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This number was 94 million of 113.6 
million in 2009 (EIA 2009), and 82.9 
million of 100.4 million in 2001 (EIA 
2001). Therefore, reducing building HVAC 
energy consumption, especially in the 
residential sector, has a significant potential 
to contribute to the 2030 U.S. greenhouse 
gas pollution reduction target (The White 
House 2021). The goal for energy-efficient 
buildings set by the U.S. Department of 
Energy (DOE) is to reduce the direct energy 
intensity of residential and commercial 
buildings by at least 35% by 2030 while 
reducing direct fossil fuel consumption by 
more than one-third. Particularly, the goal 
of residential buildings is to achieve 50% 
energy savings through the identification 
of deep retrofit packages relative to typical 
homes in 2010 (BTO 2016). 

The primary objective of living environment 
conditioning for residents is to satisfy 
their well-being and working efficiency 
requirements, which has become 
increasingly crucial, particularly due to 
the widespread adoption of remote work 
since 2020 (Mehta 2021). However, as an 
HVAC system degrades over time, it may 
not always be able to maintain the required 
thermal environment, especially during heat 
waves (Zuo et al. 2015). This concern is 
further amplified by the impacts of climate 
change, which accelerates the frequency  
of extreme weather events (Simon  
Brown 2020).

In the United States, buildings 
consume around 28% of total energy 
(with residences accounting for 16% 
and commercial buildings consuming 
12%) (EIA 2022d) and are responsible 
for 35% of carbon emissions (EIA 
2022d). Among them, almost half is 
consumed by heating, ventilating, and 
air conditioning (HVAC) (L. Wang and 
Hong 2013). 

Furthermore, 108.9 million out of 
123.5 million housing units had 
installed air conditioning (AC) 
equipment as of 2020 (EIA 2020a). 

EXECUTIVE 
SUMMARY
The buildings sector comprises 
the largest portion of energy 
consumption worldwide, even 
surpassing the industrial and 
transportation sectors.  
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This project studies an Internet of Things (IoT)-based comfort control and fault diagnostics system 
(referred as iComfort in this report) for energy-efficient homes. The system delivers an occupant-
comfort-oriented thermal environment adaptive to fault scenarios and achieves HVAC energy 
savings in a cost-effective and straightforward way. This smart iComfort home system consists of the 
following key features.

1. Cost-effectiveness and scalability of the entire hardware and software system: The system 
includes low-cost temperature, humidity, and airflow sensors, and a Raspberry Pi-based local 
hub that interfaces with the cloud and IoT-enabled devices. The cost is low, not only for sensors, 
but also the costs associated with sensor installation, system setup and commissioning, data 
communication and storage, and data analytics (e.g., the development of automated fault detection 
and diagnosis (AFDD), as well as control strategies that are both computationally efficient and 
practical to implement).

2. Energy performance and user satisfaction: The system delivers user satisfaction and energy 
savings. This includes a) ease of use, b) optimal occupant thermal comfort, and c) accurate system 
feedback (e.g., low false alarm of AFDD strategies).

3. Favorable demonstrated prototype performance: The prototype tested at the Pacific Northwest 
National Laboratory (PNNL) Lab Homes demonstrates the accuracy of fault detections and 
diagnoses and shows thermal comfort improvement and energy savings through adaptive and 
optimal HVAC operations.

The following tasks were accomplished to fulfill the project objectives.

IoT-Based Cost-Effective Distributed Sensor System

The low-cost IoT-based distributed sensor system is integrated with wireless sensors, the local hub, 
and the cloud system. The wireless sensor modules are capable of measuring temperature and relative 
humidity with a high resolution of 0.1°C and 0.1%, respectively. The development of the local 
hub targets communicating with the wireless sensors, collecting the sensor data, and uploading the 
distributed measurement results to the cloud. The cloud service is completed by Amazon Web Services 
(AWS); the local hub can simultaneously collect data from multiple wireless sensors and send the data 
to AWS. In addition, the data handling functions are developed inside AWS, which enables the sensor 
data to be time-stamped, stored, processed, downloaded, and displayed in real time.

The produced sensing platform is powered by a cell battery and communicates with the hub via the 
LoRa protocol.1 The sensing functions (e.g., temperature and humidity) are performed by an 

  1 Short for “long range,” LoRa is a wireless audio frequency technology.
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SHT31 temperature and humidity sensor, which is connected to the processing and communication 
module through the soldering pads. The Temperature-Humidity Sensing Platform (THSP) can send 
readings to a hub within 100 meters in an open space. In the indoor test, the signal can penetrate at 
least three walls. The wireless temperature sensors successfully measured temperatures and passed 
data to the hub. Long-term testing shows that the system continuously worked for 60 days without 
human intervention. During the test period, the system overcame at least two power outages and serval 
network disconnections and successfully restored its normal functions. It collected more than 340,000 
records in total from four sensors. The database retained about 44,000 records from each sensor for 
monitoring and analysis.

Virtual Testbed and Fault Models

The virtual testbed used in this project was adapted from the DOE prototype residential building model 
created by PNNL (DOE 2021), which was developed using survey data, standards, reports, papers, 
and expert knowledge. The prototype model consists of two floors with a total area of 223 m2 (2,400 
ft2) and has a slab-on-grade foundation. The HVAC system in the virtual building is a dual-setpoint 
controlled central air heat pump system, with the default control being a schedule-based fixed  
setpoint control.

To facilitate the simulation of operational faults in residential HVAC systems, an expandable fault 
library was created for this project on top of the virtual testbed. This library includes a fault taxonomy 
that defines each fault and its systematic structure, as well as fault modeling elements such as fault 
attributes (direction types, bounds, and prevalence) and the corresponding objects and parameters 
in EnergyPlus. A fault modeling approach was also developed, which includes fault mapping, fault 
occurrence distribution development, multiple fault combination, and fault sampling. The process of 
fault injection involves simultaneously modifying the values of all relevant parameters of interest in 
the EnergyPlus IDF files. This modification is carried out based on the developed fault library and 
fault modeling approaches. In situations when direct modeling of faults such as heat exchanger fouling 
or refrigerant charge issues is not feasible in EnergyPlus, the corresponding fault symptoms, such as 
efficiency and capacity degradation, are instead represented.

In this project, fault modeling was implemented using EnergyPlus to generate 3,000 faulty models, 
representing 3,000 fault scenarios with a variety of faults. These models can be used to simulate 
operational faults in residential HVAC systems and conduct a fault-relative investigation, including 
understanding the impact of faults, guiding and testing AFDD strategies, and assisting with  
adaptive control.
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Learning-Based Models

We developed a framework for learning-based HVAC energy consumption forecasting models, zone 
temperature forecasting models, and occupant thermal comfort forecasting models. The framework 
is first examined using a virtual testbed and then applied for the PNNL lab test homes to develop 
forecasting models. The virtual testbed was utilized to obtain the simulated data that closely resembled 
the types of data typically available from a real building. These simulated data were then used for 
training and evaluating forecasting models. Historic and current sensor data from the PNNL lab test 
homes were used to train and evaluate the developed models. 

A multiadaptive regression spline (MARS)-based whole-building energy forecasting model and kernel 
support vector machine (kSVM)-based occupant thermal comfort vote forecasting model were first 
developed and tested using the data from the virtual testbed with a 1-hour ahead forecasting horizon. 
The developed models were used as a preliminary study for the developed framework. A systematic 
multistep feature selection process was explored to select features used for the models, from virtual 
measurements. The evaluation results show that both developed forecasting models performed 
accurately across the virtual testing period according to desired performance of <15% normalized  
root mean square error. 

The developed framework was then used to train two MARS-based models, one for HVAC energy 
consumption forecasting, and the other one for zone temperature forecasting, using historical data from 
the PNNL lab test homes with a 1-hour ahead forecasting horizon. The developed systematic multistep 
feature selection process was adopted to select features for the models. K-fold cross validation was 
used to train and test the model on all data and reduce model generalization error. The evaluation 
results show that both developed forecasting models perform accurately across the entire testing period 
(8 weeks total) according to desired performance of <15% normalized mean absolute error.

Due to a lack of real occupants in the PNNL lab test homes zone, temperature—rather than occupant 
thermal comfort—was modeled. To examine the performance of the developed thermal comfort 
forecasting modeling approach, we used virtual testing. Operation data for normal operation and 
scenarios that would cause occupants to be uncomfortable were generated for training and testing of 
the developed models. A kSVM-based model was developed and tested using the data from the virtual 
testbed with 1-hour ahead horizon. The developed systematic multistep feature selection process was 
again used to select features for the model. It was found that the correlations between features and the 
target feature, (i.e., occupant thermal comfort), were not strong. Expert knowledge was then explored 
to finalize the feature selection. A kSVM-based model was trained and used to forecast occupant  
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thermal comfort for each of the three occupants presented in the virtual testbed. Models developed 
using the kSVM method are able to successfully predict occupant thermal comfort accurately for the 
entire testing period (1 week) with more than 90% accuracy.

Computationally Efficient AFDD

Building HVAC systems seldomly perform as designed. Therefore, it is important to keep it maintained 
and repair the failed equipment in time, or to implement fault-adaptive control (i.e., implementing 
corresponding control strategies to offset the impact caused by system faults) to proactively respond to 
these malfunctions. To achieve this goal, detection and diagnosis of existing faults are required.

To address duct leakage, a robust multivariate temporal (RMT)-based variate selection method has 
been implemented to identify relevant variates for use in a forecasting model. This method ranks 
variates based on the co-occurrence of key temporal features/events to select variates that have high 
impact on forecasting of a target variable. Localized multivariate temporal features, which are robust 
against noise, are extracted by considering multiple scales, temporal characteristics of the time series, 
and external domain knowledge such as feature-to-feature relationships from a multivariate time 
series. Using data from the virtual testbed, the fault relevant variates for the target variate are ranked 
using RMT-based variate selection. Sensitivity tests show that the model performs best when using the 
attic zone temperature and the top 15% of ranked variates.

Following this, a convolutional neural network (CNN)-based model is trained on a fault-free set 
and used to forecast the target variate during the faulty period. A data selection framework to create 
artificial test data based on user’s input is also developed to evaluate the strategy. The evaluation 
results show that the developed strategy is able to successfully identify the fault impact when using 
the attic mean zone temperature as the target variate. This demonstrates the solidity of the attic mean 
zone temperature serving for the duct leakage detection. During the initial and final periods of duct 
leakages, the fault can be accurately identified and flagged with a 100% detection rate.

To address installation and operation faults in vapor compression cycle (VCC) systems, three existing 
AFDD methods for residential VCC systems were investigated: statistical rule-based chart, sensitivity 
ratio method, and simple rule-based method. A qualitative comparison was conducted, considering 
features required, fault-free reference models, potential faults diagnosed, and pros and cons of each 
method, as well as their performance regarding diagnosis accuracy rate. The statistical rule-based 
chart is well-developed as it considers probabilities in three uncertainty sources (measurement 
noise uncertainty, steady-state uncertainty, and fault-free model uncertainty). However, the specific 
adjustment for coefficients in the probabilities equations is challenging to ensure the acceptable 
accuracy. The simple rule-based method can obtain a high FDD accuracy while requiring minimal 
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efforts, as it only necessitates simplified normal thresholds for each fault feature. However, it should be 
noted that these thresholds are sensitive to specific fault types.

A quantitative comparison analysis was carried out using the NIST experiment data for four metrics: 
accuracy, false alarm, misdiagnosis, and missed detection. The statistical rule-based chart performs 
better for no fault (NF) and liquid line restriction (LL) cases with the accuracy of near 100%, while the 
simple rule-based method performs better for condenser fouling (CF), refrigerant undercharge (UC), 
and refrigerant overcharge (OC) cases with the accuracy of near 60%, 100%, and 100%, respectively. 
The sensitivity ratio method does not outperform in any case. The comparison results show that 
no single method could achieve consistent detection accuracy for different types of faults, which 
highlights the challenges of using individual FDD methods to achieve acceptable accuracy.

Therefore, we adopt a hybrid FDD approach that integrates the statistical rule-based chart and simple 
rule-based method in this project. Our approach emphasizes the weight of diagnosed results from the 
method with high diagnosis accuracy for a given fault. The hybrid FDD approach was tested with a 
field test dataset, achieving an overall diagnosis accuracy of 83.02% when counting only fault cases 
and 90.18% when counting all cases, including fault-free ones. The two-class confusion matrix for 
detection showed that all metrics were higher than 90%, with a detection accuracy of 96.4%.

Model-Based Adaptive Control Framework With Extracted Rules

To deal with the discomfort condition caused by system degradation faults and severe heat waves, 
precooling is a control cost-effective strategy that precools the building preceding in a given period 
to enhance the cooling effect by only utilizing the thermal mass of building envelopes and home 
furniture. To leverage the benefits of optimized control strategies from model predictive control (MPC) 
and at the same time ensure their practical application in ordinary households, an MPC-informed rule 
extraction is employed. This technique conducts the MPC offline in one hub, and then extracts several 
rules from its operation results (a larger-scale simulation is usually required to ensure adaptability in 
multiple locations). Consequently, these rules can be applied easily in ordinary houses. The process is 
called rule extraction. The goal of rule extraction is to select a minimum set of inputs, feed them to the 
rule-based controls, and maintain the same or close levels of thermal comfort and energy consumption 
with the MPC simultaneously.

We conducted an advanced control strategy MPC for the precooling control in the residential building 
with only thermal mass in consideration under extreme whether events (e.g., heat waves), and then 
to extract operation rules with a classification and regression tree to take advantage of the MPC 
results and make them easier to be applied in homes. It should be noted that the “extreme weather” 
in this project is a relative concept and defined on the basis of HVAC system operation. The concept 
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of extreme weather encompasses different scenarios: it can be a combination of normal weather 
conditions with a faulty HVAC system, abnormal weather conditions with a normal HVAC system, or 
abnormal weather conditions with an abnormal HVAC system. By providing this additional definition, 
we aim to clarify the various situations encompassed by the term “extreme weather”.

This framework is implemented in the prototype building and generates several control rules in the 
form of a decision tree. Simulation results demonstrate that thermal comfort can be improved with 
MPC-informed rules generated by the simulation results: During the same run period of testing and 
training, unmet hours decrease from 10 C-hr to 5.1 C-hr from July 14 to August 2, and from 0.6 
C-hr to 0 from August 13 to 22; when applied to a different period, the MPC-informed rule control 
generated from one period can mitigate the unmet hours from 9.2 C-hr to 5.2 C-hr, with a more than 
60% decrease rate. Furthermore, the online computation time for MPC-informed rule-based control 
(RBC) is significantly faster than the original MPC. On average, MPC consumes 870 minutes for a 
10-day running period, while MPC-informed RBC finishes in 0.2 minutes on average with the same 
computer configuration, which is 4,350 times faster. The comparison of time consumption indicates 
that MPC-informed rules impose a lower computational burden compared to MPC that involves an 
optimization process. This characteristic allows these near-optimal rules to be easily implemented in 
regular homes where HVAC controllers have limited computational capabilities. Thus, the simulation 
results suggest that the developed approach is not only effective in enhancing thermal comfort but also 
efficient in terms of computational load.

Lab Testing

The technology developed in this project utilizes low-cost sensors developed by the research team, 
which are installed throughout a residential dwelling. A demonstration of these technologies in a field 
testing setting was conducted at the PNNL Lab Homes. The demonstration effort entailed a dedicated 
testing period of seven weeks, from August 10 to September 25, 2022, aimed at evaluating the overall 
performance of the stability of iComfort sensors and cloud server in a stablished lab testing bed, as 
well as the effectiveness and efficiency of developed FDD methods and comfort-oriented algorithms.

First, the majority of sensors operated consistently throughout the experiment, reliably transmitting 
stream measurements to the cloud every minute. The 16 iComfort sensors collected and pushed 
1,413,072 sets of temperature and humidity data (and airflow data from four of them). The cloud 
database’s application programming interface (API) served more than 5,198,000 query requests 
from the detection and control algorithms. The cloud database was working at 100% availability and 
completely error-free during the experiment.
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Secondly, for the FDD strategy demonstration, the accuracy of FDD for the heat pump system can 
achieve 90.18%, counting all cases (including fault-free ones), with zero false alarm. The detection 
accuracy is 96.4%. Both of metrics met the program’s required threshold of 80%.

Furthermore, for the energy saving from the temperature setpoint control, 14% energy saving was 
obtained by occupancy-based setback strategies, or 10% was achieved by data predictive control. Both 
of them demonstrate ≥10% energy saving, which is one of the program goals. In terms of thermal 
comfort improvement, unmet hours could be decreased from 2.05°-hr (Lab Home B—baseline case) 
to 0.22°-hr (Lab Home A—test case), which will help improve residents’ thermal comfort under the 
malfunction of HVAC systems or in heat wave events.

Economic Analysis

The purpose of this simple economic analysis is to provide a description of the value that the 
developed product offers, as well as to examine current and future market opportunities, barriers, and 
relevant standards. This analysis evaluates the markets for sensors, automated fault diagnostic systems, 
and smart home energy management systems, and provides detailed technical and economic analysis.
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1. Introduction   
The buildings sector comprises the largest portion of energy consumption worldwide, even 
surpassing the industrial and transportation sectors. In the United States, buildings consume 
around 28% of total energy (with residences accounting for 16% and commercial buildings 
consuming 12%) (EIA 2022d) and are responsible for 35% of carbon emissions (EIA 2022d). 
Among them, almost half is consumed by heating, ventilating, and air conditioning (HVAC) (L. 
Wang and Hong 2013). Furthermore, 108.9 million out of 123.5 million housing units had 
installed air conditioning (AC) equipment as of 2020 (EIA 2020a). This number was 94 million 
of 113.6 million in 2009 (EIA 2009) and 82.9 million of 100.4 million in 2001 (EIA 2001). 
Therefore, reducing building HVAC energy consumption, especially in the residential sector, has 
a significant potential to contribute to the 2030 U.S. greenhouse gas pollution reduction target 
(The White House 2021). The goal for energy-efficient buildings set by DOE is to reduce the 
direct energy intensity of residential and commercial buildings by at least 35% by 2030 while 
reducing direct fossil fuel consumption by more than one-third. Particularly, the goal of 
residential buildings is to achieve 50% energy savings through the identification of deep retrofit 
packages (BTO 2016). 

One way of reducing HVAC energy consumption is by improving the energy efficiency of 
building HVAC operations. Extensive technical research has already been conducted on building 
design and optimal control to solve the problem of low efficiency. However, less attention has 
been paid to operational faults even though most buildings have varying degrees and types of 
operational problems during the whole life of the building, which creates a gap between real 
operation and ideal design conditions. According to a Downey and Proctor survey, 65% of 
residential buildings in the United States suffer from various faults (Downey and Proctor 2002), 
which result from improper installation, component degradation, inefficient control strategies, 
etc. In addition to causing energy waste in HVAC systems, these faults typically result in 
inadequate thermal comfort (Au-Yong et al. 2014).  

Moreover, occupancy behaviors are not well incorporated with HVAC controls in residential 
homes in an effective way. For example, a building’s HVAC system typically operates when the 
space is not occupied during the day. Therefore, there are significant energy saving opportunities 
from connecting the temperature setpoint with the occupancy status in a house—i.e., relax a 
zone’s temperature setpoint when it is not occupied. Internet of Things (IoT)-enabled devices can 
also lead to improved energy saving and occupant comfort.  

Some researchers have made efforts to address these problems. However, despite the wide 
adoption of building automation systems in commercial buildings, there is a dearth of integrated 
control systems for residential building HVAC systems to proactively and adaptively consider 
residential building and HVAC system characteristics, as well as the health status (e.g., whether 
there are faults). Current residential buildings are typically equipped with very limited numbers 
of thermostats and no other indoor environment monitoring capabilities. Energy saving control 
strategies are limited to prescheduled setpoints. Although the IoT technologies empower the 
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occupants with easy-to-use and remote setpoint reset capabilities (can be done over their 
smartphones), occupants frequently struggle to determine the appropriate setpoint to achieve 
their comfort and energy savings objectives. Building HVAC degradation and malfunction can 
only be diagnosed through expensive and manual energy auditing and service processes and 
hence are rarely detected in the field. Moreover, such fault status is disconnected with the house 
comfort control system (i.e., the control system is not adaptively responding to the HVAC 
system health status). Recent developments of smart home technologies, IoT technologies, and 
low-cost sensing technologies present a great opportunity to develop an IoT-based comfort 
control system that can provide integrated control and automated fault diagnostics to achieve 
better occupant satisfaction and energy efficiency in residential homes. 

To achieve HVAC energy savings in the residential sector while maintaining thermal comfort 
priorities for occupants in real-time, this project aims to address the following gaps: 

1) Lack of low-cost and distributed sensor systems for comfort and energy measurements, as 
well as for system performance monitoring. 

2) Lack of cost-effective and computationally efficient and accurate learning-based models for 
system monitoring, optimization, and AFDD. 

3) Lack of an advanced control framework that integrates adaptive controls with AFDD, IoT-
enabled devices, and human-in-the-loop machine learning for residential homes. 

1.1 Scope of This Project 
Our cost-effective and straightforward smart home system (illustrated in Figure 1) delivers a 
comfort-oriented thermal environment that improves occupant satisfaction and saves HVAC 
energy compared to the baseline control framework. 

1) Cost-effectiveness and scalability of the entire developed system: The system includes 
low-cost temperature, humidity, and airflow sensors, and a Raspberry Pi-based local hub that 
interfaces with the cloud and IoT-enabled devices. The cost is lower, not only for sensors, 
but also the costs associated with sensor installation, system setup and commissioning, 
data communication and storage, and data analytics (e.g., computationally efficient and 
implementable AFDD and control strategies). 

2) Energy performance and user satisfaction: The system delivers user satisfaction and 
energy savings. This includes a) ease of use, b) optimal occupant thermal comfort, and c) 
accurate system feedback (e.g., low false alarm of the developed AFDD strategies). 

3) Favorable demonstrated prototype performance: The prototype tested at the PNNL 
Lab Homes demonstrates the accuracy of faults detections/diagnoses of faults and shows 
energy savings and thermal comfort improvement through optimized HVAC operations. 
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Figure 1. Schematics of the smart home energy management system developed in this project 

Before proceeding to each section, the corresponding literature reviews are presented in the 
following subsections. 

1.2 IoT-Based Sensor Networks and Cloud Systems 
In most modern residential buildings, the thermostat controls the HVAC system to blow warm or 
cool air based on a simple comparison of nearby air temperature (e.g., utilizing the built-in 
temperature sensor of the thermostat) to the setpoint. 

Yet, this kind of simple control system may not achieve a desirable thermal comfort level for 
every room due to various factors such as the location of vents and thermostat, the insulation 
design, the sealing quality of the windows and doors, etc. To build a smarter control strategy so 
that the HVAC system can be operated efficiently while maintaining an acceptable comfort level, 
it is necessary to know the temperature and humidity distribution, airflow, and human occupancy 
status in the building.  

In such cases, wireless sensing networks are often used to gather the required distributed 
environment data for advanced control algorithms. A typical wireless sensing network consists 
of a gateway device and multiple wireless sensors. The wireless sensors can be distributed 
installed in the measuring area, and the gateway device forwards the sensor readings to any data 
consumer (usually a database). In addition, the wireless sensing networks can be connected to a 
cloud platform for reliable data storage and easier access for remote applications. 

