342, 589 (2017)

Ideal Battery Characterization

Millimeter-to-Atomic Scale

Site-Specific: Structure – Composition – Chemistry – Bonding – Properties

What happened there?

Why did it happen there?

How likely is that happing over the entire electrode/cell?

What can we do about it?

Thermal Runaway

Operando Synchrotron X-ray Computed Tomography (CT)

Finegan et al. *Nat Commun 6, 6924 (2015)* **Lin et al.** *ACS Nano 14, 14820 (2020)*

Nonporous Anode Charge Cycling

Operando Transmission X-ray Microscopy (TXM)

NREL | 8 **Millimeter-to-Atomic Scale Site-Specific: Structure – Composition – Chemistry – Bonding – Properties**

Specs ProvenX NAP-XPS

- XPS measurements on solids and liquid surfaces (~25 mbar)
- In situ heating/cooling
- Air-free transfer capability
- In-situ mass spectrometry

In-situ and Operando XPS Glenn Teeter April 13, 8:15-8:45 am Moscone Level 2, Rm 2006

NREL | 9 9 **Millimeter-to-Atomic Scale Site-Specific: Structure – Composition – Chemistry – Bonding – Properties**

XPS in-situ solid|liquid interface measurements

Lutz et al. *Nano letters 18, 1280 (2018)*

Site-Specific: Structure – Composition – Chemistry – Bonding – Properties NREL | 10 Millimeter-to-Atomic Scale

Electrode Electrolyte Interfaces

Cryo STEM & Electron Energy Loss Spectroscopy (EELS)

Zachman et al. *Nature, 560, 345 (2018)*

Imaging Light Elements in Cathodes

High-Resolution Scanning Transmission Electron Microscopy (STEM)

Ooe et al. *Ultramicroscopy 202, 148 (2019)*

Site-Specific: Structure – Composition – Chemistry – Bonding – Properties NREL | 11 Millimeter-to-Atomic Scale

Interested in Active Electrode States

Merrill et al. *In Preparation (2023)*

Interested in Active States

Dutta et al. Microsc. and Microanal. 28, 2162 (2022).

Value of Li-Metal Anodes & EM Characterization

J.-M. Tarascon and M. Armand *Nature* **DOI: 10.1038/35104644**

NREL | 15

Rechargeable Li Metal: Chemical & Mechanical

- Uncontrolled morphology \rightarrow many problems
	- **Short circuits = fire**
	- **Excessive solid electrolyte interphase (SEI) = low Coulombic efficiency,**

high impendence, and Li consumption

• Li gets stranded and disconnected = "dead" Li **Girms and Gireaund et al., Electrochem. Comm.**

8, 1639 (2006)

Lithium Morphology Impacted by Contact Pressure

Qian et al. *Nature Communications* **DOI: 10.1038/ncomms7362**

Harrison et al. *ACS Nano* **10.1021/acsnano.7b05513**

Controlled Pressure on Electrodeposited Li

Effects of Pressure on Li Metal: Low Current

- Cycling stability generally increases with increasing pressure until 10,000 kPa
- 10,000 kPa is too high and causes increased overpotential and loss of cycling stability
- Transport might be limited locally at high pressure where pores can close
- CE generally improves with pressure but 100 and 1,000 kPa are similar

Harrison et al., ACS Appl. Mater. Interfaces 13, 31668 (2021) DOI: 10.1021/acsami.1c06488

Cryogenic Scanning Transmission Electron Microscopy

M. Zachman et al., Nature, 560, 345 (2018)

Characterization: Cryogenic SEM/FIB & TEM

- **Plunge-freeze or slowly freeze coin cell battery electrodes**
- **Inert transfer from glovebox into cryo SEM/FIB**
- **Cross-sectioning in cryo SEM/FIB to observe electrodeposited Li metal**

Dr. John Watt watt@lanl.gov cint.lanl.gov **or** nsrcportal.sandia.gov

Scios FIB/SEM *Analysis of surfaces & buried interfaces; 3D tomography*

Leica Cryo SEM Stage *Includes cryo-FIB milling, lift out, and transfer to the TEM*

Talos L120C CryoTEM *Dedicated low dose, low keVTEM for imaging of beam sensitive materials*