1.3 Learning-Based Models 
A high-fidelity building operation model (e.g., energy forecasting model) is critical for advanced 
building control and energy abnormality detection. Data-driven modeling approaches, especially 
those that use machine learning and artificial intelligence methods, have demonstrated improved 
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cost-effectiveness and ease of application in the field, when compared with traditional physics-
based methods. 

However, the quality of a data-driven model is heavily dependent on the quality of data that the 
model is trained from. In the application of data-driven forecasting modeling, training data 
typically comes from building operation data, such as the building automation system data. Yet, 
data from building operations often have data bias problems, which means that the data sample is 
collected in such a way that some members of the intended data population are less likely to be 
included than others. As a result, the data sample obtained is not representative of the data 
population intended to be analyzed. For example, the zone temperature setpoint, a feature that 
strongly affects building energy, is often unchanged from collected normal building operation 
data. The utilization of data-driven energy forecasting models based on such data introduces a 
potential bias. It means that the limited range of setpoints used during the training data 
generation process constrains the model’s capacity to accurately predict scenarios that fall 
outside of this narrow range. Consequently, the trained model may exhibit suboptimal 
performance when confronted with conditions that deviate from the limited setpoint range. This 
increases the likelihood of significant forecasting errors when applied to model predictive control 
(MPC) for zone temperature control. 

Active learning is a solution to the data bias problem and is used to generate information-rich 
training data to develop high-fidelity forecasting models (L. Zhang 2018, previous work 
completed by the team). L. Zhang (2018) demonstrated that data-driven models trained by data 
generated through active learning strategies outperform models trained on normal operation data. 
By using active learning to generate training data, the resulting models are less biased and can 
better predict building energy consumption, resulting in more effective energy management and 
control strategies. 

1.4 Fault Modeling for Residential Buildings 
Fault-related research includes studying the impact of faults (Cheung and Braun 2013b, 2013a), 
fault detection and diagnosis (FDD) (Cheung and Braun 2015; Chintala et al. 2021; Bailey and 
Kreider 2003), fault-tolerant control (Homod 2014; Salsbury and Diamond 2001; Shahnazari 
2018), etc. Fault emulation—transforming fault-free systems to faulty systems by partially 
modifying parameter values—acts as an elementary approach to conducting all these studies. 
The two ways to emulate faults are real tests and simulation. Even if real data can be obtained 
without any computation errors, it is costly to implement real testing (Bellanco et al. 2021). 
Research on various combinations of faults occurring at the same time is limited and cannot be 
carried out thousands of times in lab tests. Other disadvantages of lab tests include large time 
consumption, the difficulty of decoupling single variables, adverse impacts on thermal comfort, 
and irreversible damage to the system. On the contrary, except for the weakness in completely 
capturing uncertainties in the real world, the advantage of simulation is to get rid of the real 
experiment limitation by implementing a wider range of values and expanding results without 
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affecting the actual system and occupants’ thermal comfort. Therefore, fault modeling has 
become a popular method of investigating HVAC faults in recent years.  

Two modeling approaches, forward modeling and inverse modeling, are also applied to fault 
modeling. The forward modeling method, i.e., physical modeling, is defined based on physical 
principles; hence it is more flexible and adaptable to different situations. Inverse modeling, i.e., 
empirical modeling, is the performance curve of data training instead of first-principles physics. 
It is simpler compared to the forward one, but has restrictions on transferring from one case to 
another. A comprehensive review of fault modeling practices covering building types, modeling 
approaches, and fault descriptions can be found in Table 57 of Appendix H, which includes the 
previous work of the team (Yanfei Li and O'Neill 2019). 

1.5 Automatic Fault Detection and Diagnosis for Residential HVAC Systems 
HVAC systems seldom perform as designed. Therefore, it is important to keep it maintained and 
repair failed equipment, or to implement fault-adaptive control to proactively respond to these 
malfunctions. To achieve this goal, detection and diagnosis of existing faults are required. 

FDD for HVAC systems has been studied in the last three decades (Bellanco et al. 2021; Zhao et 
al. 2019). Those applicable methods can be classified into three categories: quantitative analysis, 
qualitative analysis, and historical data analysis, which is commonly accepted by multiple 
researchers (Venkatasubramanian, Rengaswamy, and Kavuri 2003; Venkatasubramanian, 
Rengaswamy, Kavuri, et al. 2003; Venkatasubramanian, Rengaswamy, Yin, et al. 2003; 
Katipamula and Brambley 2005a, 2005b; Mirnaghi and Haghighat 2020; Singh et al. 2022; 
Alzghoul et al. 2014). 

Historical data analysis, also known as data-driven methods in some studies, has been 
increasingly prevalent in the past decade, largely due to the rapid development of communication 
and computation technology (Hosseinii and Nik-Bakht 2021). This kind of approach can be 
easier to achieve higher detection and diagnosis accuracy (Mirnaghi and Haghighat 2020) and 
find the hidden patterns from the abundance of data that qualitative analysis (e.g., rule-
based/knowledge-based approach) cannot complete (Zhao et al. 2019). According to the statistics 
of Zhao et al. (2019), 79% of existing FDD research focuses on the historical data-driven method 
in the field of HVAC systems.  

Compared to the historical data analysis (i.e., data-driven methods) and quantitative analysis 
(i.e., model-based methods), knowledge-based reference, categorized in qualitative model-based 
approach, also has its unique advantages, such as much simpler application, less computation 
load, less data required, easily interpretability, higher generality and transferability, etc. These 
features make this method more practical to be applied in ordinary homes where computation 
source for HVAC control is considerably limited.  

Air-sources vapor compression cycle (VCC) systems are widely used in most residential 
buildings in the United States, including rooftop units, heat pumps, etc. (Hu and Yuill 2021). 
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However, at the same time, more than 65% of residential VCC systems suffer from various faults 
(Shi and O'Brien 2019), which typically arise from improper installation, equipment degradation, 
sensor offset, or control logic problems (Yanfei Li and O’Neill 2018; previous work completed 
by the team). Soft faults, such as heat exchanger fouling, or a slow leakage through ductwork, 
are more difficult to detect and diagnose, compared to hard failures (Breuker and Braun 1998a). 
Although some of these faults do not occur in high severity frequently, they could lead to 
premature failure of the HVAC components, dissatisfied thermal comfort, or unnecessary energy 
cost. Therefore, FDD research that is applied to the air-source VCC system is attractive.  

Knowledge-based reference is usually represented by multiple rules, which is also the reason 
researchers usually call it the rule-based approach. These rules can be as simple as a normal 
threshold, or as complicated as patterns for recognition through measured values of multiple 
selected features (Nelson and Culp 2022). The first research concentrating on rule-based FDD 
for an air-cooled VCC system was conducted in 1989 by Yoshimura et al. (Yoshimura and Ito 
1989), who integrated a diagnosis approach in the air-cooled packaged air conditioner. The 
features they selected include air-side temperature (evaporator and condenser), refrigerant-side 
temperature (subcooling and superheating), high-pressure coefficient (condensing 
measured/rated), and low-pressure evaporating coefficient (evaporating measured/rated).  

Evaporator malfunction, undercharge, and expansion valve clog are diagnosed with the threshold 
for each feature by a fuzzy variable, which is based on one of two membership functions. Rossi 
and Braun (Rossi 1995; Rossi and Braun 1997) proposed a remarkably classic approach, the 
statistical rule-based FDD method, for their air-cooled vapor compression cycle system. They 
targeted five faults (undercharge, condenser fouling, evaporator fouling, liquid line restriction, 
and compressor valve leakage). Nine temperature measurements and one humidity measurement 
were selected as the features for the fault-free reference model and fault classification. These 
features and faults categories as well as FDD workflow are widely used in the following VCC-
related FDD research (Breuker 1997; Breuker and Braun 1998b; Braun 2003; M. Kim et al. 
2008; Payne 2020; Heo et al. 2012).  

Chen and Braun (B. Chen 2000; B. Chen and Braun 2000, 2001) created two simpler 
approaches, the sensitivity ratio method and simple rule-based method, which look at the 
measured values instead of residuals for each feature. This means that they do not require fault-
free models. Compared to the generic set of directional changes in statistical rule-based chart, 
these two need additional adjustment for the normal threshold of each feature according to the 
specific measurement. To enrich the evaluation metrics for various FDD methods, Yuill et al. 
constructed a comprehensive evaluation method for the performance of FDD tools applied to 
unitary air conditioners and evaluated three FDD protocols with the simulation of multiple VCC 
systems (Yuill et al. 2014; Yuill and Braun 2013).  

Table 58 in Appendix H collects the literature review of existing FDD studies related to the air-
source VCC systems, in terms of features, reference models, faults detected, and specific FDD 
methods (features, reference models, and fault detected will be explained and discussed in detail 
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in the later sections). The criterion for the selection and evaluation of FDD methods largely relies 
on the system characteristics and available sensor data. Thus, it is challenging for researchers and 
practitioners to apply existing FDD methods for residential VCC systems in an effective way.  

1.6 Model-Based Adaptive Control-Informed Extracted Rules 
Building mechanical systems will degrade gradually and develop capacity downfall as time 
passes. This contributes to the difficulty of meeting the required thermal environment, especially 
amid a heat wave (Zuo et al. 2015). Overheating is harmful to human health and productivity, 
and can lead to heat-related illnesses, like heat stroke, heat cramps, or even fainting (Howe and 
Boden 2007). This concern is further amplified by climate change, which accelerates the 
frequency of extreme weather events (Simon Brown 2020). 

To deal with severe heat wave conditions, several coordinated responses can be adopted, 
including the following steps. 

1) Replace HVAC systems with new ones with a higher capacity 

2) Retrofit the house (e.g., add building envelope insulation or replace the windows) 

3) Purchase thermal storage (e.g., an ice tank) to supplement the cooling ability of the original 
HVAC system when the heat waves come. 

All these measures require additional initial investments, which are usually not feasible for 
ordinary families. An alternative method to the above steps is precooling, which is a control 
strategy that precools the building preceding a given period to enhance the cooling effect by only 
utilizing the thermal mass of building envelopes and home furniture, rather than extra 
equipment/devices. As long as the programmable thermostat or remote thermostat is installed in 
the house, precooling can be applied to alleviate the effect of a heat wave to some extent. This is 
what is required as a flexible supplementary measure for air conditioning amid the heat wave 
period.  

The most commonly adopted precooling control method is rule-based control (RBC). This 
control strategy is predefined by expert knowledge in the “if-then” form with two or three fixed 
setpoints. For example, Turner et al. (2015) designed three precooling windows with deep 
(22.2℃/72℉) and shallow (23.3℃/74℉) precooling temperatures and concluded that the best 
precooling strategy is using a medium (5 hour) precooling time window with a shallow 
precooling setpoint temperature. RBC is straightforward to understand and includes valuable 
human experiences. However, those “optimum rules” are selected from the limited candidates 
due to time and brainpower limitations of humans. In addition, precooling implementation is 
related to taking account of future information when generating next-step action signals by 
control strategies. Manual adaption cannot ensure the optimum operation, because the manual 
process is constrained by limited measurement of environmental boundary conditions (Piscitelli 
et al. 2019). 
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Consequently, automatic optimization methods are employed to compensate for the limitation of 
manually determined rules. The precooling control strategy is implemented in the future time 
dimension, so MPC can be applied to tackle this problem because it considers the time series 
forward and backward simultaneously and features a delay-response system (Joe 2022). In this 
case, MPC can consider the future weather uncertainty as well as the thermal response dynamics 
of buildings.  

MPC also has its shortcoming, since it involves a high computation burden compared to the 
simpler RBC. This is why it is seldomly implemented commercially in the real world. Therefore, 
an alternative way is to conduct the MPC offline in one hub, probably on a large scale, and then 
extract several rules from its operation results (May-Ostendorp 2012). Consequently, these rules 
can be applied easily in ordinary houses. The process is called rule extraction (Yu and Pavlak 
2022). The goal of rule extraction is to select a minimum set of inputs, feed them to the RBCs 
and maintain the same or close levels of thermal comfort and energy consumption with the MPC 
simultaneously. Compared to the beforementioned expert knowledge involved rules, MPC-
informed rules are closer to the optimum and more automatic by deriving the merits of MPC 
operation. At the same time, rule extraction avoids online execution of computationally 
expensive optimization, thus alleviating computation load in building HVAC controllers with no 
cloud computation incorporated.  

To date, several studies have investigated the benefits of rule extraction in the building control 
sector. The first application of this rule extraction approach was conducted by Wei and Hsu 
(2009) who developed simplified control rules for the water resources management (M. Robillart 
et al. 2017). Then in 2011, Coffey (2011a) implemented it in the HVAC field by developing 
control look-up tables with precalculation of optimal setpoints over a grid of possible conditions 
from offline MPC results. After that, multiple researchers devoted themselves to exploring. For 
example, May-Ostendorp et al. (2011) initially proposed using logistic regression to mimic the 
performance of the optimizer results, which is applied in the window operation. More recently, 
Bursill et al. (2020) developed several MPC-informed rules in the decision tree to adjust the 
airflow by modulating the variable air volume damper. They concluded that only the 
classification and regression tree and boosting rules were able to maintain reasonable 
performance during closed-loop testing (see also: May-Ostendorp, Henze, Rajagopalan, and 
Corbin 2013). 

Table 59 in Appendix H summarizes the work related to the rule extraction for HVAC systems, 
in terms of rule extraction methods, systems, control variable, data source, testing approach, etc. 
The MPC-informed RBC strategy is promising, as it integrates the virtues of manual expert 
knowledge and automatic computer optimization mutually.   
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2. IoT-Based Cost-Effective Distributed Sensor System 
2.1 Fundamental Framework: Sensor Module, Local Hub, and Cloud Data 

Center 
This subsection describes the fundamental framework of the low-cost IoT-based wireless sensor, 
local hub, and cloud system for distributed measurement of temperature, humidity, and airflow.  

2.1.1 Overview of the Fundamental Framework 
The fundamental framework is designed to implement a low-cost, IoT-based, wireless distributed 
sensor system for home temperature, humidity, and airflow data gathering and a cloud data 
center to manage these data. As shown in Figure 2, the system consists of three main parts: 
sensor modules, the local hub, and the cloud data center. Multiple small, low-cost wireless sensor 
modules can be distributed in different places in a building to collect data individually. A 
multifunctional local hub with networking (wired or wireless) capability is used to manage all 
the sensors, gather data from sensors, preprocess data, and submit them to the cloud. The cloud 
service is developed to collect, store, and analyze data submitted from hubs and to provide a user 
interface through a web site. 

 
Figure 2. System overview 

2.1.2 Sensor Module Design 
2.1.2.1 LoRa Wireless Communication Module 
Figure 3 shows the block diagram of the wireless communication platform for sensors. The 
platform chooses the STM32L412 microcontroller unit (MCU) to support the sensor operations. 
The STM32L412xx devices are ultra-low-power microcontrollers based on the high-
performance Arm Cortex-M4 32-bit RISC core operating at a frequency of up to 80 MHz. The 
Cortex-M4 core features a floating-point unit single precision, which supports all Arm single-
precision data-processing instructions and data types. It also implements a full set of digital 
signal processing instructions and a memory protection unit, which enhances the application 
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security. The MCU is programable using the provided serial wire debug interface, which is 
accessible through the soldering pads.  

 
Figure 3. Functional block diagram of the sensor wireless communication platform 

Note: ADC stands for analog-to-digital converter; IIC stands for inter-integrated circuit; UART stands for 
universal asynchronous receiver-transmitter; GPIO stands for general-purpose input/output; and SPI stands for 

serial peripheral interface. 

The data collection and communication function are performed by a Long Range (LoRa) 
Module, with its features summarized in Table 1. LoRa is a proprietary low-power wide-area 
network modulation technique. It is based on spread spectrum modulation techniques derived 
from chirp spread spectrum technology. This LoRa module is packaged by Surface Mount 
Technology to make it compact and easy to use. The external interfaces of the LoRa Model 
include an analog-to-digital converter (ADC), inter-integrated circuit (IIC), universal 
asynchronous receiver-transmitter (UART), general-purpose input/output (GPIO) and pulse-
width modulation (PWM). The LoRa transceiver adopts SX1262, which is connected to the 
STM32L412 microcontroller by the serial peripheral interface (SPI) bus.  

SX1262 sub-GHz radio transceivers are ideal for long-range wireless applications. The device is 
designed for long battery life with just 4.2 mA of active receive current consumption. The 
SX1262 can transmit up to +22 dBm with highly efficient integrated power amplifiers. Its high 
sensitivity is down to -148 dBm, with programmable bit rates up to 62.5 kbps.  

Table 1. LoRa Module Features 

Features Parameters 

Power Supply 1.71V to 3.6V 

Frequency Band 915MHz 

Size L=30mm, W=22mm, H=2mm 

Interface ADC, IIC, UART, GPIO, PWM 
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2.1.2.2 Sensor Module 
Temperature and relative humidity are measured by the individual sensor module SHT31 
manufactured by Sensirion. It builds on a new CMOSens sensor chip, with the functionality of 
enhanced signal processing, two distinctive and user-selectable IIC addresses, and up to 1 MHz 
communication speed.  

Figure 4 shows the block diagram of the sensor module. For the temperature and humidity 
measurement, the LoRa module gets the data from the temperature/humidity sensor through the 
IIC interface. The airflow measurement is performed by a rotary anemometer. The airflow data is 
then read as a frequency signal from the rotary anemometer and transmitted to the LoRa Module 
via GPIO. The entire sensor module is powered by a CR2032 battery. The battery life is designed 
for one year with normal operations.  

 
Figure 4. Sensor module design 

Table 2 summarizes the performance features and specifications of the developed sensor module.  

Table 2. Sensor Module Performance Features and Specifications 

Features Parameter 

Power Supply CR2032(3V) 

Frequency Band 915MHz 

Temperature Accuracy Tolerance ±0.1°C 

Humidity Accuracy Tolerance ±2% 

Wind Speed Accuracy Tolerance ±3% 

Size L=43mm, W=23mm, H=8mm 

 

2.1.3 Local Hub Design 
2.1.3.1 Local Hub on Raspberry pi 
The local hub system is built on a Raspberry pi, which is a low-cost single-board computer with 
built-in Internet connectivity and multiple universal hardware interfaces. The main function of 
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the hub is to collect sensor readings through the Universal Serial Bus (USB) LoRa Gateway 
device, submit data to the cloud data center, and store/manage the information for each sensor. In 
addition, data conversion and preprocessing can be performed to the collected or stored data 
once the data arrives at the hub. Supplemental information (e.g., timestamp and sensor ID) is 
also attached to the sensor data during this step. The workflow of the sensor data handling is 
shown in Figure 5. All the data are converted into JSON format and submitted to the cloud 
application programming interface (API). 

 
Figure 5. Block diagram of the local hub data workflow 

2.1.3.2 LoRa Receiver of the Local Hub  
The local hub communicates with the distributed sensors via a LoRa Gateway, which is 
responsible for communicating with the sensor acquisition terminal and forwarding the sensor 
data to the local hub. The LoRa Gateway is also developed to have a debug capability and 
provides power through a USB interface. Figure 6 shows the block diagram and a picture of the 
developed USB-based LoRa Gateway. Table 3 lists the performance characteristics and 
specifications of the USB LoRa Gateway.  

STM32L412

Lora Module

SX1262

Antenna

SPI

USB To UART UART

       
Figure 6. Block diagram and picture of the USB LoRa Gateway 
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Table 3. LoRa Gateway Specifications 

Features Parameter 

Power Supply USB(5V) 

Frequency Band 915MHz 

Size L=60mm (including USB connector), W=23mm, H=3.5mm 

 
2.1.4 Cloud Data Center Development 
2.1.4.1 Cloud Data Center Architecture 
The cloud-based sensor interface, data management, and control system are shown in Figure 7, 
where the readings from the wireless sensors are collected by the local hub (Raspberry pi) and 
sent to the cloud. The sensor data are tagged, indexed, preprocessed, and stored in the database in 
the cloud. The user can request data from the cloud database for specific applications. 

 
Figure 7. Cloud-based system architecture and the associated AWS solutions 

The cloud service for this project is developed using the Amazon Web Service (AWS, a cloud 
service provided by Amazon) cloud platform where the API Gateway (internet), Lambda 
(computation), and DynamoDB (database) services are chosen to build the system. The API 
Gateway provides a standard internet endpoint for data submission and querying. The Lambda 
functions are scalable, and the stateless computation services are invoked for every incoming 
submission. The DynamoDB is a key-value database used for storing sensor information and 
sensor readings. 

2.1.4.2 Cloud Databases 
The database is organized into two tables: one of them stores all the sensor information in the 
specific measurement/monitoring system, and the other one stores the data records submitted 
from all the sensors. As shown in Table 4, the sensor information table stores all the important 
information of all the sensors. This allows the user to manage the entire sensor suite and 
register/delete sensors from the suite. The information table is scalable and can be easily 
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maintained/updated as necessary. A data table, as shown in Table 5, stores all the data records 
submitted. Individual records are accessible through the combination of sensor ID and record ID.  

The example data corresponding to the information table and the sensor data table is presented in 
Figure 96 and Figure 97 of Appendix A. 

Table 4. Structure of the Sensor Information Table 

Columns Description 

sensor-id A sensor-specific identification number 

sensor-name A readable name of the sensor 

sensor-type A description of the sensor device type 

record-id-start The starting record ID in the data table for this sensor 

record-id-latest The latest record ID in the data table for this sensor 

record-latest A copy of the latest reading for fast access 

report-interval The interval between two reports in seconds 

unit Unit description of the sensor data 

 

Table 5. Structure of the Sensor Data Table 

Columns Description 

sensor-id A sensor-specific identification number (same as in the sensor 
information table) 

record-id A numerical record ID, automatically increased by order of submission 

timestamp The time recorded when the sensor is requested to submit its readings 

value The value of the sensor reading 

 

2.1.4.3 Data Security and Access Control 
An access-key-based authentication and authorization system is implemented to prevent 
unauthorized access to the cloud database. Several access keys (strings with 64 random 
characters) are generated and stored in an additional table. Each key is associated with one of the 
two permissions: read-only or read-and-write. The interfaces of the cloud database require an 
access key with proper permission. The access keys are securely delivered to participants of the 
project and coded into the hub to enable their access to the database. 

2.1.4.4 Web Dashboard for Data Visualization 
A web dashboard is developed to display the real-time data arriving at the cloud. The web page 
is written in HTML and JavaScript, while the Chart.js library is used to draw charts on the page. 
After the webpage is successfully loaded, the script on the page communicates with the cloud 
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data center and fetches the latest record ID in the database. Then, the webpage attempts to fetch 
new data with a more recent record ID from the database and adds it to the chart. An individual 
chart is designated for each sensor.  

2.1.5 Test Case and Result 
Tests were performed on the cloud-based sensor data system in order to prove the system’s 
functionality in data collection, submission, retrieval, and visualization. Two wireless sensors are 
included in the test. Each of them is powered by a CR2032 3V lithium coin cell battery. A 
Raspberry pi 4B (8 GB version) is set up as the hub with a wired internet connection. The LoRa 
receiver is connected to the hub’s USB 2.0 port (with an extension cable for a better 
demonstration layout on the table). A tablet is used in the test to show the web dashboard page. 
And a hairdryer is used to manipulate the temperature and humidity around sensors.  

Readings that are newly submitted to the cloud are plotted on the dashboard in two charts, with 
one for each sensor.  

 
Figure 8. Sensor data system test 

Figure 8 is a screenshot of the test/demonstration video that was recorded and submitted to the 
U.S. Department of Energy (DOE). Temperature and humidity are plotted against the timestamp 
on the dashboard when the reading is captured from the sensor. Colored lines are used to 
represent each type of reading: orange for temperature and blue for humidity. During the test, 
each sensor is heated and cooled by the hairdryer. The reading during the heating and cooling 
process shows an expected trend of temperature and humidity changing, which confirms the 
functions of this cloud-based data system. The snapshot of the data table stored in the cloud 
during the demonstration is displayed in Figure 98 in Appendix A. The table shows the reading 
index, the record ID, the time stamp, and the measurement results collected from the sensors. 
The results clearly show that the sensor has a resolution of 0.01°C for temperature and 0.1% for 
relative humidity. The reading is fast, with about 4 seconds for each reading. 
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2.2 Low-Cost Wireless Sensor Platform: Temperature/Humidity Sensors 
Sections 2.2 and 2.3 focus on a detailed description of the development, testing, and evaluation 
of wireless sensors networked with a Gateway hub. This subsection, Section 2.2, will start with 
the temperature and humidity sensors. 

2.2.1 Temperature-Humidity Sensing Platform 
To measure indoor temperature and humidity distribution, the low-cost, energy-efficient, 
wireless Temperature-Humidity Sensing Platform (THSP) is designed, fabricated, and validated. 
The THSP is powered by a cell battery and communicates with the hub via the LoRa protocol. 
The THSP has a modular design, consisting of three modules (illustrated in Figure 4): the 
temperature and humidity sensing module, the processing and communication unit that 
includes a low-power microcontroller and a long-range LoRa transceiver, and the antenna 
module. Figure 9 shows the front and back images of a THSP. In addition, the board is installed 
with an indicator LED and a cell battery socket. 

 

 
Figure 9. Front and back views of a THSP unit 

The specification of the temperature and humidity sensing feature is shown in Table 6. 
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Table 6. Specification of Temperature and Humidity Sensor 

Feature Value 

Temperature Accuracy ± 0.3°C 

Temperature Resolution 0.015°C 

Temperature Range -40 ~ 125°C 

Humidity Accuracy ± 2%RH 

Humidity Resolution 0.01%RH 

Humidity Range 0 ~ 100%RH 

 

Processing and communication for the sensor platform is explained in Section 2.1. Specific 
details for the THSP are described in Appendix A.2. 

2.2.2 The Temperature and Humidity Sensing Module 
The sensing functions (e.g., temperature and humidity) are performed by an SHT31 temperature 
and humidity sensor, which is connected to the processing and communication module through 
the soldering pads. The diagram in Figure 10 shows the connection between the processing and 
communication module and the temperature and humidity sensing module. The SHT31 digital 
temperature and humidity sensor are placed at the corner of the board to minimize interference 
by other onboard components. The sensor communicates with the processing and communication 
module by IIC interface and starts a measurement following the MCU’s demand. The 
measurement result is sent back to the MCU in two 16-bit unsigned integers, which can be 
converted to physical scales based on the conversation rate.  

 
Figure 10. Components of the temperature and humidity sensing platform 

An indicator LED is installed on the board and connected to one of the GPIO ports of the Core 
Module. The LED blinks once when a data frame is sent out by LoRa. 

2.2.3 Sensing and Data Transmission 
The MCU on the LoRa Core Module is programmed to acquire and process the temperature and 
humidity monitoring data from the sensor. After the THSP is powered on or reset, the MCU 
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initializes the watchdog timer, clock, interfaces, and the chip’s power control. After 
initialization, the MCU enters its main loop. At the beginning of each loop, the MCU wakes up 
from standby mode and clears the watchdog timer that has awakened it. Then the MCU initiates 
the temperature and humidity sensor for a new measurement. After that, the MCU uses the built-
in analog-to-digital converter module to measure the voltage of the battery. Once the two 
measurements are completed, the MCU starts to build the sending buffer, including the 
temperature, humidity, and voltage measurements, the unique ID (hardware ID) of the LoRa 
chip, and a checksum calculated using all other data in the buffer. After the buffer is successfully 
built, the buffer is converted to ASCII and ready for transmission. At the end of the buffer, a pair 
of CR(\r) and LF(\n) control characters are added as the frame separator. The MCU turns on the 
LoRa transceiver and checks the channel. If the channel is clear, the MCU sends the buffer by 
LoRa to the hub. Otherwise, the MCU waits until the channel is clear. Finally, the MCU sets the 
watchdog timer, enters the low-power-consumption standby mode, and waits for the next 
command. The flow chart of this process is shown in Figure 11. 

 
Figure 11. Workflow of the temperature and humidity sensing module 

2.2.4 Battery Life 
The THSP is designed to perform unattended temperature and humidity monitoring, which 
means the battery life is an important criterion for the module. Two primary factors contribute to 
battery life: battery capacity and power consumption.   

The THSP is powered by a 3V cell battery installed in the battery socket. According to the size 
of the module, three candidates are picked for the cell battery model that could fit the board: 
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CR2032, CR2450, and CR2477. The size, weight, and capacity of these three batteries are listed 
in Table 7. 

Table 7. Compatible Cell Batteries 

Battery CR2032 CR2450 CR2477 

Diameter 20mm 24mm 24.5mm 

Thickness 3.2mm 5.0mm 7.7mm 

Weight 2.9g 6.3g 10.5g 

Capacity 225mAh 620mAh 1000mAh 

 

The power consumption of the module varies in different operation statuses. In standby mode, 
the MCU consumes about 0.7μA current since most of the components are in sleep mode. The 
time of sleep is dependent on the desired rate of reporting. During measurement, the MCU and 
the sensor together consume about 5mA current. During LoRa transmission, the unit’s power 
consumption depends on the spreading factor of LoRa. The spreading factor determines the 
tradeoff between the bit rate and transmission range. A higher spreading factor can bring a larger 
transmission range and a lower bit rate, which means the data will take longer to send from the 
sensor. The unit consumes 17mA current with factor 5, or 20mA with factor 8. 

When the sensor unit uses a 20-second report interval and spreading factor 8, the estimated 
average current consumption is about 51µA. Theoretically, a CR2477 battery can power the 
sensing unit for at most 1.2 years under this current usage. 

2.2.5 Transmission Test 
The THSP unit was tested with the hub for transmission range and signal penetration. The THSP 
could send readings to a hub for at least 100 meters in open space. In the indoor test, the signal 
can penetrate at least three walls, which is enough to cover a typical apartment unit. The 
screenshot of user interface for sensor measurements received by the hub is presented in Figure 
99 in Appendix A. 

2.2.6 Field Test of the Temperature and Humidity Sensor Network 
The system was tested in a local apartment unit for 60 days. The system included a hub and four 
sensors. It was tested to monitor the temperature and humidity in four rooms. All the data were 
uploaded into the cloud-based database, and the dashboard was used to visualize and analyze the 
data. The floor plan of the apartment unit and the installation of the system are shown in Figure 
12. 
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Figure 12. Floorplan and system installation 

The system continuously worked for 60 days without human intervention. During the test period, 
the system overcame at least two power outages and serval network disconnections and 
successfully restored its normal functions. 

During the 60-day test period, the system collected more than 340,000 records in total from the 
four sensors. The database retained about 44,000 records from each sensor for monitoring and 
analysis. The remaining were stored as JSON files in archive storage, about 36 MB in total. 
Figure 13 shows the 30-day bedroom data stored in the database in line charts. Plot examples for 
other rooms are shown in Figure 101 in Appendix A. 

 

Figure 13. Temperature and humidity charts: 30 days of readings 
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2.2.7 Improvement in the Temperature and Humidity Sensor Network 
Following the test in a local apartment, the THSP system continuously collected temperature and 
humidity data from multiple locations over a month. To solve the issue of weak signal strength 
of the THSP system in a larger building with thicker walls, the design of THSP was upgraded.  

The onboard antenna chip was replaced by a Linx ANT-915-uSP410 antenna chip, which 
featured a longer transmission range and better signal penetration. In addition, the onboard 
antenna was upgraded to include a socket to host an external antenna if needed. An external 
antenna could be used to extend the transmission range when needed. A digital communication 
and control port was also reserved on the improved design to interface the airflow sensor. The 
battery used in the THSP units was changed to CR2477 (doubled volume with a slightly 
increased size) to support the upgraded hardware and the extended airflow sensor. Figure 14 
shows the revised THSP unit with new features. The revised THSP design is slightly larger than 
the prior version, as shown in Figure 15. 

 
Figure 14. Revised THSP unit 

 
Figure 15. Comparison of the original THSP units and revised units 
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2.3 Low-Cost Wireless Sensor Platform: Airflow Sensors 
With the revised THSP unit, an off-the-shelf airflow sensor has been integrated into the wireless 
sensor system. The Benetech GM8901 hand-held anemometer was chosen to test the design and 
prototype. The original anemometer contains an anemometer (airflow sensor) and a hand-held 
device for interpreting the anemometer’s signal, as shown in Figure 16. The specification of the 
air velocity measurement feature is shown in Table 8.  

To integrate the airflow sensor into the wireless sensor system, the anemometer was 
disconnected from the hand-held device. The circuits, cable, and connector were removed from 
the handle. The three wires (power, ground, and signal) within the airflow sensor are connected 
to the communication and control port on the THSP. The signal output from the anemometer is 
processed by the microprocessor on the THSP unit, and the converted reading of air velocity is 
transmitted along with the temperature and humidity reading. The THSP unit connected with the 
airflow sensor can be housed within the handle of the airflow sensor, as shown in Figure 17 (a). 
Holes were drilled on the handle to allow the THSP to measure temperature and humidity from 
inside. Figure 17 (b) shows the fully integrated unit that can measure temperature, humidity, and 
air velocity simultaneously. 

 
Figure 16. The original GM8901 anemometer system 

 

Table 8. Specification of GM8901 Air Velocity Measurement 

Feature Value 

Range 0–45 m/s 

Minimum resolution 0.01 m/s 

Threshold 0.3 m/s 

Accuracy ±3% ±0.1dgts 
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(a) (b) 

Figure 17. THSP unit housed within the airflow sensor handle 

To integrate the airflow sensor into the wireless sensor system, the anemometer was 
disconnected from the hand-held device. The circuits, cable, and connector were removed from 
the handle. The three wires (power, ground, and signal) within the airflow sensor are connected 
to the communication and control port on the THSP. The signal output from the anemometer is 
processed by the microprocessor on the THSP unit, and the converted reading of air velocity is 
transmitted along with the temperature and humidity reading. The THSP unit connected with the 
airflow sensor can be housed within the handle of the airflow sensor, as shown in Figure 17 (a). 
Holes were drilled on the handle to allow the THSP to measure temperature and humidity from 
inside. Figure 17 (b) shows the fully integrated unit that can measure temperature, humidity, and 
air velocity simultaneously.  

The anemometer measures air velocity from the rotation of fan blades. Each time a fan blade 
passed the optical sensor installed on the lower beam, a pulse signal was output. The frequency 
of the pulse signals is linearly related to the wind speed. However, the relationship between the 
frequency and the air velocity reading was programmed in the hand-held device. To retrieve the 
formula of air velocity, the hand-held device was connected to a functional signal generator. The 
generated pulse signals of different frequencies were input into the hand-held device, and the 
reading shown on the screen was recorded. By plotting the recorded air velocity value against the 
input frequency, the linear function with R2 of 0.997 can be retrieved, as shown in Figure 18. 
This conversion factor was then programmed into the TSHP microprocessor and used to convert 
the anemometer reading into airflow speed. 
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Figure 18. Converted wind speed readings of different the input signal frequency 

The THSP-integrated airflow sensor was tested together with the hub. The sensor could measure 
the air velocity in addition to temperature and humidity, and all three readings were successfully 
transmitted to the hub. A screenshot for the airflow reading on the hub display is shown in Figure 
100 in Appendix A. 

2.4 Summary 
The low-cost IoT-based distributed sensor system is integrated with wireless sensors, the local 
hub, and the cloud system. The developed prototype wireless sensor modules can measure 
temperature and relative humidity with a resolution of 0.1°C and 0.1%, respectively, which 
exceed the requirements of 1°C in temperature and 5% in relative humidity. The development of 
the local hub targets communicating with the wireless sensors, collecting the sensor data, and 
uploading the distributed measurement results to the cloud. The cloud service is completed by 
AWS. It is demonstrated that the local hub can simultaneously collect data from multiple 
wireless sensors and send the data to AWS. In addition, the data handling functions are 
developed inside the AWS, allowing the sensor data to be time-stamped, stored, processed, 
downloaded, and displayed in real-time. 

The produced THSP is powered by a cell battery and communicates with the hub via the LoRa 
protocol. The sensing functions (e.g., temperature and humidity) are performed by an SHT31 
temperature and humidity sensor, which is connected to the processing and communication 
module through the soldering pads. The THSP can send readings to a hub within at least 100 
meters in an open space. In the indoor test, the signal can penetrate at least three walls. 

The system was tested in a local apartment unit for 60 days. The testing system included a hub 
and four sensors. It was tested to monitor the temperature and humidity in four rooms. All the 
data were uploaded into the cloud-based database. The wireless temperature sensors successfully 
measured temperatures and passed data to the hub. 
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The system continuously worked for 60 days without human intervention. During the test period, 
the system overcame at least two power outages and serval network disconnections and 
successfully restored its normal functions. They collected more than 340,000 records in total 
from the four sensors. The database retained about 44,000 records from each sensor for 
monitoring and analysis. 
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3. Virtual Testbed and Fault Modeling  
This section introduces a workflow for fault modeling of residential HVAC that includes fault 
library development and modeling method construction. Prior to that, we introduce the virtual 
testbed, DOE residential prototype building models. 

Discussion on this topic is organized as follows. Basic background for the residential building is 
described in Appendix B.1. A description of prototype residential buildings with heat pumps is 
presented in Section 3.1. The residential fault library is developed in Section 3.2. In Section 3.3, 
we describe how these faults can be modeled in a whole-building energy simulation using the 
fault library. This model is essential as it is one of the cornerstones for this project. Furthermore, 
Section 3.4 presents the fault modeling results and analyzes the fault impact at the same time. 
Finally, a summary of this section is highlighted in Section 3.5.  

3.1 Baseline Building Model: DOE Prototype Residential Building 
The baseline virtual building is developed from the DOE residential prototype building models, 
which were built by the Pacific Northwest National Laboratory (PNNL) from survey data, and 
data from standards, reports, papers, and expert knowledge (DOE).   

3.1.1 Building Information 
As shown in Table 9, this building, located in Houston, has two floors with a total area of 223 m2 

(2,400 ft2), with a slab-on-grade foundation. Its zones consist of a conditioned zone that includes 
rooms on two floors, and an unconditioned attic zone. The conditioned zone houses three 
occupants and all the electric appliances, while the HVAC system components are primarily 
housed in the attic zone. The HVAC system is a dual-setpoint controlled central air heat pump 
system. The default control of the HVAC system is a schedule-based fixed setpoint control. The 
key parameters of the building and the HVAC system are shown in Table 9, while the geometry 
of the prototype residential building is illustrated in Figure 19. Connection of the air loop and 
water loop in the EnergyPlus model of this prototype residential building can be found in 
Appendix B.2. 

3.1.2 Schedules 
Figure 20 plots a typical occupancy schedule of residents for the prototype residential building. 
The plot shows the occupancy fraction as it changes across each day. When the fraction is at 1, 
all three occupants are present in the building. At 0.33, only one occupant is present. Opposite to 
the work schedule, most of the people go to work during the day, so the occupant rate is low, 
while at the night, it rises up to 1. The weekdays and the weekend are assumed to have the same 
schedule. 

Similarly, Figure 21 and Figure 22 illustrate the operation schedules of lighting and electric 
devices. The lighting schedules remain the same between weekdays and weekends, whereas the 
schedules for electric devices vary. The refrigerator is not sensitive to the time series, because it 
operates all day in ordinary life. 



IoT-Based Comfort Control and Fault Diagnostics System for Energy-Efficient Homes 

27 

Table 9. Building Information of Prototype Residential Building 

Parameter Value 

Number of floors 2 

Floor area 223 m2 (2400 ft2) 

Window-wall ratio 14.20% 

Foundation Slab on grade 

People 3 

Equipment 

Lighting, refrigerator, clothes washer, 
clothes dryer, dishwasher, 

cooking range, miscellaneous electrical 
appliances, etc. 

HVAC system Heat pump 

Fan On/Off 

Setpoint Cooling 23.9℃ (75 ℉); Heating 22.2℃ (72 ℉) 

 
 
 

 
Figure 19. Geometry of prototype residential building with slab-on-grade foundation 
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Figure 20. Occupant schedule 

 
Figure 21. Lighting schedule 

 
Figure 22. Miscellaneous devices schedule 

An example of the monthly energy consumption of heating and cooling in this prototype 
residential building in Houston weather conditions is shown in Appendix B.3. 

3.2 Fault Library 
The fault library is the critical basis of fault modeling. It is a package containing fault taxonomy 
(which defines a structure of potential faults) and fault modeling elements (which describes 
modeling-related characteristics of potential faults, including fault directions, fault bounds, and 
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fault prevalence). Further, it serves as the cornerstone to map fault symptoms for the real 
systems, with the input parameters in the whole building simulation program (e.g., EnergyPlus). 

To develop a fault library that is reusable and expandable to any residential building, several 
papers and reports on residential HVAC faults were reviewed first. These publications are not 
limited to the topic of fault modeling but also include fault impact analysis, fault detection and 
diagnosis, robust operation test, etc. 

3.2.1 Fault Taxonomy: Definition and Structure 
A fault is defined as an abnormal operation of the HVAC system, which results in a deviation 
from normal building performance and results in higher energy consumption than fault-free 
conditions and/or worse thermal comfort, with thermostat setpoints unmet (Cheung and Braun 
2015). A fault’s effects include the loss of efficiency and capacity of the system. 

A fault taxonomy should serve as a road map to locate the fault and then link it with the 
corresponding information in the fault library (Y. Chen et al. 2020). To achieve that, a hierarchy 
of residential HVAC systems is developed in Figure 23. This taxonomy consists of three levels – 
fault system, fault component, and fault name. From the bottom up: a fault name (i.e., a fault) 
denotes a single malfunction at one location; a faulty component is a separate physical part of 
one complete machine, operating with certain faults; a fault system is a complete system 
comprising multiple components, among which some are in fault conditions. For example, a fault 
system of a heat pump comprises condenser, evaporator, refrigerant, etc., which all belong to the 
fault components. For the fault component of refrigerant, the specific fault is likely undercharge, 
overcharge, or non-condensable gas. Complete definitions and examples of terms to structure the 
fault library are listed in Table 10. 

 

Figure 23. Taxonomy of residential HVAC fault library 
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Table 10. Definitions of Terms in Fault Library 

Term Definition Category Example 

Fault A single malfunction at one location 
Event (reality and 
simulation) 

Condenser fouling, 
Compressor degradation 

Fault Model Fault in the simulation Event (simulation) 
Condenser fouling, 
Compressor degradation 

Fault Mode 
Multiple faults that can occur 
simultaneously  

Event (set of faults) 
(reality and 
simulation) 

Fault Mode 01: consists of 
condenser fouling, liquid line 
restriction, etc. 

Fault 
Component 

A separate physical part of one 
complete machine, operating with 
certain faults 

Equipment (reality 
and simulation) 

Condenser, compressor, 
expansion valve 

Fault 
System 

A complete system comprising 
multiple components, among which 
some are fault components 

Equipment (set of 
components) (reality 
and simulation) 

Heat pump system, furnace 
system, AC system, building 
envelope 

Fault 
Symptom 

A single biased operating parameter, 
contributed by fault mode; it could 
represent one fault system or one 
fault component 

Value (reality and 
simulation) 

COP (for one system - heat 
pump) 
motor efficiency (for one 
component - blower) 

EnergyPlus-
based Fault 
Models 

A whole building level, including all 
faults that span different systems, or 
physical elements 

Event (set of fault 
modes) (simulation) 

 

Faulty 
Parameter 
in IDF 

It maps to fault symptom in the IDF 
file (EnergyPlus input file) 

Value (simulation)  
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Figure 24. Vapor compression cycle for air conditioner system and heat pump system (numbers are 
corresponding specific faults) 

 
Figure 25. Heating system with a furnace installed (numbers are corresponding specific faults) 

Twenty-four faults in five categories (heat pump, furnace, air handler, air loop, and thermostat) 
are curated in this project. Their locations are sketched separately in Figure 24 (a vapor-
compression cycle system) and Figure 25 (a furnace system). The numbers in the circle represent 
the location of potential HVAC faults in the system. The yellow and red circles represent the 
heat pump and furnace, respectively, while the blue circle displays the air handling system. The 
cyan circles are related to the faults in the air distribution system, and the green circles mark the 
sensor faults. Descriptions of all potential faults are summarized in Appendix C. Among the 
described faults, condenser fouling, evaporator fouling, compressor degradation, refrigerant 
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undercharge, dirty air filter, air duct leakage, and thermostat error are most common in 
residential HVAC systems (Rogers et al. 2019a).  

In the fault library, multiple faults may contribute to the same fault symptom simultaneously. A 
typical example is that the cooling capacity may be decreased due to faults from condenser 
fouling, liquid line restriction, non-condensable gas in the refrigerant, etc. In other cases, one 
fault in the fault library may have fault symptoms associated with one or more parameters. For 
example, liquid line restriction may impact the cooling coefficient of performance (COP) and 
cooling capacity at the same time.  

3.2.2 Fault Elements 
Fault modeling elements for the residential HVAC system include fault directions, fault bounds, 
fault prevalence, and fault objects and parameters in the simulation tool. 

3.2.2.1 Fault Directions 
Considering the characteristics of HVAC components, fault directions can be categorized into 
four types:  

• Fault-by-lacking: The faulty value is lower than the normal one. Condenser fouling is a typical 
example, which may result in the degradation of the cooling capacity and COP of a cooling 
system. 

• Fault-by-excess: The faulty value is higher than the normal one. One typical example is the 
fan pressure rise caused by a dirty air filter. 

• Fault-by-deviating: The faulty value can either increase or decrease from the normal one. For 
example, thermostat offsets can lead to a lower or higher measured temperature than the fault-
free conditions. 

• Fault-by-uniform: The faulty value distributes randomly in a limited range. The infiltration 
rate is a typical example. 

 

3.2.2.2 Fault Bounds and Fault Prevalence 
Fault bounds define the limited range of values for each fault parameter. For most of the faults, 
the amplitude of the strongest effect is not uniform or random. Instead, it depends on the system 
configuration and the surrounding environment. Fault prevalence, which is usually represented 
by occurrence probability, indicates how often one fault appears at the desired level of fault 
severity. This is necessary when investigating the impact of a combination of multiple faults. The 
consideration of fault prevalence helps improve the calculation accuracy because faults have 
diverse existing probabilities in real life and are not likely to always appear at the same time.  