Pressure at Low Current: 1st Li Deposition Step

• Morphology improves drastically with pressure (even for 10000 kPa)

Harrison et al., ACS Appl. Mater. Interfaces 13, 31668 (2021) DOI: 10.1021/acsami.1c06488

Pressure at High Current: 1st Li Deposition Step

• Low current, no transport limitations, Li deposits at most favorable sites

• High current, transport severely limited, Li will deposit everywhere

 $10 \mu m$

0 MPa

0.1 MPa

 $10 \mu m$

 $10 \mu m$

Harrison et al., iScience 24, 103394 (2021) DOI: 10.1016/j.isci.2021.103394

Low Current: 0.5 mA/cm2

Pressure at Low Current: 51st Li Deposition Step

How to Achieve Ideal Battery Characterization?

Millimeter-to-Atomic Scale

Site-Specific: Structure – Composition – Chemistry – Bonding – Properties

ThermoFisher SCIENTIFIC

Cross-Sectioning without Battery Disassembly

Helios Laser Plasma FIB *fs laser mills 15,000x faster than Ga-ion FIB*

• Two Celgard 2325 Separators

Li/SEI/electrolyte layers found

Jungjohann et al., ACS Energy Lett. 6, 2138 (2021) DOI: 10.1021/acsenergylett.1c00509

Failure after Cycling

2.8 M LiFSI in DME Two Celgard 2325 separators Cycled at 1.88 mA/cm2 Capacity: 1.88 mAh/cm2

Jungjohann et al., ACS Energy Lett. 6, 2138 (2021) DOI: 10.1021/acsenergylett.1c00509

Thermo Fisher SCIENTIFIC

High Current: 4 mA/cm2

Pressure at High Current: 51st Li Deposition Step

Pressure Thickness 51st (MPa) Plating (μm) $\mathbf{0}$ 189 318 0.01 0.1 274 1.0 188

> *Harrison et al., iScience 24, 103394 (2021) DOI: 10.1016/j.isci.2021.103394*

ThermoFisher SCIENTIFIC

fs Laser Slice-N-View of Battery Stack

R. Gannon et al., (2023) In Preparation

fs Laser Wavelength Difference for Polishing

Pristine Li Metal Cell

515 nm 1030 nm *R. Gannon et al., (2023) In Preparation*

Polishing with the Plasma FIB

101st Cycle Li Metal Cell

R. Gannon et al., (2023) In Preparation

How to Achieve Ideal Battery Characterization?

Millimeter-to-Atomic Scale

Site-Specific: Structure – Composition – Chemistry – Bonding – Properties

What happened there?

Why did it happen there?

How likely is that happing over the entire electrode/cell?

Machine Learning for Multimodal Data Cubes

**Imperial College
London**

D. Finegan et al., ACS Energy Lett. 7, 12, 4368 (2022)

NREL Data Visualization Center

Conclusions

- Effects of pressure on Li cycling are often overlooked and can be significant
	- Pressure at low current density can improve:
		- **Morphology**
		- Cell-to-cell repeatability
		- Coulombic efficiency
	- Too much pressure \Rightarrow transport problems (even at low current density)
	- Pressure at high current density impacts:
		- Li morphology
		- Pressure helps slow Li inventory loss

- Cryo laser PFIB can image intact coin cells without disassembly, characterization provides:
	- Structure of the separator-Li interface
	- Quantify Li inventory, Li morphology, cracking in SEI, and SEI thickness
	- Under high-rate cycling: Separators are damaged or destroyed
		- Li and SEI grow between separators and trilayers of separators

Summer 2024: Microscopy Investments

Laser PFIB Inert-Transfer & Cryo PFIB

SEI/Electrolyte Coppe $50 \mu m$

Inert-Transfer & Cryo Ga FIB

In-Situ & Cryo S/TEM

284 286 288 290 Energy loss (eV)

Degradation Science for Clean Energy Systems

Electrolysis Electrochromic Windows

Solar Cells: Potential Induced Degradation Energy Storage

ThermoFisher SCIENTIFIC

Thank You!

www.nrel.gov

NREL/PR-5K00-85916

This work was authored in part by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Solar Energy Technologies Office. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.

Cryogenic Transmission Electron Microscopy