To make the inserted faults have meaningful effects in the models, it is critical to estimate the 
lower bound and upper bound for each fault and their fault prevalence. For the fault bounds, we 
investigated a literature review to collect all existing fault ranges for the residential HVAC 
systems, which is shown in Figure 26. Based on the characteristics of HVAC faults, the four 
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types of models we analyze include (a) fault-by-lacking, (b) fault-by-excess, (c) fault-by-
deviating, and (d) fault-by-uniform (Yanfei Li and O'Neill 2019).  

Fault prevalence lacks sufficient research. For commercial buildings, Winkler et al. (2020) 
collected fault data of the indoor airflow rate and refrigerant charge from previously published 
research and created the corresponding fault histograms. Figure 26 is an example of the charge 
fault using frequency for each fault level (Winkler et al. 2020). For residential buildings, two 
research teams from the University of Nebraska–Lincoln (University of Nebraska–Lincoln) and 
the University of Central Florida (Florida), sponsored by DOE, are working on the prevalence 
and severity of HAVC faults in residential systems, but are still in progress. Therefore, this 
project estimates the residential fault prevalence with assumed distribution models proposed by 
Li et al. (Yanfei Li and O'Neill 2016), including Weibull function (for fault-by-lacking and fault-
by-excess) (Bourguignon et al. 2014), Gaussian distribution (for fault-by-deviating), and uniform 
distribution (for fault-by-deviating).  

 
Figure 26. Histogram of charge fault ratio collected using measurements from previous studies  

(Winkler et al. 2020) 

Calculations and examples of prevalence distribution for four types of faults are shown in 
Appendix C.1. 

3.2.2.3 Fault Objects and Parameters in EnergyPlus 
When the fault library is implemented, each fault should be mapped with a parameter in the 
simulation tool. Once the relationship is developed, the fault values can be easily modified in the 
simulation according to the predefined fault performance. Ideally, it is good to emulate all faults 
physically in the simulation. However, for EnergyPlus, its models of heating/cooling plant 
systems are developed to represent the symptoms of the faults in the behavior. For example, heat 
exchanger fouling, compressor degradation, or refrigerant charge issues all result in the same 
faulty symptom in the plant, i.e., degradation of efficiency and capacity. So, we emphasize the 
fault symptoms and the corresponding parameters in the EnergyPlus application, rather than the 
specific physical process.  
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Figure 27. Research methodology outline of EnergyPlus-based faulty model generation 

3.3 Fault Modeling Methodology Based on Residential Fault Library  
Fault model construction is a fundamental step in conducting further studies, like fault impact 
analysis, FDD, fault-adaptive control, etc. The workflow for constructing the EnergyPlus-based 
fault model is illustrated in Figure 27, which is adapted from Li et al.’s work for commercial 
buildings (Yanfei Li and O'Neill 2019). The fault simulation is conducted with considerations of 
multiple faults and faults prevalence. The fundamental elements for fault model construction are 
as follows:  

1) Fault mapping: Corresponding faults from physical modeling to associated parameters in 
EnergyPlus one by one. 

2) Fault bound: Upper and lower limits for each fault severity (described in Section 3.2). 

3) Fault prevalence distribution: Probabilities for a given severity of one single fault 
(described in Section 3.2). 

4) Fault sampling approach: Generating samples of abundant fault modes. 

3.3.1 Fault Mapping 
A mapping between input parameters of EnergyPlus and the faults in the developed fault library 
was created and can be accessed in Appendix C.3. Figure 28 shows the data structure (adapted 
from (Yanfei Li and O'Neill 2019)) that gives a guide to model multiple faults simultaneously 
using the whole-building energy simulation (e.g., EnergyPlus), regarding various fault elements, 
described in Section 3.2. The definition of each column (Yanfei Li and O'Neill 2019) is 
presented as below: 

1) Mode ID: the ID for each fault mode. 
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2) Case ID: the ID for each fault input parameters case. 

3) Fault mode name: the name for each fault mode. 

4) Fault mode IDF module: the IDF object name in EnergyPlus corresponding to the fault 
mode. 

5) Fault mode IDF parameter: the input parameter to be revised in the IDF of EnergyPlus. 

6) Fault mode unit: the unit of IDF input parameter. 

7) Fault mode IDF component: the IDF component name within the given object. 

8) Fault mode nominal: the nominal value (fault-free) for the input. 

9) Mode lower: the lower bound for each IDF input parameter with a given fault mode. 

10) Mode upper: the upper bound for each IDF parameter with a given fault mode. 

11) Mode type: the fault occurrence distribution type (i.e., lacking, excessing, nominal, or 
uniform). 

12) Notes: the note for each fault. 

13) Fault model 1 name: the name of the fault model 1 that belongs to the given fault mode. 

14) Fault model 1 lower bias: the lower bias relative to the nominal value for the fault model. 

15) Fault model 1 upper bias: the upper bias relative to the nominal value for the fault model. 

16) Fault model 1 type: the fault model distribution type (i.e., lacking, excessing, nominal, or 
uniform). 

17) Fault model 1 note: the extra note for the fault model. 

18) Repeat (13)–(17) with new models that belong to the same given fault mode. 
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Figure 28. Example of fault mapping data structure for faut model generation  

3.3.2 Fault Modeling Implementation 
EnergyPlus, an advanced whole-building energy consumption simulation, is used as the studied 
simulation tool in this project. There are four ways to model HVAC faults in EnergyPlus (R. 
Zhang and Hong 2017):  

1) Change parameters directly: This is the easiest way to implement fault injection in the 
HVAC system and can be finished within the idf text file by changing input parameters or 
performance curves. Faulty values should be carefully determined if this approach is 
adopted. 

2) Use an energy management system in EnergyPlus: This approach is designed for 
customized supervisory control routines for some preselected sets of parameters. It is more 
flexible than the direct parameter change, because it overrides specific aspects of 
EnergyPlus modeling.  

3) Utilize built-in fault objects in EnergyPlus: This approach gives the users full access to 
all parameters in the source code of EnergyPlus. Developers implement generic physical 
logic in the source codes. Users do not need to describe this calculation logic like an energy 
management system. 

4) Modify the source code of EnergyPlus: This approach can be used if the above three 
methods fail to satisfy the users’ requirements. It requires the user to have a full 
understanding of EnergyPlus source code and to devote significant programming efforts.  

In this project, considering the distribution of residential HVAC faults, direct parameter 
adjustment and native fault objectives were considered to construct faulty energy models with 
EnergyPlus. These two methods are sufficient to inject faults into the baseline EnergyPlus 
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model. Moreover, as we need to investigate the distribution of faults and their effect on energy 
consumption, an external computing language, Python, is used to adjust fault-related parameter 
values and generate thousands of faulty EnergyPlus models.  

3.3.3 Fault Sampling 
For a given EnergyPlus fault model, multiple faults are included with a predefined fault 
occurrence probability. As illustrated in Figure 27, various predefined probability distributions 
are first used to do sampling for single fault values. The process involves inverse transform 
sampling technique with the Latin hypercube sampling. Latin hypercube sampling is a statistical 
sampling technique widely employed in the experimental design and numerical analysis. It 
proves especially beneficial when investigating parameter spaces with multiple dimensions, as it 
guarantees a representative and uniformly distributed sample. The fundamental concept of Latin 
hypercube sampling involves dividing the parameter space into equally sized intervals, or “bins,” 
and randomly selecting one point within each bin. The Latin hypercube component ensures an 
even distribution of samples throughout the entire parameter space by enforcing that each bin 
contains only one sample per dimension. 

The sampling procedures are outlined in detail as follows: 

1) Calculate the cumulative density function (CDF) corresponding to the probability density 
distribution (𝐹𝐹(𝑥𝑥)), calculated by Equation (1).  

2) Invert the CDF to get the inverse function (Equation (2)). 

3) Employ Latin hypercube sampling for the variable 𝑦𝑦, ranging from 0 to 1 (Equation (3)).  

4) Substitute the sampled values into the CDF to obtain 𝑋𝑋, representing the samples that 
adhere to the desired probability density function (PDF), calculated by Equation (4). 

𝐹𝐹(𝑥𝑥) = � 𝑓𝑓(𝑡𝑡)𝑑𝑑𝑡𝑡
𝑥𝑥

−∞
 

(1) 

𝑋𝑋 = 𝐹𝐹−1(𝑦𝑦) (2) 

𝑦𝑦 = 𝐿𝐿𝐿𝐿𝐿𝐿 𝑖𝑖𝑖𝑖 [0,1] (3) 

𝑓𝑓(𝑥𝑥) =
𝑑𝑑𝐹𝐹(𝑥𝑥)
𝑑𝑑𝑥𝑥

 
(4) 

In Figure 29, the inverse transform sampling for fault sampling is depicted. The X-axis 
represents the desired sampled parameters (indicated by the blue points) that adhere to the 
desired probability density function (PDF). The Y-axis corresponds to the Latin hypercube 
sampling (represented by the red points) derived from the inverse function. The black line 
illustrates the CDF. 
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Figure 29. Inverse transform sampling with Latin hypercube sampling (Yanfei Li 2018) 

Following the single fault sampling, the next step involves randomly combining multiple fault 
models to obtain fault model values, and the sampled value for each of all faults are picked in 
each combination (“no fault” is allowed because zero error is included in the sampling process). 
Fault model values then served as the fault database to be picked up randomly and injected into 
the baseline EnergyPlus model. The following Equation (5) (Li and O'Neill 2019) is used to 
inject multiple faults into the baseline model. 

𝑋𝑋𝑓𝑓 =  𝑋𝑋0 +  𝑋𝑋0�[𝑎𝑎𝑙𝑙𝑙𝑙 + 𝑓𝑓𝑖𝑖(𝑎𝑎ℎ𝑖𝑖 − 𝑎𝑎𝑙𝑙𝑙𝑙)]𝑖𝑖

𝑛𝑛

𝑖𝑖=0

 (5) 

where,  

Xf is the fault parameter from a fault mode.  

Xo is the fault parameter in the nominal condition (fault-free). 

i is the index for each fault model.  

fi is the fault occurrence probability of an individual fault with the range of [0, 1].  

ahi is the maximum bias percentage (upper bound) of a directly affected parameter under a faulty 
condition.  

alo is the minimum bias percentage (lower bound) of a directly affected parameter under a faulty 
condition. 

 n is the total number of faults impacting the fault parameter X. 
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By using the probability distribution and the multiple faults impact formula, the EnergyPlus fault 
model samples (i.e., 3,000 EnergyPlus IDF models with faults) can be generated using Python 
scripts. Figure 30 illustrates the sampling procedure.  

 

Figure 30. The procedure of fault parameter sampling 

(Yanfei Li and O'Neill 2019) 

3.4 Generation of Residential Building Fault Models 
Generated fault data based on the fault library can be applied in a variety of ways to facilitate 
research as follows.  

1) Understanding faults impact: This facilities a comprehensive understanding of fault 
impact by quantifying the response on energy consumption and thermal comfort with 
diverse perspectives of input values (M. Kim et al. 2006; Lu et al. 2021). Energy 
consumption (periods, seasons, peaks, etc.) and thermal comfort (PMV-PPD, unmet hours, 
etc.) are the two main metrics of interest (Rahman et al. 2022).   

2) Guiding and testing FDD: Constructing faulty cases to develop various performance 
patterns and features, which can provide a comprehensive guide and virtual data for FDD 
strategy generation (Cheung and Braun 2015; Zhao et al. 2014). The rule-based approach 
and data-driven approach are two ways to generate detection and diagnosis algorithms, with 
labeled fault data generated on the fault library (Mirnaghi and Haghighat 2020). 

3) Supporting commissioning and retrofit: Modeling operational faults can improve the 
accuracy of existing building model calibration, which serves as a baseline for retrofit or 
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commissioning, thus increasing the analysis accuracy of different measures (Shih 2014; 
Lyu et al. 2021). 

4) Assisting adaptive control: Virtual testbed with faults injected can support testing fault 
correction measures or flexible control decisions to maximize the conditioning ability of 
HVAC systems within degraded conditions (Gunay 2016; Xu et al. 2021). System capacity 
(e.g., oversizing and degradation) is a typical fault that can be conveniently injected and 
studied in EnergyPlus (Cetin et al. 2019). 

In this section, the fault models for residential buildings are generated using the workflow 
described in Section 3.3, based on the fault-free DOE residential building prototype (DOE), and 
a simple fault impact analysis is presented. 

3.4.1 Faulty EnergyPlus Model Generation 

 

(a) An example of the fault-by-lacking pdf curve 

 

(b) An example of the fault-by-excess pdf curve  

 

(c) An example of the fault-by-deviating pdf curve 

 

(d) An example of the fault-by-uniform pdf curve 

Figure 31. Examples of fault pdf curves (the x-axis is the fault bias, and the y-axis is the fault occurrence 
probability) 
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According to the explanation in Section 3.3.2, fault emulation in EnergyPlus is achieved by 
direct parameter value change and built-in fault objects. For the residential building in this 
section, there are a total of 12 fault modes injected into EnergyPlus, based on 19 faults (5 faults 
for the furnace are not included, because this virtual testbed is with a pure heat pump for heating 
and cooling). According to the workflow illustrated in Figure 27, each fault model is sampled 
with the consideration of its fault bound and fault prevalence. Three thousand cases are 
generated in total. Figure 31 shows distribution examples for each type of fault from the 
sampling results. Figure 31(a) shows a fault-by-lacking pdf curve, where a smaller negative bias 
occurs more frequently while a larger one is for less often. This curve is the result of capacity-
degradation-like faults. Its occurrence distribution follows the Weibull model (Bourguignon, 
Silva, and Cordeiro 2014). Similarly, Figure 31(b) is a fault-by-excess pdf curve, where faults 
occur less frequently for a larger positive bias while more often for a smaller bias. This curve is 
the result of pressure-rise-like faults. Figure 31(c) is a fault-by-deviating pdf curve, resulting 
from thermostat-offset-like faults and obeying Gaussian distribution. Figure 31(d) shows a fault-
by-uniform pdf curve, with infiltration rate as a typical example, following the uniform 
distribution.  

Fault impact analysis based on the generated fault models can be found in Appendix C.3. 

3.5 Summary 
Section 3 presents an expandable fault library of residential HVAC systems along with the 
generation of faults using EnergyPlus based on the developed library. It can assist in simulating 
operational faults in residential HVAC systems and conduct a fault-relative investigation, 
including fault impact, fault detection and diagnosis, fault-adaptive control, etc. The fault library 
consists of 1) fault taxonomy, which defines each fault in the residential building and its 
systematic structure and 2) fault modeling, which includes fault attributes (direction types, 
bounds, prevalence), as well as the corresponding objects and parameters in EnergyPlus. Based 
on this fault library, a fault modeling approach for residential HVAC is developed. A basic 
modeling approach consists of fault mapping, fault occurrence distribution development, 
multiple fault combination, and fault sampling. 

Fault modeling of residential HVAC systems is beneficial for understanding faults impact, 
guiding and testing the FDD, and assisting adaptive control. Three thousand fault models of 
residential HVAC systems are generated in this project, by following the developed fault 
modeling methodology. These fault models will support the research of FDD and fault-adaptive 
control in the following sections. A fault impact analysis is also conducted in the scenarios of 
single fault, double faults, and multiple faults. 

This section also contributes generally to the HVAC fault research community by constructing a 
residential fault library. This innovative library encompasses all possible faults in residential 
HVAC systems that have not been previously addressed in a comprehensive way in the existing 
literature. It provides extensive information about the locations, fault taxonomy, and fault 
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attributes of each fault. Furthermore, it outlines the application of this fault library in simulations 
using EnergyPlus. Although this fault library was demonstrated in the EnergyPlus simulation 
environment, it can be easily integrated with other whole-building simulation programs.  
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4. Learning-Based Models 
In this section, the developed learning-based forecasting models are discussed. First, Section 4.1 
introduces the overall modeling framework used for developing the learning-based forecasting 
models. Section 4.2 covers a comprehensive discussion on the utilization of such framework as a 
virtual testbed for the development of forecasting models, and evaluation of the developed 
models. Finally, Section 4.3 concludes the section with a discussion on the development and 
evaluation of the forecasting models used for the PNNL lab test home. 

4.1 Overall Modeling Framework 
Several learning-based forecasting models were developed for this study, which include a whole-
building energy forecasting model, an HVAC energy forecasting model, a zone temperature 
forecasting model, and a thermal comfort forecasting model. All of these forecasting models 
shared the same framework as created by the project team (L. Zhang and Wen 2019, 2021): 

1) Weather block analysis 

2) Systematic multistep feature selection 

3) Active learning 

4) Cross validation model training 

5) Model testing 

This framework starts with the available normal operation data either from the virtual testbed of 
the DOE prototype building in EnergyPlus or historical data from the PNNL lab test home. The 
data selection and measurement process mainly considers how easily the data can be obtained 
from real buildings in practices. Using this dataset, a weather block analysis is first performed to 
determine the impact of weather disturbances on the forecasting models. After the weather block 
analysis, a systematic multistep feature selection is performed to determine the smallest set of 
features that provide the best fit for the model. Following is an active learning process, which is 
a machine learning-driven process to improve the richness of the data, which means their 
generation under a wide range of conditions, encompassing various settings and not limited to 
just one or two thermostat setpoints. Using the enhanced data, a K-fold cross validation model 
training process occurs to train the forecasting models. The trained models are then evaluated on 
different testing data to assess their performance. More detailed discussions of all parts of the 
framework can be found in the following subsections. 

4.1.1 Active Learning Algorithm and Weather Block Analysis 
Active learning within machine learning-based modeling is similar to the strategy of excitation 
and experiment design in the fields, in terms of system identification and parameter estimation 
(Zhang and Wen 2018; Zhang 2018). Active learning works well with machine learning-based 
models. Compared with traditional excitation methods in a system identification process, much 
less domain knowledge is needed by active learning algorithms, since it is guided by data itself 
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and is generally plug-and-play with minimum engineering efforts. Among the various active 
learning algorithms, the expected error reduction method (Zhang and Wen 2018) places a 
significant emphasis on model generalization or extendibility. The idea is to enhance the model’s 
ability to perform accurately not just on the training data, but also on unseen or future data. This 
trait is of paramount importance in dynamic fields like constructing energy forecasting models. 
The expected error reduction strategy aims to identify an unlabeled dataset that, when included, 
minimizes the discrepancy between a model trained solely with labeled data and a model trained 
with both the labeled data and the newly incorporated unlabeled data point. An example of this 
algorithm can be seen in Figure 32. Step (a) shows three unlabeled data points that can be 
selected, and step (b) shows that the red point is selected because that results in the least 
difference in the newly trained model. The process is repeated in steps (c) and (d). 

 
Figure 32. Visual example of expected error reduction algorithm 

The main purpose of an active learning algorithm is to provide information-rich training data for 
a data-driven model. Hence, it is developed with a data-driven modeling structure. A 
straightforward data-driven modeling algorithm, multivariate adaptive regression spline 
(MARS), is used as the default modeling algorithm in this study. MARS was selected because it 
outperforms other commonly reported modeling algorithms such as regression tree, artificial 
neural network, and polynomial regression in our previous studies (Zhang and Wen 2019, 2018; 
Zhang et al. 2016).   

Figure 33 illustrates the process of applying an active learning algorithm using the expected error 
reduction method (L. Zhang 2018). The process starts with a collected normal building operation 
dataset L, which is generated under very limited setpoints (being fixed, not dynamic variation 
over time step) during a building’s normal operation. This dataset goes through a preliminary 
feature selection process to reduce the numerous possible features within building operation to a 
manageable selection. Data is considered “labeled” in this dataset: for each set of model inputs 
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(e.g., the setpoints and weather conditions), there is a corresponding model output (building 
energy consumption for this study). Hence, a data-driven model hθ (in our study, a MARS 
model) is developed based on this normal operation dataset (L). This step can be done offline 
before the active learning process. More details about the process can be found in Zhang and 
Wen (2019).  

 
Figure 33. The complete active learning algorithm for building energy forecasting 

The weather disturbances categorization process is performed by using a classification algorithm 
to examine the collected normal operation dataset. Given the inability to actively perturb weather 
conditions during the learning process, they are classified as disturbances. The categorization of 
weather disturbances involves grouping them into distinct blocks or categories. Within each 
block, the effect of weather disturbances on the model output, specifically the overall building 
energy consumption, is expected to exhibit lower variability compared to the variations observed 
between different blocks. Put simply, each block represents a specific type of weather condition 
(e.g., outdoor air temperature >30°C) where energy consumption displays reduced variability in 
response to weather disturbances. In this process, key weather features (input variables) and their 
specific values to differentiate blocks are identified.  

A classification model is built with weather disturbances as inputs, and future (1-hour ahead) 
building energy consumption as outputs. In this study, the decision tree method is used as the 
classification algorithm for weather disturbances categorization.  

To sum up, the developed algorithm considers the two key factors of active learning for building 
energy forecasting: it efficiently generates informative training data in a short time, and it 
passively considers weather disturbances at the same time. 
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The developed active learning algorithm is used in the virtual testbed models but not the lab test 
home models because there was no time available during the lab testing period to utilize the 
algorithm and also collect historical data that are considered rich enough to develop forecasting 
models. 

4.1.2 Systematic Multistep Feature Selection 
To develop a machine learning-based model, inputs (i.e., features) are needed. For building 
system modeling, features are typically selected from building measurements. The virtual testbed 
and the historical lab test home data include many measurements. For the virtual testbed data, 
only those virtual measurements that could be obtained in a real residential building are 
considered in this study. For both virtual and historical data, irrelevant or redundant variates are 
first examined based on a previously developed feature selection process.  

An example of candidate features used for the lab test home historical forecasting models are 
presented in Table 11. The candidate features are selected from measurements that 1) could be 
obtained in a real residential building, and 2) could have a relevance with the HVAC energy 
consumption.   

All features in the candidate feature set are provided at times t (current time), t-1 (previous time 
step), t-2 (two time steps earlier), and time t-3 (three time steps earlier). The reason to include 
these time lag features is because features could be correlated to environmental features from 
previous timesteps. For this study, a time step of 1-hour was used based on the building thermal 
capacitance. 
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Table 11. Historical HVAC Energy Forecasting Model Candidate Feature Set 

Feature Acronym Feature Name Feature Acronym Feature Name 

ZTCSP Zone Thermostat 
Cooling Setpoint 
Temperature [ºF]  

TC_Therm Thermostat 
Temperature [ºF] 

TC_Kit Kitchen  
Temperature [ºF] 

Solar Solar Radiation Rate 
per Area [W/m2] 

TC_Din Dining Room 
Temperature [ºF] 

Solar_Outside Outside Solar 
Radiation Rate per 

Area [W/m2] 

TC_Liv Living Room 
Temperature [ºF] 

OA Outside Air 
Temperature [ºF] 

TC_WBed West Bedroom 
Temperature [ºF] 

OAAT Outside Air Absolute 
Humidity [g/m3] 

TC_EBed East Bedroom 
Temperature [ºF] 

Occ Home Occupancy 
Value [occupied or not 

occupied] 

TC_MBed Master Bedroom 
Temperature [ºF] 

HVAC HVAC Energy 
Consumption [W] 

 

A feature selection process was performed to identify the best set of features from the candidate 
feature list that were most useful to forecast the target variable. The goal of this feature selection 
was to reduce data dimensionality. 

The process performed was based on that described by Zhang and Wen (2018), which was a 
systematic multistep feature selection using historic building data (generated from the virtual 
testbed as described below). Figure 34 shows the steps of the process (Zhang and Wen 2018). 

 

 

Figure 34. Systematic multistep feature selection process 
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Step 1 of this process was performed offline and resulted in the candidate feature set shown in 
Table 11. Step 2 utilized the Pearson correlation coefficients to remove irrelevant (with 
correlation with target) and redundant (with correlation among features) features while Step 3 
used a machine learning-based model structure, which was MARS or kSVM for this study, to 
determine the final feature set with the best goodness of fit. The features selected from this 
process were specific to different test cases. 

4.1.3 K-Fold Cross Validation Model Training 
Cross validation is a technique used in model training to assess how well the model will perform 
on new data. It involves excluding some subset of the training data during the model training and 
using it to evaluate the model performance on new data that it has not seen before. It then 
chooses another subset to exclude and trains the model again with the last subset included. This 
results in all data being used for both training and testing. This approach offers advantages over a 
simple train-test split, where a portion of the data is set aside for testing and the remainder is 
used for training. Such a method can provide a comprehensive understanding of the model’s 
training efficacy and its potential performance on new, unseen data. Therefore, cross-validation 
provides an idea during training about the nature of the model fit. 

For this study a K-fold cross-validation model training and testing process is selected. For this 
process, the available data are divided into k folds. K-1 folds are used to train the model and the 
remaining kth fold is used to test the model. This process is repeated for each fold with the hold-
out kth fold changing each iteration. However, during each fold, a systematic multistep feature 
selection (described above) is performed before the model is trained. The result is that for each 
weather block, a month of data is used for both training and testing at some point during the 
process, and the features selected for each fold (new features selected for each fold) are 
determined from the training subset rather than all available data. Figure 35 shows a 
visualization of the process where k=10. 

 
Figure 35. A visualization of cross validation 
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To determine the optimal value of K, a sensitivity analysis is performed first in the context of K-
fold cross-validation. The analysis chosen is a leave-one-out cross-validation. This process 
performs a K-fold analysis where k=N, the number of samples in the training set. This is a 
computationally expensive analysis that results in the best possible performance if computation 
cost and time were not considered. Then a range of potential k values are tested to find the k 
mean (mean performance of all folds). For this study, a potential k range from 2 to 10 are 
examined, as previous literature suggests that K equals 10 is a frequently used upper limit. The 
smallest k value, thus having reduced computation time and cost and yielding a performance 
close to the best, is selected for application in the K-fold cross-validation process. Once the best 
k value is found, the K-fold cross-validation is performed, and the model performance on the 
validation data can be assessed. The training subset of the best performing fold is then used to 
train the final model. 

4.2 Pilot Study of Developing Forecasting Models for Virtual Testbed  
This section details the development of the HVAC energy forecasting model and the occupant 
thermal comfort vote forecasting models for the virtual testbed. These models were developed as 
a preliminary study before the development of the forecasting models for the PNNL lab test 
home.  

The virtual testbed models included the active learning algorithm but did not include the K-fold 
cross-validation algorithm because the models developed here were used as preliminary models 
to guide the development of the lab test home models, specifically regarding which model 
structures and algorithms were beneficial. The preliminary models are a foundation for creating 
more advanced or specialized models. The intention is to start with simpler models to understand 
the fundamental dynamics and relationships in the data. These preliminary models can help to 
identify significant features, potential issues such as biases or class imbalances, and provide a 
baseline performance that more complex models strive to exceed. 

4.2.1 Co-Simulation Environment 
In order to apply the developed algorithm to the DOE prototype residential building virtual 
testbed, a co-simulation environment is needed to integrate the EnergyPlus environment (where 
the virtual building is simulated) and the MATLAB environment (where the active learning 
algorithm and feature selection algorithms are programmed). For this purpose, a functional 
mock-up interface was selected as the co-simulation tool.  
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Figure 36. Functional mock-up interface co-simulation environment integrated in EnergyPlus and MATLAB 

4.2.2 Preliminary Whole-Building Energy Forecasting Model 
In this subsection, the whole-building energy forecasting model for the virtual testbed is 
discussed. High-fidelity energy and comfort models are crucial for model predictive control 
framework, a key component of the smart home energy management system. These models 
enable the optimization of building operation to strike a balance between energy efficiency and 
occupant comfort. 

 

Figure 37. Artificial neural network predicted energy vs. actual 

An artificial neural network-based whole-building energy forecasting model was evaluated on 
two days (chosen due to the similarity and repetition of the energy usage each day) selected from 
the normal operation dataset. The metric used for model evaluation was normalized root mean 
square error. The artificial neural network-based whole-building energy forecasting model 
performed within the desired performance with 3% normalized root mean square error. Figure 37 
shows the model forecasting result graphically. This model was not used in the final lab testing 
and instead acted as a preliminary model to guide the development of an HVAC energy 
forecasting model for use in the lab testing period. 
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4.2.3 Preliminary Occupant Thermal Vote Forecasting Model 
In this subsection, the virtual occupant thermal vote forecasting model is discussed. A constraint 
for occupants’ thermal comfort needs to be considered when applying MPC for building energy 
reduction to warrant a building’s service for its occupants. Moreover, uncomfortable occupants 
may engage in behaviors (e.g., adjusting the thermostat setpoint, opening/closing windows 
and/or doors) that have drastic impact on the building operation. Thus, for this study, a 
forecasting model was developed for predicting occupant’s thermal comfort. However, given 
that no occupants would be present in the PNNL Lab Homes during the lab testing period, this 
model was not used other than as a preliminary study. 

A kernel support vector machine (kSVM) is used to develop the occupant thermal vote 
forecasting model. The principle of a kSVM is to use existing labeled data to learn labels for new 
unlabeled data. kSVMs are typically used for classification problems, often referred to as support 
vector classification where they are used to classify new data into one of a number of classes, but 
they can also be used for regression problems, referred to as support vector regression (SVR). 
kSVMs learn these data labels by learning the patterns that are present in the data (Noble 2006). 

Once this pattern is learned, a kSVM will develop a hyperplane in the dataspace that will 
separate the different data characteristics or classes. This hyperplane is determined through the 
creation of support vectors, which are vectors made of data points that show the most similar 
examples between the different classes. The distance between these support vectors is what 
makes up the decision boundary, at the center of which lies the hyperplane. The resulting 
hyperplane and decision boundary allows the kSVM to correctly label new data based on its 
position according to the hyperplane. The optimal hyperplane maximizes the distance between 
the data classes and has the widest decision boundary, or margin. 

A standard SVM uses the above premise but is hard to optimize as data dimensionality grows 
and if data are non-linear. kSVM addresses these issues by using kernels to transform the data to 
a higher dimension in which it is easier to separate the data. Examples of potential kernels are 
Polynomial, Gaussian, Radial Basis Function, etc. Using these kernels can allow for a better 
optimized SVM that can learn complex non-linear data patterns. The choice of kernel is 
important because an incorrect transformation of data will result in poor model performance and 
add unnecessary complexity to the model optimization. For this milestone, a Radial Basis 
Function kernel was used based on the non-linearity nature of the problem and literature 
suggestions. 

In addition to selecting kernel functions, there are two major parameters that need to be tuned for 
optimal kSVM model performance. These parameters are the regularization parameter (c) and 
gamma (γ). The regularization parameter is used during the optimization to determine how much 
a kSVM misclassifies training examples. A higher value for the regularization parameter will 
result in a smaller, more complex margin. This will allow for fewer examples to be misclassified 
but will result in a higher risk of overfitting because the model is adapting the margin to be 
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specific to this set of training data and will not be able to perform as well when presented with 
other data to label. Thus, increasing the regularization parameter can result in better performance 
on the training data but must be increased with care to not reduce model generalization and 
scalability. 

The other parameter, gamma, influences the distance from the potential hyperplane that data for 
support vectors will be considered. Given that the hyperplane is determined by its support 
vectors, gamma is critical in determining the location of the hyperplane. Higher values of gamma 
will result in lower distances from a potential hyperplane considered, while lower values will 
consider more points that are at a further distance. Thus, high values of gamma can result in 
better model training performance as the hyperplane will be chosen based on data that are closer 
together and will avoid including data from other classes. This has the same potential as the 
regularization parameter to cause model overfitting. 

For this milestone period, the values of the regularization parameter and gamma were chosen 
through a grid search. Literature was reviewed (Rojas-Domínguez et al. 2017) to determine 
potential value ranges for these parameters, and then models were trained while iterating through 
these ranges to determine the best values of each parameter to achieve the best model training 
performance while allowing for the model to retain good generalization and scalability.  

A kSVM-based occupant thermal comfort forecasting model was trained for each occupant and 
was evaluated on a week of data from the enriched occupant comfort dataset. The output of the 
model is a comfort vote of -1, 0, or 1, corresponding to thermal sensations of cold, comfortable, 
or hot, respectively. Reported in Table 12 is the accuracy of the kSVM model in forecasting 
occupant thermal comfort at 1-hour ahead forecasting horizon. Accuracies are reported for each 
of the three kSVM models representing each occupant. Clearly, all occupant models reached the 
desired accuracy for forecasting occupant thermal comfort at 1-hour ahead. Figure 38 graphically 
shows the kSVM forecasting result. A value of 0 signifies a neutral comfort level. A value of -1 
indicates a sensation of coolness, whereas a value of 1 represents a feeling of warmth. Blue dots 
are actual values, while red dots are predicted values. The overlapping of blue and red dots, 
particularly in the zone indicating neutral comfort, signifies a high level of accuracy in the 
forecast model’s predictions. 
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Figure 38. Occupant 3 Thermal Comfort @t+1: kSVM predicted vs actual 

Table 12. kSVM Model Performance at Forecasting Occupant Thermal Comfort at 1-Hour Ahead 

Accuracy for the testing week 
Occupant 1 Occupant 2 Occupant 3 

91% 90% 94% 

4.3 Forecasting Models for the PNNL Lab Test  
To enable a data-driven MPC, it’s crucial to incorporate occupant comfort as a constraint to the 
optimization process. This ensures that while the control system is optimized to reduce energy 
consumption, it does not compromise the thermal comfort of the occupants, thereby maintaining 
a comfortable living environment. However, for the lab testing, there are no real occupants 
present in the lab test home. Thus, instead of forecasting occupant comfort directly, zone 
temperature is forecasted. Accurate prediction of zone temperatures can be used in lieu of 
occupant comfort by establishing a range of comfortable temperatures. 

4.3.1 Training and Testing Data 
The framework described in Section 4.1 is again applied to develop the two forecasting models 
(HVAC energy and zone temperature). To evaluate the performance of the models, two testing 
cases are designed for this study: (1) historical operation data from the PNNL lab test home, and 
(2) current sensor data from the PNNL lab test home. Both developed models were trained on the 
same dataset but used different selected features (discussed below). 

For this study, historic operation data for the PNNL lab test home from February 2021 to 
October 2021 were available. For the historic data, 1-hour sampled data from three months (June 
2021, July 2021, August 2021) are used here based on a weather block analysis. From this data, 
seven weeks in July and August (July 5 to August 27) were selected. Some days and weeks were 
omitted due to errors present in the data. These seven weeks were used for both training and 
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testing the models. A candidate feature pool, shown in Table 13, was created using only features 
that are available during the lab testing period from the PNNL lab home database, Clemson 
iComfort sensors, and local weather data. There is no direct record of occupancy from the PNNL 
lab home database. The project team created this feature and determined its values based on 
power meter data (when the power meter had very low readings, it was assumed that the home 
was unoccupied and that the power used was just to keep the appliances running), since this 
feature was considered essential for model accuracy and zone temperature comfort range. 

Table 13. Forecasting Model Candidate Feature Pool for PNNL Lab Home Testing 

Candidate Features for 1-Hour Ahead HVAC Energy Forecasting Model 

ZTCSP at time t, t-1, t-2, 
t-3, t-4 

HVACEE at time t, t-1, t-
2, t-3, t-4 

T_kitchen at time t, t-1, t-
2, t-3, t-4 

T_dining at time t, t-1, t-
2, t-3, t-4 

T_living at time t, t-1, t-2, 
t-3, t-4 

T_Wbed at time t, t-1, t-
2, t-3, t-4 

T_Ebed at time t, t-1, t-2, 
t-3, t-4 

T_Mbed at time t, t-1, t-
2, t-3, t-4 

Solar_int at time t, t-1, t-
2, t-3, t-4 

Solar_ext at time t, t-1, t-
2, t-3, t-4 

OADB at time t, t-1, t-2, t-
3, t-4 

OARH at time t, t-1, t-2, t-
3, t-4 

Occupancy at time t, t-1, 
t-2, t-3, t-4 

- - - 

 

4.3.2 Lab Test Home HVAC Energy Forecasting Model 
To enable the MPC strategy used during the lab testing period, an HVAC energy forecasting 
model was developed. MARS was selected as the model structure based on preliminary studies 
and literature recommendation. 

4.3.2.1 Model Training 
A feature selection process was first used to identify input features for the models from the 
candidate feature pool. The selected features for the HVAC energy consumption forecasting 
model, with a 1-hour ahead prediction horizon, are shown in Table 14. 
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Table 14. MARS HVAC Energy Forecasting Model Selected Features for PNNL Lab Home 

Feature Number Feature Name 

1 Zone Thermostat Cooling Setpoint at time t 

2 Occupancy at time t 

3 HVAC Electric Energy at time t 

4 Outside Solar Radiation at time t-1 

5 Outside Air Drybulb Temperature at time t 

6 Outside Air Drybulb Temperature at time t-1 

7 Thermostat Drybulb Temperature Measurement at time t-1 

 

For the HVAC energy forecasting model, a K-fold cross validation  model training was 
performed. A sensitivity analysis for the value of k resulted in the selection of k=16. Then, from 
the K-fold cross validation, the eighth fold performed the best. The HVAC energy model trained 
in the eighth fold was considered the best model and was used going forward. 

4.3.2.2 Model Evaluation 
The performance of the HVAC energy forecasting model was evaluated using historical data 
from the lab testing home as well as current sensor data. The performance metric used to 
evaluate these algorithms is the normalized mean absolute error. This metric quantifies the 
algorithms’ accuracy in predicting HVAC energy consumption by comparing their predictions to 
the “actual” HVAC energy consumption. For the historical data evaluation, the model is 
evaluated on each of the seven weeks defined above. 

Additionally, during model development, limited data were available from the current lab testing 
database (populated by the Clemson iComfort sensors). This data was from August 8–12, 2022, 
and August 15–18, 2022, and utilized the PNNL lab home database and the Clemson iComfort 
sensors to provide data (for all candidate features described above) to the cloud. These data were 
pulled from the cloud to evaluate the developed model using the live testing data gathered by the 
sensors. 

The HVAC energy model is evaluated on both historical data from the lab testing home, and 
current data from the lab testing home. Historical data refers to the data gathered prior to the 
specialized lab testing conducted for this particular project (before August 2022). Current data 
denotes the data collected during the execution of this project. Table 15 summarizes the model 
performance across the seven testing weeks in the historical data. 
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Table 15. MARS HVAC Energy Forecasting Model Performance on Historical Data 

Testing Week Testing Period Normalized Mean Absolute Error [%] 

1 07/05/2021 – 07/11/2021 9.06 

2 07/10/2021 – 07/16/2021 8.31 

3 07/26/2021 – 07/31/2021 8.64 

4 08/01/2021 – 08/07/2021 12.0 

5 08/08/2021 – 08/14/2021 8.91 

6 08/15/2021 – 08/21/2021 8.27 

7 08/22/2021 – 08/27/2021 7.98 

 

The performance of the model on the current data from the lab testing home (via iComfort 
sensors) can be seen in Figure 39. 

 
Figure 39. MARS HVAC energy forecasting model evaluated on real 2022 PNNL Lab Home A sensor data 

The performance of the model was <15% normalized mean absolute error for all cases and 
achieves the desired performance (<15%) for this study. The model was used for the lab testing 
period described in more detail in Section 7. 

4.3.3 Lab Test Home Zone Temperature Forecasting Model 
4.3.3.1 Model Training 
A feature selection process was first used to identify input features for the models from the 
candidate feature pool. The selected features for the zone temperature forecasting model, with a 
1-hour ahead prediction horizon, are shown in Table 16. 
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Table 16. MARS Zone Temperature Forecasting Model Selected Features for the PNNL Lab Home 

Feature Number Feature Name 

1 Zone Thermostat Cooling Setpoint at time t 

2 Occupancy at time t 

3 Outside Air Drybulb Temperature at time t 

4 Thermostat Drybulb Temperature Measurement at time t-1 

5 Outside Air Drybulb Temperature at time t-2 

 

For the zone temperature forecasting model, a K-fold cross validation model training was 
performed. A sensitivity analysis for the value of k resulted in the selection of k=3. Then, from 
the K-fold cross validation, the third fold performed the best. The zone temperature model 
trained in the third fold was considered the best model and was used going forward. 

4.3.3.2 Model Evaluation 
In a similar manner to the HVAC energy forecasting model, the performance evaluation of the 
zone temperature forecasting model involved the use of historical data from the lab testing home, 
as well as the utilization of current sensor data. The evaluation metric utilized was still the 
normalized mean absolute error, which compared the predicted zone temperature generated by 
the algorithms with the actual zone temperature. For the evaluation of historical data, the model 
was tested on each of the seven weeks that were defined previously. 

The same set of current data from the lab home sensors was employed to evaluate the zone 
temperature forecasting model. This data, collected from August 8–12, 2022, and August 15–18, 
2022, was obtained from the PNNL lab home database and the Clemson iComfort sensors. The 
data encompassed all the candidate features described earlier and was transferred to the cloud for 
analysis and evaluation purposes. 

The zone temperature model is evaluated on both historical data from the lab testing home, and 
current data from the lab testing home. Table 17 summarizes the model performance across the 
seven testing weeks in the historical data. 

The performance of the model on the current data from the lab testing home can be seen in 
Figure 40. 
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Table 17. MARS Zone Temperature Forecasting Model Performance on Historical Data 

Testing Week Testing Period Normalized Mean Absolute Error [%] 

1 07/05/2021 – 07/11/2021 7.69 

2 07/10/2021 – 07/16/2021 7.67 

3 07/26/2021 – 07/31/2021 6.30 

4 08/01/2021 – 08/07/2021 5.73 

5 08/08/2021 – 08/14/2021 4.72 

6 08/15/2021 – 08/21/2021 3.98 

7 08/22/2021 – 08/27/2021 4.08 

 

 
Figure 40. MARS zone temperature forecasting model evaluated on Real 2022 PNNL Lab Home A sensor 

data 

The performance of the model was <10% normalized mean absolute error for all cases and 
achieves the desired performance (<15%) for this study. The model was used for the lab testing 
period. 

4.4 Summary  
Section 4 provides a detailed description of the development and evaluation of a framework to 
develop learning-based models that include whole-building energy forecasting model, HVAC 



IoT-Based Comfort Control and Fault Diagnostics System for Energy-Efficient Homes 

59 

energy consumption forecasting model, zone temperature forecasting model, and occupant 
thermal comfort forecasting model for a typical residential building. A virtual testbed as well as 
historic and current sensor data from the PNNL lab test homes were used to train and evaluate 
the developed models. 

For the HVAC energy consumption forecasting model and zone temperature forecasting model, 
two MARS-based models were developed and tested using the data from the PNNL lab test 
homes with a 1-hour ahead forecasting horizon. A systematic multistep feature selection process 
was first explored to select features used for the models, from historic measurements. K-fold 
cross validation was used to train and test the model on all data and reduce model generalization 
error. The evaluation results show that both developed forecasting models perform accurately 
across the entire testing period (eight weeks total) according to desired performance of <15% 
normalized mean absolute error. 

For the occupant thermal comfort forecasting model, operation data for normal operation and 
scenarios that would cause occupants to be uncomfortable were generated for training and testing 
of the developed models. kSVM-based models were developed and tested using the data from 
the virtual testbed with 1-hour ahead horizon. A systematic multistep feature selection process 
was first explored to select features used for the models from virtual measurements. It was found 
that the correlations between features and the target feature (i.e., occupant thermal comfort), 
were not strong (less than 10% Pearson correlation coefficient). Expert knowledge was then 
explored to finalize the feature selection. A kSVM-based model was trained and used to forecast 
occupant thermal comfort for each of the three occupants presented in the virtual testbed. Models 
developed using the kSVM method are able to successfully predict occupant thermal comfort 
accurately for the entire testing period (1 week) with less than 10% misjudgment. 
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5. Computationally Efficient Automatic Fault Detection 
and Diagnosis  

Building heating, ventilating, and air conditioning (HVAC) systems seldom perform completely 
as designed. For example, numerous studies have provided evidence that buildings tend to 
consume higher energy levels in the operational phase compared to the energy predictions made 
during the design phase (Taal et al. 2018; de Wilde 2014). This deviation from design 
expectation may be caused by various factors, including improper equipment installation, 
equipment degradation, sensor failures, or incorrect control sequences (L. Wang et al. 2013). 
Therefore, it is important to keep equipment maintained and repair the failed equipment in time, 
or to implement fault-adaptive control to proactively respond to these malfunctions. To achieve 
this goal, detection and diagnosis of existing faults are required. These faults often present 
challenges to the conventional control of residential HVAC systems, making it difficult to meet 
the occupants’ thermal comfort requirements. In this section, two different locations of faults in 
the residential HVAC system are investigated: duct leakage in Section 5.2 and vapor 
compression cycle (e.g., heat pump) in Section 5.3. This section also investigates two FDD 
approaches (data-driven and knowledge-based).  

5.1 FDD Process 
There has been a growing interest in AFDD technology over the last 20 years. The main concept 
behind AFDD is to directly check if the value of features is in the normal bound or to compare 
the feature values between the predictions and actual measurements, which can be used to 
calculate feature residuals. Residual patterns are the evidence for fault detection and diagnosis. 
The mapping between residual patterns and specific faults is identified by FDD design methods. 
Either expert knowledge inference or a data-driven approach could be used to accomplish this 
task. A common AFDD process is summarized as follows (Rogers, Guo, and Rasmussen 2019a):  

1) Feature selection: The selection of an optimal subset of attributes increases the probability 
of detecting faults in a system, mitigates the incidence of spurious correlations (between 
feature residual patterns and identified faults) and false alarms, reduces the risk of model 
overfitting, and diminishes model complexity (Yan et al. 2018). This subset of selected 
features should be cost-effective. That means the features required for FDD methods are as 
few as possible and as easily measured as possible. At the same time, the FDD accuracy 
should be ensured to be acceptable (e.g., greater than 80%). Compared to data-driven 
approaches that emphasize feature selection with multiple data mining methods, rule-based 
approaches mostly determine features of interest manually by experts. 

2) Steady-state filter: This refers to detecting the steady-state period and filtering data 
accordingly. Filtering out the steady state is the basis for the reference model construction 
and FDD classification, and is reliable only when the operation state is steady. Standard 
deviation and slopes in the moving window are usually applied for steady-state detection. 
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3) Fault-free reference model (optional): This refers to developing a fault-free model for 
feature comparison. In this context, a baseline refers to the state in which the building’s 
operation is deemed satisfactory. For example, it could represent the condition immediately 
after the completion of a commissioning process (Zhelun Chen et al. 2023). A lot of 
methods can be used in fault-free model development, such as simple polynomial models or 
more advanced neural networks. The selection of models depends on the data availability, 
computation limitation, accuracy requirements, system characteristics, etc. 

4) FDD classification: This refers to classifying the system operation as faulty or not, and 
even identifying the specific faults. Although detection and diagnosis classifiers are 
typically executed as distinct procedures, there are instances when they are carried out 
concurrently in a single step (Rogers, Guo, and Rasmussen 2019a).  

5.2 Duct Leakage Fault Detection Strategy 
This section provides a detailed description of the development and evaluation of a machine 
learning-based data-driven duct leakage fault detection strategy for typical residential buildings. 
Since this method utilizes data obtained from the building to determine the fault state of the 
building, the method is suitable for applications for all types of residential buildings. The virtual 
testbed, using the DOE prototype single-family detached home described in Section 3, is 
employed here for generating building operation data. Operation data for fault free and 
artificially implemented faulty scenarios are generated for training and testing of the machine 
learning-based model using the TensorFlow package in Python. 

Detection of faults in a building mechanical system is key for advanced building control and 
energy efficiency. Undetected faults can result in an uncomfortable thermal environment or 
substantial energy losses. Accurate detection of faults can be used to support a model-based 
optimal control strategy.  

Data-rich robust multivariate temporal (RMT) features used in conjunction with machine 
learning based methods are applied in data-driven fault detection models and have shown 
promise in detecting faults with high accuracy and reduced false positive rates, while requiring 
minimum expert knowledge and manual effort in identifying important features from the dataset 
(Tiwaskar et al. 2021). This study investigates the application of RMT variate selection used for 
the training of a convolutional neural network (CNN) for duct leakage fault detection. The 
developed strategy is applied to detect duct leakage faults for a virtual residential building, which 
is described in Section 3.  

In the rest of this subsection, Section 5.2.1 gives a brief recap on the virtual testbed with a focus 
on the duct airflow network and introduces how operation data that contain duct leakage faults 
are generated. Following is a discussion on RMT variate selection and CNN in Section 5.2.2. A 
series of evaluation cases are designed to assess the performance of the strategy according to 
fault-free and faulty operation conditions in Section 5.2.3. The result of evaluation is discussed 
in Section 5.2.4. 
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5.2.1 Virtual Testbed 
The developed duct leakage fault detection strategy is trained and tested according to data 
generated from the DOE prototype residential building virtual testbed as discussed in Section 3. 
For the generation of the duct leakage data, an airflow network was added to the virtual testbed 
using an EnergyPlus Airflow Network creation module (Documentation 2019). The Airflow 
Network was created to simulate a duct system for Living_unit1 (the only conditioned zone) of 
the residential prototype building. Figure 40 provides a visual representation of the duct system 
and the nodes created for data generation.  

 

Figure 41. Airflow network diagram for the virtual testbed 

Given the prototype building has only one conditioned zone, the duct system is quite simple. 
There are five nodes implemented to be able to generate data at selected points throughout the 
attic duct (between the heat pump and the zone). The nodes in the airflow network represent 
different states and locations of air in the model. Each node in the network can possess specific 
properties such as air pressure, temperature, or humidity. These nodes are interconnected by 
links, which represent the potential pathways for air to travel between them. Table 18 discusses 
the size of the ducts in the attic and the nodes at the endpoints of each duct section. 
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Table 18. Airflow Network Duct Sizes 

Duct Node 1 Node 2 
Length 

(m) 
Hydraulic Diameter 

(m) 
Cross-section 

area (m2) 
Air supply 

duct 
1 - Heating outlet 

node 
2 - Zone equipment 

inlet node 
0.1 1 0.7854 

Main truck 
2 - Zone equipment 

inlet node 
3 - Splitter node 2 0.4064 0.1297 

Zone supply 
duct 

3 - Splitter node 
4 - Zone Supply 

Node 
10 0.4064 0.1297 

Zone supply 
duct 

4 - Zone Supply 
Node 

5 - Zone supply 
register node 

10 0.4064 0.1297 

 
The EnergyPlus Leakage Ratio variable for the airflow network was adjusted and used to 
generate the fault-free data (leakage ratio = 0), as well as the faulty data (leakage ratio varied as 
discussed below).  

5.2.2 RMT and CNN 
High data dimensionality results in many problems for the training and usage of machine 
learning-based models. Considering that there are hundreds or thousands of sensors from a 
building automation system, often consisting of redundant measurements, the selection of 
informative and representative variates strongly affects the performance of any data-driven 
model. The inclusion of irrelevant or redundant variates results in greatly increased 
computational costs and can result in overfitting of the model or excessive noise in the data. 
Many models require a variate selection before model training to reduce model complexity and 
overfitting issues. 

The necessity for variate selection is especially true when working with temporal data such as 
building thermal environment data. Temporal data often include many dependencies between 
univariate time series along different scales (S. Liu et al. 2018). The temporal relationship 
between these variates is often critical to determine which variates will be used as key inputs 
when using time series data for forecasting problems. This applied RMT variate selection is 
focused on identifying and extracting localized temporal features that are robust against noise 
and are maximally different from the overall pattern in their local neighborhoods (Tiwaskar et al. 
2021). The temporal features are defined as the temporal events, for instance the onset of a rise 
or drop in amplitude of a variate. 

Within the RMT variate selection process, the first step is to create a scale-space consisting of 
multiple smoothed versions of a given series to obtain what is referred to as the difference-of-
Gaussian series. This step eliminates features that are not robust to noise and smoothing. 
Following this, the extrema features are searched across multiple scales and locations of the 
given time series. Once these key features are extracted, the algorithm computes the degree of 
temporal alignment among variates based on how often the features between two variates 
overlap or co-occur together. For example, highly correlated variates would have a higher feature 
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overlap. The variates with the highest alignment with the target variable are ranked and selected 
for training a predictive model. 

Deep learning methods have proven effective in time series forecasting through automatic 
learning of temporal dependencies and handling of temporal structures like trends and 
seasonality (Szegedy et al. 2015). A CNN is a class of artificial neural network that apply 
convolution operations along with non-linear activation functions and pooling operations to 
identify multiscale patterns of different complexities. In contrast to commonly used recurrent 
models, CNNs learn to search for local patterns and do not look at the entire time series 
sequence, making them cheaper to train while attaining similar performance as recurrent models 
(Assaf et al. 2019). CNN is used in this study to be integrated with RMT for fault detection 
strategy modeling. 

5.2.3 Development and Evaluation of Duct Leakage Fault Detection Model 
The developed fault detection strategy is based on training a neural network model using 
historically collected data to forecast the target variate during the faulty period. RMT-based 
variate selection is used to determine the key input for training the model. Due to the 
discrepancies in system operation between the historical data and the incoming faulty data, a 
higher forecasting error (the difference between predicted fault-free values and measured values) 
during the fault window is expected, which allows for efficiently detecting faults. 

In order to perform the RMT variate selection and develop a CNN model, operation data are 
needed for use as training data. As discussed in Section 4.2.2, the airflow network created in the 
virtual testbed’s EnergyPlus model is used to generate both training data and also testing data to 
evaluate the performance of the developed RMT-CNN fault detection strategy.  

In the following sections, Section 5.2.3.1 discusses the details about the generation of training 
and testing datasets. Section 5.2.3.2 summarizes the candidate features that the RMT variate 
selection method identified for each test scenario. Section 5.2.3.3 discusses the different fault 
scenarios used for testing the CNN. Test data are then used to evaluate the model performance 
for these three models. The discussion of the results of the test cases created to assess the 
performance of the algorithm and a discussion on overall performance are provided in Section 
5.2.3.4. 

5.2.3.1 Design and Generation of Training and Testing Data 
This study involves several datasets, which are generated using the virtual testbed. For this study, 
Typical Meteorological Year weather for Houston, TX (Bush International Airport – 
USA_TX_Houston-Bush.Intl), is used as the weather file. Based on domain knowledge, it is 
understood that a residential building’s attic temperature is strongly affected by weather 
conditions, HVAC operation, and duct leakage ratios. The testing and training data are designed 
to reflect the variation of these driving conditions with various datasets for different leakage 
ratios.  
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For all datasets, the virtual testbed was simulated for an entire year at a 1-hour sampling rate. 
The building was operated under normal conditions with the exception of the faulty scenarios. 

During HVAC normal operation, the thermostat controls the indoor temperature to be between 
22.22°C and 24.44°C for the summer season, following the default occupancy schedule as 
described in Section 3. 

5.2.3.2 Candidate Features 
Table 19 provides a summary of the candidate variates (i.e., potentially available sensor 
measurements and weather conditions) that the RMT variate selection was performed upon. 

Table 19. Summary of Candidate Variates 

Candidate Variates 

Site Outdoor Air Drybulb 
Temperature 

Site Outdoor Air Relative Humidity Site Outdoor Air Humidity Ratio 

Site Wind Speed Site Wind Direction Site Outdoor Air Barometric 
Pressure 

Living Zone 1 Zone Thermostat 
Cooling Setpoint Temperature 

Living Zone 1 Zone Thermostat 
Heating Setpoint Temperature 

Attic Zone 1 Zone Thermostat 
Cooling Setpoint Temperature 

Attic Zone 1 Zone Thermostat 
Heating Setpoint Temperature 

Living Zone 1 Zone Ventilation 
Mass Flow Rate 

Living Zone 1 Zone Mean Air 
Humidity Ration 

Attic Zone 1 Zone Mean Air 
Humidity Ratio 

Living Zone 1 Zone Mean Air 
Temperature 

Living Zone 1 Zone People 
Occupant Count 

People Zone 1 People Occupant 
Count 

Living Zone 1 Zone Lights Electric 
Power 

Central System Air System 
Electric Energy 

Central System Air System Gas 
Energy 

Supply Fan Air Mass Flow Rate Supply Fan Electric Power 

System Availability Scheduled 
Control Status 

DHW Loop Plant System Cycle On 
Off Status 

Mains Pressure Pump Electric 
Energy 

IECC ADJ Electric Equipment 
Electric Power 

Electric MELS Electric Equipment 
Electric Power 

Electric Dryer Electric Equipment 
Electric Power 

Clotheswasher Electric Equipment 
Electric Power 

Refrigerator Electric Equipment 
Electric Power 

Electric Range Electric 
Equipment Electric Power 

Dishwasher Electric Equipment 
Electric Power 

Living Zone 1 Zone Electric 
Equipment Power 

 

 

Since the duct system is located in the attic of the residential building, the primary variate that is 
expected to show the most significant fault impact is the mean attic temperature. The RMT 
variate selection and the CNN forecasting model is thus used to forecast the mean attic 
temperature, as described in the following sections. 
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5.2.3.3 Fault Scenarios 
Several fault scenarios are designed and implemented as summarized in Table 20 to generate 
training and testing data. The scenarios cover both single and multiple leaking locations, as well 
as a wide range of effective leakage ratio as shown in the following table. 

Table 20. Fault Scenario Descriptions 

Scenario Description 
Number 
of Cases 

Leaking Nodes Effective Leakage Ratio 

1-1 Different levels of 
effective leakage 

ratios 

5 N3 
10%, 20%, 30%, 40%, 

50% 

1-2 5 N4 
10%, 20%, 30%, 40%, 

50% 

2 
Single leaking 

locations 
9 

Fault-free, N1, N2, N2-2, 
N3, N3-2, N4, N4-2, N5 

10% 

3 
Multiple leakage 

locations 
1 

N1+N2+N2-2+N3 
+N3-2+N4+N4-2+N5 

10% 

 
From Table 20, the names of each node can be found to correspond to the numerical 
identification used in this table: N1 = Heating Outlet Node, N2 = Equipment Inlet Node, N3 = 
Splitter Node, N4 = Zone Supply Node, and N5 = Zone Supply Register Node. 

The fault-free dataset was generated using normal operation conditions. It was used for training 
and testing of the RMT-CNN fault detection strategy. Each scenario generated its own dataset 
that is then used for testing the developed RMT-CNN strategy. Following is a brief discussion of 
each fault scenario. 

Scenario 1 
Scenario 1 seeks to investigate the impact of different leakage ratios on the attic temperature. 
The scenario is split into two parts, one part (1-1) in which N3 - the Splitter Node is leaking, and 
another part (1-2) where N4 - the Zone Supply Node is leaking. For both parts, leakage ratios of 
10%, 20%, 30%, 40%, and 50% are implemented. 

Scenario 2 
Scenario 2 seeks to investigate a fixed leakage ratio for different locations throughout the attic 
duct. The leakage ratio for all locations is 10%. The locations include all five nodes discussed 
above as well as midpoint nodes N2-2, N3-2, and N4-2 which reside between nodes N2 and N3, 
N3 and N4, and N4 and N5, respectively. 

Scenario 3 
Scenario 3 investigates one test case in which all eight nodes (including the midpoint nodes) are 
leaking. Each node is injected with a 10% leakage ratio and the attic temperature is measured. 
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5.2.3.4 Forecasting Model 
A CNN model trained using top-X% ranked variates (X = 10%, 15%, 20%, and 50%) is chosen 
as the forecasting model for the fault detection strategy. The CNN model uses 1 hidden layer 
with 200 computational units, with linear activation function. The model is trained for 200 
epochs with batch size of 1, using “MAE” and “RMSProp” as model loss and optimizer 
(Tiwaskar et al. 2021). The mean attic zone temperature is selected as the target variate to 
investigate the duct leakage fault. A sensitivity test is carried out to determine the variate ratio 
cutoff. 

5.2.4 Evaluation  
Using data from the virtual testbed, the fault relevant variates for the attic mean zone temperature 
are obtained using RMT based variate selection. Table 21 shows the top 10 ranked variates 
selected from the fault-free dataset. 

Table 21. Variate Ranking Using RMT for Fault Free Scenario 

Rank Variate Description [Units] 

1 Environment: Site Outdoor Air-Dry Bulb Temperature [C] 

2 Environment: Site Outdoor Air Relative Humidity [%] 

3 LIVING_UNIT1: Zone Ventilation Mass Flow Rate [kg/s] 

4 ELECTRIC_DRYER1: Electric Equipment Electric Power [W] 

5 LIVING_UNIT1: Zone Mean Air Humidity Ratio [kgWater/kgDryAir] 

 

To show the validity of the CNN forecasting model, the attic mean zone temperature is 
forecasted at a 1-hour ahead forecasting horizon. This model is trained on 256 days and validated 
(for hyper-parameter tuning) on a further 74 days of fault free data. The resulting model is tested 
on the remaining 34 days of fault-free data. To find the appropriate ratio of variates to use in 
training in the model, different ratios of ranked variates (top 10%, 15%, 20% and 50%) are used 
to train the model. It is observed that the model suffers from overfitting and decreases 
performance when using a greater number of variates in training. The model performs best when 
using the top 15% of ranked variates and hence is chosen as the cutoff percentage. Figure 42 
shows cases this forecasting validity.  
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Figure 42. CNN forecasted attic mean zone temperature for fault free dataset 

With the validity of the model confirmed, the trained model is then used to forecast the attic 
mean zone temperature during the faulty period. An artificial test set is created using two months 
of fault-free data and one month of faulty data, referred as M. Figure 43 illustrates the framework 
used to create the testing set. 

 

Figure 43. Framework for creating artificial test set 

To evaluate the fault detection strategy, the following fault scenarios are tested: Scenario 1-1 
(10%, and 50% leakage), Scenario 2 (N2-2) and Scenario 3. Faulty data from December are used 
for the evaluation.  

Figure 44 illustrates the fault impact on the attic mean zone temperature and Figure 45 illustrates 
forecasting results and the absolute difference error between the actual and predicted values for 
Scenario 1-1 (50% leakage) fault scenarios. The complete plots are attached in Appendix D: 
Fault Detection and Diagnosis. 
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Figure 44. Fault impact on the mean attic zone temperature for Scenario 1-1 (50% leakage) 

 

Figure 45. Forecasting results and absolute difference error for Scenario 1-1 (50% leakage) 

From the plots above, it can be observed that during the fault window, the mean attic temperature 
is lower than the fault-free case due to the leakage in the duct. Since less heating is provided to 
the attic, the mean temperature is observed to be lower when the fault is present. In terms of the 
forecasting outputs, there is a significant increase in the forecasting error in the fault window 
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which can be used to flag and detect the fault in the system. Similar patterns are observed in the 
remaining three scenarios that are tested using this approach.  

Various classifier methods can be used to flag the fault, since the CNN error patterns 
demonstrate significant differences between the fault free and fault periods. A classifier method, 
i.e., 1D SVM classifier as described in Tiwaskar et al. (2021), is evaluated first here. Results 
shown in Table 22 demonstrates that the classifier is able to flag the faults’ starting and ending 
time accurately. However, there are cases where fault free periods were considered as a fault 
continuation period by the classifier.  

Table 22. Fault Classifier Results for Scenario 1-1 (50% leakage) Over a 3-Day Period 

 Predicted 

Actual  No Fault Fault Start Fault Continuation Fault End 

No Fault 14 0 53 0 

Fault Start 0 3 0 0 

Fault Continuation 18 0 99 0 

Fault End 0 0 0 3 

 

5.2.5 Discussion of Overall Performance 
The evaluation of the developed fault detection strategy on the limited testing on the artificially 
simulated faults showed that: 

1) The baseline model trained using fault-free data can be used to detect faults in the system 
by observing the increase in forecasting error within the fault window. A larger error is 
usually seen during the period when the target variate is impacted by the fault. 

2) For the developed duct leakage model, the mean attic zone temperature serves as a good 
indicator of fault impact in the system and is thus used as the target variate in the CNN 
model. Alternatively, when using the temperature at the leakage nodes in the duct system as 
target variates, the CNN model does not identify the fault impact at each of the leakage 
nodes. This limited the effectiveness of the fault detection strategy. 

3) The sensitivity test on the variate cutoff threshold showed that the baseline model trained 
using the top 15% of ranked variates has the best model performance. Increasing the 
number of variates used in training led to overall increase in forecasting error since the 
model suffers from overfitting.  

5.3 Vapor Compression Cycle System 
The main purpose of the FDD task for residential air-source VCC systems in this project is to 
investigate existing rule-based methods and perform a comparative analysis using open-source 
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lab data and figure out one FDD approach for VCC systems that can achieve more than 80% 
detection accuracy and less than 10% fault alarm. 

Table 23 collects the literature review of existing FDD studies related to the air-source VCC 
systems in terms of features, reference models, faults detected, and specific FDD methods. The 
criterion for the selection and evaluation of FDD methods largely relies on the system 
characteristics and available sensor data.  

This project focuses on three typical rule-based AFDD methods—statistical rule-based charts, 
the sensitivity ratio method, and the simple rule-based method. The rest of this FDD research for 
the VCC system is organized as follows. Common VCC faults and features are described first in 
Section 5.3.1, followed by a comparative summary of existing rule-based AFDD methods for 
VCC systems and the typical FDD procedure described in Section 5.3.2 (i.e., steady state filer, 
fault-free reference model, and FDD classification). Furthermore, these AFDD methods are 
evaluated and analyzed with open-source lab test data from the National Institute of Standards 
and Technology (NIST) in Section 5.3.3 and a hybrid FDD approach is developed for VCC 
systems. The field test for this developed hybrid approach is presented in Section 7.  

5.3.1 Common Faults and Features for the VCC System 
5.3.1.1 Comment Faults Found in Studies 
A fault is “a departure from an acceptable range of an observed variable or a calculated 
parameter associated with a process” (Shi and O’Brien 2019). It can lead to failures and 
malfunctions of systems (Shi and O'Brien 2019). In residential buildings, design and installation 
faults lead to degradation and reduction of system performance which in turn negatively impact 
thermal comfort and energy usage in buildings. These faults can be identified as improper 
HVAC sizing, incorrect duct sizing, duct leakage, incorrect refrigerant charge, incorrect airflow 
rate, etc. (Ejenakevwe and Song 2021). According to regional field studies conducted by utilities 
and anecdotal reports from industry experts, incorrect refrigerant charge levels and incorrect 
airflow rates are the most significant and the most researched (Winkler et al. 2020; Ejenakevwe 
and Song 2021; DOE 2018). This project will only focus on the faults that occur in the VCC 
components.  
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Figure 46. Schematic diagram of VCC and monitored variables 

Seven typically studied faults for VCC systems are listed in Table 23. Among them, four faults 
(i.e., compressor valve leakage, evaporator fouling, condenser fouling, liquid line restriction) are 
component-specific, while the other three faults exist in the whole system. The existence of the 
latter ones usually influences the identification of the former ones, as their effects run through 
the system. From the perspective of the heat transfer medium, two faults (i.e., evaporator fouling 
and condenser fouling) are at the air side, while the remaining belong to the refrigerant side. The 
locations of these faults of the analyzed vapor compression cycle are depicted in Figure 46 with 
corresponding label numbers. T-s diagrams in different fault conditions are illustrated in 
Appendix D.3. 

Table 23. Commonly Studied Faults in VCC Systems 

No. Fault name Abbreviation Classification Medium 

1 Compressor valve leakage  CV Component level Refrigerant side 

2 Evaporator fouling EF Component level Air side 

3 Condenser fouling CF Component level Air side 

4 Liquid line restriction LL Component level Refrigerant side 

5 Refrigerant undercharge UC System level Refrigerant side 

6 Refrigerant overcharge OC System level Refrigerant side 

7 Presence of non-condensable gas  NG System level Refrigerant side 
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5.3.1.2 Typical FDD Features Used for VCC Systems 
Features are the variables that represent the operating characteristics of the given VCC system 
and can be analyzed for fault detection and diagnosis. Some features can be measured directly 
(e.g., evaporating temperature), while others need to be calculated indirectly (e.g., suction line 
superheat equals the difference of evaporator exit refrigerant temperature and evaporator two-
phase refrigerant temperature, Tsh=Tev-Te). In some cases, feature values are utilized directly 
with some predefined “normal” range, while in other cases, the residual (the difference between 
predicted values and measured values) of features is essential for applying the diagnosis 
algorithm. Fault identification sometimes relies on single features or a set of features that are 
sensitive to one given fault. The selection of sensors and features for analysis is a crucial step in 
the development of FDD systems. To minimize instrumentation costs, it is recommended to 
choose a minimum number of direct measurements for domestic vapor compressor systems 
(Bellanco et al. 2021).   

The category of features for the VCC system consists of temperature, pressure, flow rate, mass, 
etc. Not all features are easily obtained in ordinary residential homes. For example, the total 
refrigerant mass is a significant feature in diagnosing the status of refrigerant with overcharge or 
undercharge, but considerable efforts are required to measure refrigerant charge (Rogers, Guo, 
and Rasmussen 2019a). Thus, it is not practical in common residential buildings. From the 
perspective of real-life applications, this project only considers the temperature as the feature to 
be studied.  

Table 24 lists commonly used temperature features in the VCC FDD and the sensing parameters 
corresponding to these features (Rossi and Braun 1997; Breuker and Braun 1998b; M. Kim et al. 
2008; Heo et al. 2015; Payne 2020). The locations of the measurement for temperatures are 
illustrated in Figure 46. These seven “pillars” support the operating characteristics of one VCC 
system and are able to serve as hints collectively to diagnose multiple faults of VCC systems in 
different conditions. Correspondingly, ten temperatures in total are usually required in 
measurement for AFDD of the VCC system. In Table 24, fault-dependent variables represent the 
measured features that are affected by existing faults, while fault-independent variables, which 
are not influenced by faults in the steady state, are monitored for being used in the fault-free 
reference model to generate predicted values of those fault-dependent variables. In the diagnosis 
stage, fault-independent variables are also fed into these fault-free reference models to estimate 
an expected value of fault-dependent variables with an assumption of no fault.  
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Table 24. Parameters/Sensors and Features Used in VCC FDD 

  No. Parameters/Sensors No. Features  

Fault- 
dependent 

1 Evaporator two-phase refrigerant 
temperature (Te) 

1 Evaporating temperature (Te) 

2 Evaporator exit refrigerant vapor 
temperature (Tev) 

2 Suction line superheat 
(Tsh=Tev-Te) 

3 Compressor discharge refrigerant 
temperature (Td) 

3 Compressor outlet 
temperature (Td) 

4 Condenser refrigerant saturation 
temperature (Tc) 

4 Condensing temperature (Tc) 

5 Condenser refrigerant liquid temperature 
(Tcl) 

5 Liquid line subcooling (Tsc=Tc-
Tcl) 

6 Evaporator inlet air temperature (Teai)* 6 Evaporator air temperature 
change  

(dTea=Teai-Teao)  
7 Evaporator outlet air temperature (Teao) 

8 Condenser inlet air temperature (Tcai)* 7 Condenser air temperature 
change  

(dTca=Tcao-Tcai) 
9 Condenser outlet air temperature (Tcao) 

Fault- 
independent 

10 Outdoor dry-bulb temperature (Tod)* 8 Outdoor dry-bulb temperature 
(Tod) 

11 Indoor dry-bulb temperature (Tid)* 9 Indoor dry-bulb temperature 
(Tid) 

12 Indoor dew point temperature (Tidp) 10 Indoor dew point temperature 
(Tidp) 

* No.6 temperature = No.11 temperature, and No.8 temperature = No.10 temperature 

5.3.2 Comparison of Three Existing Rule-Based FDD Classification Methods 
Three existing AFDD methods for the residential VCC system are investigated: statistical rule-
based chart, sensitivity ratio method, and simple rule-based method. They are described in detail 
in Appendix D: Fault Detection and Diagnosis. 

A comparison of different commonly used rule-based AFDD classification methods for VCC 
systems is listed in Table 25. It includes features required, fault-free reference model, potential 
faults diagnosed, pros and cons of each method, and performance regarding diagnosis accuracy 
rate. 
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Table 25. Comparison of Three Existing Rule-Based FDD Methods for the VCC System 

 FDD 

Methods 

Features 
Required 

Fault-Free 
Reference 

Model 

Faults 
Diagnosed 

Pros and Cons Performance 
Regarding  

Accuracy Rate* 

Statistical Rule-
Based Chart 

(Payne 2020; M. 
Kim et al. 2008; 

Braun 2003; 
Rossi 1995; 
Breuker and 

Braun 1998b) 

Te, Tsh, Td, 
Tc, Tsc, dTea, 

dTca 

Yes NF, 
UC, OC, 
LL, CV, 
CF, EF 

Pros:  
Measurement 

uncertainties are 
considered using 

probabilities 
Imperfect model and 

quasi steady state are 
considered 

Cons:  
Amplifier factors (k and 

s) and threshold 
determination 

Inability to diagnose 
non-condensable gas 

EF (63.11%),  
LL (100%), UC 

(66.53%),  
NF (95.47%),  

Sensitivity Ratio 
Method (B. Chen 
and Braun 2000)  

Te, Tcl, Tc, 
Tsc 

Yes NF, 
UC, OC, 
LL, CV, 
CF, EF, 

NG 

Pros:  
Least number of 
required sensors 
No need to have 

absolute thresholds 
Cons:  

Diagnosis accuracy is 
relatively lower 

EF (100%) 

Simple Rule-
Based Method 
(B. Chen and 
Braun 2000) 

Te, Teai, Tc, 
Tcai,  

Tcl, Tsc 

No NF, 
UC, OC, 
LL, CV, 
CF, EF, 

NG 

Pros:  
A fault-free reference 
model is not required 

Cons: 
Uncertainty 

quantification is not 
considered 

Threshold determination 
could be a challenge 

EF (91.23%), OC 
(100.00%), UC 
(100.00%), NF 

(69.14%) 

* based on NIST VCC lab test data 
 
Note that NF = no fault, UC = refrigerant undercharge, OC = refrigerant overcharge, LL = liquid-line restriction, CF = condenser 
fouling, EF = evaporator fouling, and NG= Non-condensable gas  

The statistical rule-based chart requires more measurements and reference models. It needs three 
dependent variables (outdoor dry-bulb temperature Tod, indoor dry-bulb temperature Tid, and 
indoor dew-point temperature Tidp). Therefore, it could be regarded as a combination of data-
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driven and knowledge-based, as it needs to train a fault-free reference model with, for example, 
multivariant polynomial regression (MPR). Classification is conducted on a qualitative approach. 
On the contrary, the simple rule-based method does not need reference models. It just gives a 
range for the fault-free condition for each feature. 

5.3.3 Evaluation of FDD Methods With Open-Source Experiment Testing Dataset 
The following two sections present the comparative analysis of selected rule-based FDD 
methods for air-source VCC systems. An open-source dataset is used first to test the capability of 
those three selected FDD methods (i.e., statistical rule-based chart, sensitivity ratio method, and 
simple rule-based method) with the evaluation metrics of false alarm, missed detection, 
misdiagnosis, and accuracy, from which the advice for integrated application is derived. Then, an 
additional dataset collection from lab home field testing is described. 

 

CF: Outdoor unit airflow face area 
percentage free of blockage. 100% is no 

blockage. 84% indicates 16% blocked area. 

EF: Indoor airflow fault level with 100% equal 
to no fault. 81.4% equal to 18.6% reduced 

airflow. 

LL: Liquid refrigerant line pressure drop fault 
calculated from the outdoor unit service 

valve and indoor unit liquid line at the TXV 
pressures. 122% indicates 22% greater 

pressure drop.  

UC/OC: Refrigerant undercharge or 
overcharge fault. 90% is 10% undercharge; 

100% is 10% overcharge. 

Figure 47. Numbers and severity levels of fault cases from NIST datasets (percentages on the bars indicate 
severity levels) 

5.3.3.1 Open-Source Dataset 
The open-source lab test dataset used in this project was obtained by NIST in 2006 (M. Kim et 
al. 2009; M. Kim et al. 2006). They studied the performance of a unitary split heat pump with a 
long line set length and a thermostatic expansion valve for residential applications. R410A was 
circulated as the refrigerant. The nominal power rating was 8.8 kW (11.80 hp). 

As plotted in Figure 47, there are five types of faults and one fault-free condition. The faults 
include condenser fouling, evaporator fouling, liquid line restriction, refrigerant overcharge, and 
refrigerant undercharge. The compressor/four-way valve leakage fault is not included in this 
dataset. 

5.3.3.2 Steady State Filter and Fault-Free Reference Model  
This open-source dataset provided by NIST is all in a steady state, so steady-state filter 
processing is not required. 
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The fault-free reference model is essential for the statistical rule-based chart and sensitivity ratio 
method because they require actual values of selected features to estimate the residuals. 
Considering the target is temperature, R2, rather than cv(RMSE), is used to evaluate the accuracy 
of developed models. The models exhibit a high degree of accuracy for most of the features, 
largely due to testing conditions that are easily controlled and fewer uncertainties in the 
experimental setup, except the subcooling temperature and superheating temperature where the 
accuracy may be compromised (see Figure 48). However, subcooling and superheating are 
calculated by Tc/Tcl and Te/Tev, respectively (all four temperature models have a high accuracy), 
so these two features are indirectly calculated in the FDD classification steps.  

After comparing polynomial models with neural networks, NIST researchers (M. Kim et al. 
2008) recommended the former as the method for the VCC FDD fault-free reference model 
because it can provide a reasonable fit uncertainty and obtain a higher accuracy than the artificial 
neural network model. For the multivariable polynomial regression of the fault-free reference 
model, outdoor dry-bulb temperature (Tod), indoor dry-bulb temperature (Tid), and indoor dew 
point temperature (Tidp) are typically selected as the independent variables to predict the features. 
In addition, as illustrated in Figure 48, the third order does not have a significant benefit over the 
second order by comparing the performance of different orders of multivariable polynomial 
regression models. Therefore, the second order multivariable polynomial regression is sufficient 
when the fault-free values of selected features are estimated when calculating residual values. 
Table 26 gives an example of evaluation metrics for the model regression of discharge 
temperature Td. cv(RMSE) is calculated for the FDD classification steps. Figure 49 plots an 
example of the comparison of actual temperature and estimated temperature from three orders of 
multivariable polynomial regression models. It can be seen that these two curves are very close. 
Other plots are attached in Appendix D: Fault Detection and Diagnosis. 

 

Figure 48. Accuracy performance of different-order multivariable polynomial regression models for all 
features 
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Table 26. Statistics Results of Measured and Predicted Temperatures, Taking Discharge 
Temperate as an Example  

Feature Degree MSE CV(RMSE) R2(20%t) R2(cv=5) 

Td 1st 0.636 0.56% 99.5% 99.0% 

2nd 0.294 0.38% 99.7% 99.3% 

3rd 0.161 0.28% 99.8% 96.6% 

 
Figure 49. Comparison of measured and predicted temperatures, taking discharge temperate as an example  

 

5.3.3.3 Comparative Analysis  
Figure 50 shows a comparative analysis of three FDD methods (i.e., statistical rule-based chart, 
sensitivity ratio method, simple rule-based method) in terms of false alarm, missed detection, 
misdiagnosis, and accuracy. The statistical rule-based chart considers probabilities in three 
uncertainty sources and is sensitive to its threshold standard deviation multiplier s and 
confidence interval of uncertainties k. Th adjustment of these two coefficients, usually conducted 
by expert with professional experience, influence FDD sensitivity and false alarm in a reverse 
way. The statistical rule-based chart considers probabilities in three uncertainty sources and is 
sensitive to its threshold standard deviation multiplier s and confidence interval of uncertainties 
k. The adjustment of these two coefficients, usually conducted by experts with professional 
experience, influences FDD sensitivity and false alarm in a reversed way. Therefore, to observe 
the difference of the statistical rule-based chart with/without adjusting balance amplifier k and s, 
an additional case called the statistical rule-based chart with adjusted k and s is also included in 
the comparison (the details for amplifier adjustment are included in Appendix D: Fault Detection 
and Diagnosis). 

False alarm. Figure 50(A) shows the false alarm results of four FDD cases (i.e., statistical rule-
based chart, statistical rule-based chart with adjusted k and s, sensitivity ratio method, simple 
rule-based method). The lower the rate is, the better the FDD approach performs. The statistical 
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rule-based chart method performs the best with a false alarm rate of 0%. On the other hand, it is 
relatively easy for the sensitive ratio method to trigger a false alarm of 100%.  

Missed detection. Figure 50(B) illustrates the missed detection rate of four FDD approaches for 
different faults with various severity levels. Lower missed detection indicates better performance 
of the FDD approach. The statistical rule-based chart method with default k and s values has the 
highest probability of missing detection, especially for the evaporator fouling and liquid line 
restriction cases. The sensitivity ratio method performs the best regarding the missed detection 
rate, as it is most sensitive to the threshold. As a consequence of this, the likelihood of false 
alarms being reported by the sensitivity ratio method is also increased. On the other hand, if the 
false alarm of the sensitivity ratio method is mitigated by adjusting the threshold, the missed 
detection rate will go up. This implies that a high false alarm rate and a low missed detection rate 
are mutually exclusive. It is important to determine the threshold to balance these two metrics. 
For practical implementation, ensuring a lower false alarm rate should be prioritized. 

 

 

Figure 50. Results of evaluation metrics (i.e., false alarm, missed detection, misdiagnosis, and accuracy) for 
four AFDD methods (i.e., SRBC, SRBC with adjusted k and s, SRM, SRBM) 

SRBC = statistical rule-based chart; SRM = sensitivity ratio method; SRBM = simple rule-based method 

Misdiagnosis. Figure 50(C) shows the misdiagnosis rate results of four FDD approaches. A 
lower rate indicates better performance of the FDD approach. As the diagnosis results of the 
simple rule-based method are mutually inclusive (i.e., multiple diagnosed faults might be 
reported), two metric modes are applied. In the simple rule-based method, the misdiagnosis rate 
is defined as the ratio of the inaccurately diagnosed target faults (i.e., all outcomes in which a 
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diagnosis identifies anything other than the target fault) and to the total number of appropriate 
detections. It is obvious that if we only check whether the method diagnoses the target fault, the 
misdiagnosis rate is much lower compared with the case only considering the exact identification 
as diagnosis success. In addition, for the statistical rule-based chart with default amplifier k and s 
values, the misdiagnosis rates are high for the case of condenser fouling, liquid line restriction 
and overcharge, while it has a lower misdiagnosis rate for evaporator fouling and overcharge 
cases. The performance of the sensitivity ratio method is satisfactory only when applied to the 
evaporator case. Figure 51 illustrates the distribution of misdiagnosed results for each fault 
scenario. In contrast to other methods, the simple rule-based method exhibits the accumulated 
percentages for each fault scenario, exceeding 100% in certain instances. This results from the 
fact that the simple rule-based method checks if one fault exists one by one independently, not 
mutually exclusive. This feature makes it potentially applicable in circumstances where multiple 
faults occur simultaneously.  

Accuracy. Figure 50(D) shows the accuracy of four FDD approaches. The higher the rate, the 
better the FDD approach performs. The accuracy rate is the key metric for the FDD evaluation, 
and a rate greater than 80% could be considered satisfactory (Yuill 2014). The sensitivity ratio 
method performs well only in evaporator fouling cases, while the statistical rule-based chart with 
default k and s values only do well in no-fault cases. The statistical rule-based chart with 
adjusted k and s values performs well for liquid line restriction and no-fault cases, while the 
results are still acceptable for undercharge and evaporator cases. The simple rule-based method 
performs the best by achieving over 90% accuracy rate for three cases—evaporator fouling, 
undercharge, and overcharge. For the no fault and condenser fouling with less severity, the 
simple rule-based method also performs reasonably well. 
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Figure 51. Misdiagnosis distribution among four FDD approaches (i.e., SRBC, SRBC with adjusted k and s, 
SRM, SRBM) 

SRBC = statistical rule-based chart; SRM = sensitivity ratio method; SRBM = simple rule-based method 

Figure 50 and Figure 51 demonstrate that no single method could achieve a consistent detection 
accuracy for different types of faults. For example, the statistical rule-based chart with adjusted k 
and s values mostly obtained an acceptable accuracy rate (e.g., >80%) for the fault-free case and 
charge faults, but the results are worse for the fouling faults. Therefore, it is challenging to use 
individual FDD methods to achieve an acceptable accuracy rate. A hybrid FDD method must be 
developed and applied.  

Table 25 lists the comparison of required features, diagnosed faults, and fault-free reference 
models of these three existing VCC AFDD methods (i.e., statistical rule-based chart with 
adjusted k and s, sensitivity ratio method, simple rule-based method) using the NIST raw data. A 
hybrid approach, which uses both the statistical rule-based chart method and simple rule-based 
method, could be recommended for better performance.  
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5.3.3.4 Hybrid FDD Approach for VCC Systems 
A suggested FDD flowchart for VCC systems that integrates the statistical rule-based chart and 
the simple rule-based method is illustrated in Figure 52. This hybrid FDD approach places 
greater emphasis on the diagnosed results obtained from methods with higher accuracy in 
diagnosing specific faults. It puts more weight of no fault and liquid line restriction on the 
statistical rule-based chart, and condenser fouling, evaporator fouling, undercharge, and 
overcharge on the simple rule-based method. 

This hybrid FDD approach places greater emphasis on the diagnosed results obtained from 
methods with high accuracy in diagnosing specific faults. 

 

Figure 52. Hybrid FDD flowchart for VCC systems 

NF = no fault, CF = condenser fouling, EF = evaporator fouling, LL = liquid line restriction, UC = undercharge, 
and OC = overcharge 

A refrigerant fault in the VCC system can have a widespread impact, potentially affecting the 
entire system. As a result, it is more likely to be recognized as an air-side fault. This scenario is 
not anticipated if only a single fault is present. In contrast, an air-side fault specifically affects 
the air side components, such as the evaporator and condenser. Therefore, for the single fault 
scenario, additional rules are introduced: 

• If a refrigerant fault is diagnosed, air side fault diagnosis is skipped.  

• If the refrigerant fault is not filtered, the result for the airside fault is then displayed. 

A hybrid approach—which uses both the statistical rule-based chart method developed by NIST 
and simple rule-based method, which originated from Purdue University—is adopted for this 
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project. The test results are provided in Table 27. The overall AFDD accuracy is 95.46% for this 
NIST dataset, and the false alarm rate is 4.53%, which exceeds the project requirement (i.e., the 
AFDD detection accuracy is demonstrated to be higher than 80% with a false alarm rate that is 
less than 15%). 

Table 27. FDD Results of the Developed Hybrid Approach 

Fault Name No. of Cases No. of Correctness Accuracy rate 

No fault (NF) 243 232 95.47% 

Condenser fouling (CF) 153 114 74.51% 

Evaporator fouling (EF) 198 198 100.00% 

Liquid line restriction (LL) 285 274 96.14% 

Refrigerant undercharge (UC) 210 210 100.00% 

Refrigerant overcharge (OC) 254 254 100.00% 
 

Diagnosis accuracy  95.46% 
 

False alarm rate 
(False positive)   

 4.53% 

 

5.4 Summary 
In Section 5.2, we introduced our developed method of fault detection using a CNN forecasting 
model trained on fault-free normal operation data.  

An RMT-based variate selection was implemented to identify the fault relevant variates to be 
used in the forecasting model. This method ranks variates based on the co-occurrence of key 
temporal features/events to select variates that have high impact on forecasting of a target 
variable. Localized multivariate temporal features, which are robust against noise, were extracted 
by considering multiple scales, temporal characteristics of the time series and external domain 
knowledge such as feature-to-feature relationships from a multivariate time series. Using data 
from the virtual testbed, the fault relevant variates for the target variate were ranked using RMT 
based variate selection. Sensitivity tests show that the model performs best when using the attic 
zone temperature and the top 15% of ranked variates. 

Following this, a CNN-based model was trained on a fault-free set and used to forecast the target 
variate during the faulty period. A data selection framework to create artificial test data based on 
user input was also developed to evaluate the strategy. The evaluation results show that the 
developed strategy is able to successfully identify the fault impact when using the attic mean 
zone temperature as the target variate. This demonstrates the solidity of the attic mean zone 
temperature serving for the duct leakage detection. At the beginning and end period of duct 
leakages, the fault can be flagged accurately at 100%. 
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Section 5.3.2 investigates three existing AFDD methods for the residential VCC system: 
statistical rule-based chart, sensitivity ratio method, and simple rule-based method.  

A qualitative comparison is conducted first in terms of features required, fault-free reference 
model, potential faults diagnosed, pros and cons of each method, and performance regarding 
diagnosis accuracy rate. The statistical rule-based chart is well-developed because it considers 
probabilities in three uncertainty sources (measurement noise uncertainty, steady-state 
uncertainty, and fault-free model uncertainty). However, it is sensitive to its threshold standard 
deviation multiplier s and the confidence interval of uncertainties k. Thus, adjustment for specific 
cases is difficult to ensure acceptable accuracy. The simple rule-based method can obtain a high 
FDD accuracy, though with a simplified normal threshold for each feature. These normal 
thresholds are sensitive to specific fault types. 

A quantitative comparison analysis is accomplished with the NIST experiment data regarding 
four metrics—accuracy, false alarm, misdiagnosis, and missed detection. With respect to 
diagnosis accuracy, the statistical rule-based chart performs better for no fault and liquid line 
restriction cases, while the simple rule-based method performs better for condenser fouling, 
refrigerant undercharge, and refrigerant overcharge cases. The sensitivity ratio method does not 
outperform in any case. No single method could achieve consistent detection accuracy for 
different types of faults. This highlights that it is challenging to use individual FDD methods to 
achieve acceptable accuracy. Therefore, a hybrid FDD approach is recommended according to 
the accuracy rates for different faults. This places a greater emphasis on the diagnosed results 
obtained from methods with higher accuracy in diagnosing specific faults. 

A hybrid FDD approach that integrates statistical rule-based chart and simple rule-based method 
was developed and tested with an additional field test dataset. Overall, the diagnosis accuracy is 
83.02% if only counting fault cases, and 90.18% when counting all cases, including fault-free 
ones. A two-class confusion matrix for detection shows all metrics are all higher than 90%, with 
a detection accuracy of 96.4%. 

As for the fault-free reference model for VCC refrigerant side and air side temperatures, second 
multivariable polynomial regression models are sufficient to obtain a good accuracy with Tid, 
Tidp, and Tod. Higher-order multivariable polynomial regression models do not yield significant 
additional benefits. 
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6. Model-Based Adaptive Control Framework With 
Extracted Rules 

One of this project’s objectives is to generate a set of rules by extracting information from MPC 
results. These rules, called MPC-informed rules, are intended for a precooling control strategy 
that utilizes only the thermal mass of residential buildings to deal with extreme weather 
conditions when HVAC capacity is limited under faults. The rest of this section is organized as 
follows. First, in Section 6.1, the MPC framework is developed, followed by the rule extraction 
description. The prototype residential building (described in Section 3.1) is used to generate 
MPC-informed rules in Section 6.2, with benefits of this process quantified. 

6.1 MPC Framework Methodology 
The methodology section describes the workflow of MPC for precooling and MPC-informed rule 
extraction methods, following a brief of related models and evaluation methods. A high-level 
overview of the whole process includes three steps total (Piscitelli et al. 2019): 

1) Obtaining optimal control schedules 

2) Extracting rules from the optimal control schedule 

3) Testing the extracted rules 

 

Figure 53. The workflow of MPC and rule extraction 

6.1.1 Rule Extraction Algorithm Control Decision 
The prediction model is critical in the whole process of the MPC-informed rule extraction 
workflow. It accepts multiple features as inputs and produces corresponding targets as outputs, 
serving as references for determining optimal control actions. 

6.1.1.1 Classification and Regression Tree Model 
The classification and regression tree, usually applied in fault detection and diagnosis (Mirnaghi 
and Haghighat 2020), is used to estimate weight factors for objective functions and extract 
control rules from well-predefined setpoint schedules. The classification and regression tree is 
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formulated as a cascade of binary decisions, as shown in Figure 54 (DEVOPS) and can be easily 
transformed into an “if-then” control logic form to predict the result variables with the feed of 
features through a sequence of conditional statements. There are decision nodes, branches, and 
leaf nodes. Typically, the tree is shown inverted, with the root node at the top and the leaves 
representing the conclusion at the bottom. Each decision node corresponds to one predictor input 
variable. 

The rules for constructing the classification and regression tree are generated by iteratively 
dividing the predictor variables. This process begins with the variable that exhibits the strongest 
relationship with the response variable. The determination of this relationship relies on specific 
metrics chosen based on the data nature and algorithm employed. For classification tasks, 
metrics such as Gini impurity or information gain are commonly utilized, while variance 
reduction is employed for regression tasks (Yu and Pavlak 2022). This procedure is known as 
learning or expanding the decision tree. For each branch (node) of the tree, a subset of predictor 
variables is reviewed, and a single predictor is chosen to divide the subset into groups (branches) 
that similarly classify the response variable. When classification or misclassification rate is the 
only parameter used to determine where to split the predictor set, this procedure continues until 
each branch leads to a terminal node containing a single data point, also known as a leaf. 
Typically, a fully developed tree (one in which each branch terminates in a single value) is too 
complex and overfit to the data to be usable; therefore, it must be simplified (pruned) in order to 
be useful (Tanner 2014). 

 

Figure 54. Schematic diagram of decision tree  

6.1.1.2 Model Evaluation/Skill Evaluation 
As shown in Figure 55, open-loop test and closed-loop test are two evaluation methods for the 
models applied in this research. The open-loop test is based on static offline data, which has been 
prepared completely before testing. Cross-validation is widely used approach for the open-loop 
testing. Explained in Equation (6), the coefficient of the variation of the root mean square error, 
or cv(RMSE), is used for error evaluation. Another metric is R2 (see Equation (7) –(8)), used to 
compare the predicted and the measured targets. R2 is particularly well-suited for temperature 
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model because temperature can be expressed using different unit systems, such as Celsius (℃) 
and Fahrenheit (℉). These diverse unit systems can lead to different metric values when using 
cv(RMSE). 

The measured data are commonly partitioned into training and validation sets, with the former 
typically consisting of 70% of the data and the latter containing 30%. A model that is 
appropriately trained should demonstrate equivalent performance on both the training and testing 
datasets (Afram et al. 2017). 
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∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�)2𝑁𝑁
𝑖𝑖=1

∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�)𝑁𝑁
𝑖𝑖=1

 
(7) 

𝑦𝑦� =
1
𝑁𝑁
� 𝑦𝑦𝑖𝑖

𝑁𝑁

𝑖𝑖=1
 

(8) 

Where,  

RSS is sum of squares of residuals. 

TSS is total sum of squares. 

𝑦𝑦𝑖𝑖 is ith value of the variable to be predicted. 

𝑦𝑦� is predicted value of 𝑦𝑦𝑖𝑖. 

𝑦𝑦� is mean value of a sample. 

N is upper limit of summation. 
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Figure 55. Open-loop test and closed-loop test 

The closed-loop test is for an on-line implementation of the model, where it is tested in real time 
during the system operation, timestep by timestep, which is different from using a precreated 
dataset without incorporating predictive modeling. By simulating and testing the model in real 
time, it offers a more realistic representation of the identified system models and decision-
making rules. Consequently, this method enables a practical evaluation of the system’s 
performance under real-world conditions. The model’s inputs are generated in real time, and its 
outputs are continuously used as inputs in the next timestep, which forms a closed control loop. 
This is the closest approximation of embedded performance on a “live” building automation 
system. Compared to the open-loop test, the closed-loop one depicts testing much closer to the 
actual operation of real systems with extracted rules (M. Robillart, Schalbart, and Peuportier 
2017).  

The “closed” nature of this test arises from the fact that actions taken by the rule in the current 
timestep have an immediate impact on the prediction set employed by the rule in the subsequent 
iteration. Misclassification errors originating from the rule can rapidly result in deviations in 
thermal states and, as a consequence, lead to the predictor set deviating from the optimal solution 
encountered (May-Ostendorp, Henze, Rajagopalan, and Kalz 2013). 
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6.1.2 MPC for the Precooling Control 

 

Figure 56. Model predictive control framework for residential HVAC systems 

6.1.2.1 Control Platform Development 
The control platform combines EnergyPlus (Crawley et al. 2001) and Python (Van Rossum 
2007) within a co-simulation environment that allows for a rapid development and deployment 
of control for the residential HVAC system. EnergyPlus is used as a virtual testbed, simulating a 
real-time building response at each timestep. Python serves as a co-simulation master program 
(applied with the PyFMI package (Andersson et al. 2016) in this project). Python initializes and 
processes data, and generates and sends the control variables to EnergyPlus/virtual testbed. 
These steps are executed using a functional mock-up unit as a bridge to connect EnergyPlus and 
Python.   

The detailed schematic diagram is illustrated in Figure 57. In each time step, EnergyPlus 
transmits the time information to the control algorithm in Python, which in turn provides the 
optimal control parameters to the HVAC controller (C. Wang et al. 2020). EnergyPlus receives 
and updates new control values through a functional mock-up unit, and then performs the 
simulation until the next time step. At the same time step, the comfort index is also evaluated and 
recorded in the Python algorithm, based on the indoor and environmental parameters provided by 
EnergyPlus. The optimization algorithm solves the control problem in Python and generates 
optimal control parameters (e.g., cooling and heating setpoint) based on the measured or 
predicted information and outside temperature. The resulting parameters, like cooling zone 
temperature and thermostat setpoint, are stored as historical data for the decision of the next 
control action. 
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Figure 57. Co-simulation of EnergyPlus and optimization algorithms (in Python) via functional mock-up unit 

6.1.2.2 Optimization Formulation 
The primary goal of the precooling strategy is to mitigate the discomfort in given periods. This 
can be assessed by unmet degree hours, a metric that quantifies both the degree and duration 
when the indoor air temperature deviates from the comfort bound (Zeng et al. 2022). Degree 
hours was chosen as it provides an indication of the severity of a cooling capacity deficit during 
a heat wave. Precooling leverages the excess cooling capacity available during off-peak hours to 
compensate for a cooling capacity shortfall during peak hours. Consequently, degree hours 
serves as a valuable objective to be incorporated into the optimization formulation. 

Energy consumption is another objective considered in the optimization. However, in this study, 
energy consumption is less important compared to thermal comfort (i.e., unmet degree hours). 
The capacity of the HVAC system diminishes which causes the HVAC system to struggle for 
maintaining the required thermal comfort, especially during extreme weather conditions. 
Occupant well-being has a higher priority during such a scenario (e.g., heat waves).  

Therefore, two objectives are considered, unmet hours and HVAC power. The problem 
formulation of MPC is presented in Equations (9) - (12).  

 (9)  

 
(10) 

 
(11) 

Subject to 

 
(12) 
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J is the objective function, which consists of three items, HVAC Power P, unmet degree hours 
DH, and smooth item S. The objective function, typically a weighted sum of these three 
components, is a mathematical expression utilized by the control system to guide its decision-
making process and minimize the sum of objective values over the prediction horizon. It serves 
as a criterion for determining the controller’s priorities and directs its control actions 
accordingly. A smooth item is used to reduce the frequent severe variation of generated setpoint 
schedule, as the MPC optimization easily generates some oscillations. This project utilizes 
temperature setpoints in the last two steps (see Equation (13) to minimize the curvature of the 
input signal (Cigler et al. 2013). Weight factors α and β are incorporated into the objective 
function. They are used to balance the importance of those three items. As there is no standard 
approach to determine the value of weights, multiple trials with the purposes of optimization are 
inevitable. The final decision, after multiple trials, is based on the outcome that most effectively 
reduces unmet hours, while simultaneously preventing the indoor temperature setpoint from 
consistently staying at the lower bound. This means avoiding consuming excessive energy. To 
enhance the efficiency of adjusting weight factors for the objective function as well as enable 
more reliable comparisons and aggregations of diverse measures, all objective items (i.e., HVAC 
power and unmet degree hours) are normalized by their max values. This procedure is necessary 
since these performance aspects can have vastly different scales. For instance, energy 
consumption could be quantified in thousands of kilowatt-hours, while unmet degree hours 
might be measured in less than ten-degree Celsius hours. Directly applying weights to these 
disparate raw values could create complications in the optimization process, as the scales of the 
terms could disproportionately affect the solution’s influence. A normalization brings all values 
to a standardized scale, usually ranging between 0 and 1, allowing for more meaningful and an 
effective comparison and aggregation of different measures in the optimization.  

Moreover, i is the timestep, while ph means the prediction horizon. Tsp is the setpoint 
temperature, while the Tl and Th are the lower bound and higher bound, the constraint for the 
setpoint temperature. 

 (13) 

6.1.2.3 Variant Weight Factors for the Objective Function of MPC 
Even though smooth dealing actions are conducted, there are still several unpleasant oscillations 
in the generated setpoint schedule. The oscillation hinders the optimization process and the 
extraction of rules, and therefore, is not a desirable occurrence. Certain oscillations can be 
attributed to improper weighting factors within the objective function for MPC optimization. For 
example, weight factor beta is assigned to the constraints of unmet hours. In an attempt to 
minimize the unmet hours as much as possible in a single operational period, beta might be 
selected to be a larger value. However, the downside of this approach is that in another 
operational period, a larger beta may easily lead to unnecessary precooling. If it is done too 
aggressively or at the wrong times, it can waste energy and lead to undesirable temperature 
swings. Therefore, it becomes crucial to assign different weight factor values tailored to various 
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operational conditions. By adjusting these weights contextually, the model can balance the 
competing objectives more effectively and minimize undesired oscillations, leading to a more 
efficient optimization process and better rule extraction. The weight-generation procedure 
includes:  

1) Run multiple simulations with different weight factors. Offline MPC is time-insensitive. 
Thus, multiple iterations of MPC can be conducted beforehand. 

2) Find out the best weight factor for each day in the simulated data: the number of unmet 
hours is the highest priority. 

3) Train a model for the best weight factor selection with the classification and regression tree. 

6.1.2.4 Optimization Approach 
To find a series of optimal temperature setpoints, reliable HVAC energy model, and thermal 
environment prediction models for occupant comfort are essential to be established. In the MPC 
optimization process, at each time step t, the MPC solves an optimization problem in an iterative, 
finite horizon by minimizing the objective function to determine the optimal heating/cooling 
trajectory based on the prediction of indoor zone temperature that satisfies the comfort 
requirement. In this project, solver “differential evolution” is used for the Global Problem 
optimization. Differential evolution is a type of evolutionary algorithm, a class of optimization 
methods inspired by biological evolution. These algorithms operate by creating a population of 
potential solutions, then iteratively evolving the population over time by applying operations 
analogous to mutation, crossover, and selection. Derivatives are a common tool in many 
optimization techniques as they can help to identify the direction of the steepest ascent or descent 
(i.e., the direction in which the function increases or decreases the most rapidly). However, the 
model used in this project is indifferentiable artificial neural network model. So these gradient-
based methods cannot be used, as they heavily rely on derivative information for convergence. 
Heuristic methods, like the one employed by differential evolution, don’t require derivatives and 
can therefore handle such models effectively. 

In control systems and optimization processes, establishing appropriate initial conditions is vital 
as they define the starting point for calculations and simulations. In this specific scenario, the 
lower bound temperature is used as the initial condition. Consequently, when the optimization 
process commences, it initiates from this lower bound temperature. The objective of this process 
is to accomplish precooling, which involves deliberately cooling a system prior to an anticipated 
temperature rise or increase in load. By utilizing the lower bound temperature as the initial 
condition, our aim is to guarantee that the system will attain a temperature lower than its current 
state, effectively achieving the desired precooling effect.  

6.1.3 Rule Extraction From MPC Results 
The optimal control signal schedule is generated from the MPC process. The objective of the rule 
extraction is to leverage the time-insensitive nature of offline MPC. This refers to the ability to 
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perform computationally intensive tasks of the control process ahead of time, in an offline 
manner. By conducting these calculations in advance when computational resources are more 
readily available, the resulting control decisions can be stored and quickly accessed when 
required during actual operation, based on the current system state. This approach significantly 
reduces the computational demands during system operation, which proves especially 
advantageous in situations where real-time computation resources are limited. Moreover, it 
facilitates more extensive and thorough optimization since there is typically ample time for 
computations during the offline phase. Thus, multiple iterations of MPC can be conducted 
beforehand.  

Another reason is that optimization is difficult to be applied in ordinary residential buildings, 
where the computation source is very limited for the thermostat. Therefore, those computation 
loads can be transferred to some computing centers in companies or research institutes before the 
rules are implemented in real homes. 

The basic requirement for the rule extraction algorithm is the ability to mimic the performance of 
MPC and result in a similar operation and thus lead to similar energy consumption and thermal 
environment. At the same time, extracted rules should also be simply and logically explanatory 
so that they can be easier to be applied in the average homes, even for those non-remote 
thermostats, i.e., traditional programmable thermostats. In this case, the optimal setpoint 
schedules can be determined quickly at the beginning of one day and reported to the nearby 
household in one area (Zeng et al. 2022).  

Considering those requirements, the classification and regression tree is a suitable algorithm used 
to extract rules from the predefined operation schedule and to be implemented in common life. 
Gini impurity metrics are convenient to be used to split over a given predictor variable.  

Gini impurity quantifies the level of “impurity” (i.e., mixture of classes) within a node. It 
provides a measure of how well the classes are separated within that node. The Gini impurity is 
calculated by determining the probability of misclassifying a randomly chosen element in the 
dataset if it were randomly assigned a class label based on the class distribution in the dataset. 
Essentially, Gini impurity serves as a measure of uncertainty or disorder within a specific node 
of the tree and the aim of the decision tree algorithm is to minimize this uncertainty and achieve 
the most homogeneous (pure) subsets of data. A higher Gini impurity value, which indicates a 
more mixed or impure node, suggests a suboptimal split in the decision tree. On the other hand, a 
lower Gini impurity value that indicates a more pure or homogeneous node, is preferred in 
decision tree construction. 

For binary classification (two classes), the calculation of Gini impurity is as Equation (14): 

𝐺𝐺𝑖𝑖𝑖𝑖𝑖𝑖 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖𝑡𝑡𝑦𝑦 = 1 − 𝐺𝐺𝑖𝑖𝑖𝑖𝑖𝑖 𝐼𝐼𝑖𝑖𝑑𝑑𝐼𝐼𝑥𝑥 =  1 − ∑ 𝐼𝐼𝑖𝑖2𝑘𝑘
𝑖𝑖=1   (14) 

Where, k is the number of class labels. 𝐼𝐼𝑖𝑖 is the proportion of ith class label. 
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Feature selection and tree depth are two significant designs for the classification and regression 
tree algorithm to make sure a higher accuracy of rule extraction.  

Different depth determines the historical data storage and control logic implemented in the local 
thermostat. It also influences the performance of the classification and regression tree. If the 
depth is too shallow, it will lose the ability to perform well in variant conditions. If the depth is 
too deep, even though this tree can perform perfectly in the training data, it is very easy to be 
overfitting, which is difficult to be applied to other conditions. This is because the overfitted tree 
may have learned specific details and noise from the training data that are not relevant or 
applicable to new data. Consequently, it may struggle to generalize and make accurate 
predictions on unseen examples. Therefore, the depth of the tree should be determined carefully. 

Proper selections of feature candidates benefit the application of extracted rules in practice where 
these features can be easily measured. Therefore, the indoor dry-bulb temperature and dewpoint 
temperature (or relative humidity), and outdoor dry-bulb temperature are selected as the 
regressors for the classification and regression tree in this study. For the forward-lagged data, 
only outdoor dry-bulb temperature is included, as it is easily accessible from the public weather 
reports, which is regarded as the perfect prediction for the MPC in this study. 

The process of rule extraction includes the following steps: 

1) Collecting training dataset: Indoor dry-bulb temperature (Tid), indoor dew point temperature 
(Tidp), outdoor dry-bulb temperature (Tod) at timestep (i-8, …, i-1, i), temperature (Tsp) at 
(i), Tcu at (i+1, …, i+8). The resolution of Tsp depends on the control time step. Tcu is the 
difference between future outdoor temperature and upper bound of comfort (i.e., 26℃ 
(78.8℉)). 

2) Training the classification and regression tree and saving it as a callable model: Tid, Tidp, Tod 
and Tcu are the features and Tsp is the target. Most of the time, a depth of 3 or 4 is sufficient.  

3) Testing the trained tree model in a closed loop. 

4) Comparing the tree-generated schedule and other schedules (e.g., baseline schedule, 
boundary schedule, MPC schedule, rule-based schedule).  

6.2 MPC Application and Rule Extraction 
6.2.1.1 Building System Identification 
Models of indoor temperature and HVAC power are required for the objective function of MPC. 
Training data is collected from the EnergyPlus simulation during June and September. The 
indoor temperature forecast model obtains a good accuracy with an R2 of 0.98, and Figure 58 
shows its samples are closely distributed around the 1:1 line. For the power prediction model 
(described in Equation (15)), its cv(RMSE) is as low as 6.76%.  

 (15) 
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Figure 58. Performance of model training 

Weight factors. The MPC optimization for this residential building located in Houston is 
conducted in the period of Aug. 4–13. The objective formulation is described by Equation (9) - 
(12). As discussed in Section 6.1, weight factors play an important role in the objective function. 
Weight factor beta for smooth factor is investigated first, with multiple trials of different values 
(0, 0.01, 0.05, 0.1, 0.5, 1, 5). Finally, 0.01 is chosen because it can avoid frequent significant 
variations of temperature setpoints. An example extracted from multiple trials is shown in Figure 
59.  

Weight factor alpha is variant day by day, and determined at the beginning of the day. Degree 
hour Tdh is used to estimate the difference between outdoor temperature and upper bound of 
indoor thermal comfort in one hour. This value could be either positive or negative. A peak 
degree hour Tdh_peak in one day and the sum of absolute values of hourly degree hours Tdh_abs are 
selected from a data pool by the feature selection to serve as the input to forecast the best-fitting 
weight factor alpha for one day. This model is developed with the classification and regression 
tree. Its tree flow is shown in Figure 60, with a 100% accuracy. It can be easily observed that 
when the peak degree hour is lower than 9.3 C-hr, 0 is set as the value of alpha. For the rest, if 
the sum of absolute values of hourly degree hours is lower than 187.1 C-hr, 1 goes as alpha. For 
the remaining cases, 5 is more suitable. 
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Figure 59. Time-series temperature with the change of weighting factor beta for the smooth item 

 

Figure 60. Decision tree and its prediction accuracy for the best fitting weight factor alpha estimation 

MPC simulation. After all setup—including model setup, system parameters, objective 
function, constraints, optimization setting, data inputs, etc.—is properly configured, MPC 
optimization is conducted in the virtual EnergyPlus testbed. The results of the MPC simulation 
are shown in Figure 61 and Figure 62, which display that the MPC can generate a setpoint 
schedule that results in the mitigation of unmet hours from 9.2 C-hr to 3.4 C-hr, when the heat 
hump capacity reduced by 30% with a fouling condenser unit during hot August days in 
Houston, TX. 
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Figure 61. Temperature distribution of MPC 

 
Figure 62. Unmet hours of model predictive control 

6.2.2 Rule Extraction 
Setpoint discrete. Rule extraction is conducted with the classification and regression tree. 
Setpoint discrete resolution is 0.2℃ (0.36℉). The value with the digit of an odd number is 
rounded down because the precooling (i.e., a lower temperature) is expected to be designed. For 
example, 24.7℃ (76.46℉) is lowered to 24.6℃ (76.28℉), categorized with the original 24.6℃ 
(76.28℉) as the same group. 
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Table 28. Features of the Classification and Regression Tree 

Variable name Symbol Unit Backward lag  Variable name 

Indoor dry-bulb 
temperature 

Tid ℃ (℉) ..., k-4, k-3, k-2, k-
1, k 

 

Indoor dewpoint 
temperature 

Tidp ℃ (℉) ..., k-4, k-3, k-2, k-
1, k 

 

Outdoor dry-bulb 
temperature 

Tod ℃ (℉) ..., k-4, k-3, k-2, k-
1, k 

k+1, k+2, k+3, 
k+4, ... 

 

6.2.2.1 Classification and Regression Tree Training and its Depths 

 

Figure 63. Accuracy of rule extraction in the open-loop test 

 
Figure 64. Effect of different depths in the decision tree   
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Tid, Tidp, and Tod, listed in Table 28 are considered the feature inputs. The future outdoor 
temperatures are transformed into degree differences to the comfort higher bound. The forecast 
accuracy of the rules model converges above 75% in the open-loop test (see Figure 63). When it 
comes to the closed-loop test, the effect of different depths in the MPC-informed rules tree is 
evaluated with Equation (16)–(18). It is apparent that when thermal comfort improves (as 
demonstrated by a decrease in unmet hours, represented on the x-axis), it comes at the expense of 
increased energy consumption (i.e., a higher energy consumption increase compared to MPC, 
depicted on the y-axis). This tradeoff should be varied regarding specific scenarios. A depth of 4 
is chosen for the tree model used in this study. 

P𝑑𝑑ℎ =
Rdh_rbc

Rdh_MPC
 (16) 

R𝑒𝑒𝑒𝑒 =
ERrbc

RRMPC
 (17) 

𝑅𝑅𝑎𝑎𝑡𝑡𝑖𝑖𝑅𝑅 =
P𝑑𝑑ℎ
R𝑒𝑒𝑒𝑒

 (18) 

Rdh_mpc: Unmet hours decreasing rate of MPC, compared to the baseline 

Rdh_rbc: Unmet hours decreasing rate of MPC-informed rules, compared to the baseline 

ERmpc: Energy consumption saving rate of MPC, compared to the baseline 

ERrbc: Energy consumption saving rate of MPC-informed rules, compared to the baseline 

Pdh: Percentage of unmet hours decreasing rate of MPC-informed rules in MPC  

Rec: Energy consumption increasing rate of MPC-informed rules compared to MPC 

6.2.2.2 Tree and Its Features 
A readable decision tree for the precooling setpoint forecast is shown in Figure 65. It can be 
learned that not all features at all time steps are required to constitute a complete decision tree. 
Preliminary investigations imply that the indoor temperature at the current time step is the most 
important parameter to make a decision on the action of the next step, which is followed by the 
indoor temperature at the last time step and the indoor dewpoint temperature at the i-3 time step. 
The outdoor temperature is the most frequently used parameter. 
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Figure 65. Classification and regression tree for precooling with depth of 4 

6.2.2.3 Test Using Training Days and Testing Days 
The training period is from Aug. 3–12. Figure 66 and Figure 67 plot the comparison of unmet 
hours in the training run. They highlight that the MPC-informed rule control generated from one 
period can mitigate the unmet hours from 9.2 C-hr to 5.2 C-hr for 10 days, with a more than 60% 
decrease rate, when applied to another period. At the same time, it only consumes more energy 
of 45 kWh for 10 days, around a 15% increase rate, compared to the baseline. 

 

Figure 66. Unmet hours of model predictive control with training data 
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Figure 67. Unmet hours and energy consumption with training data 

Apart from the test with training data, it is more important to test with testing data that are from 
different periods. An additional test is conducted in the run period of July 24–Aug. 2 and Aug. 
13–22. The results are listed in Table 29. It can be learned that comfort level is improved to some 
extent in all periods (unmet hours decrease from 10 C-hr to 5.1 C-hr from July 14–Aug. 2, and 
from 0.6 C-hr to 0 from Aug. 13–22).  

Regarding online computation time, within the same computer configuration, MPC consumes 
870 mins for a 10-day running on average, while MPC-informed RBC finishes in 0.2 minutes on 
average, significantly faster than the original MPC. 

Table 29. Performance Comparison of MPC-Informed RBC 

  Training Data Testing Data 

08/03–08/12 07/14–08/02 08/13–08/22 

Unmet  
(C-hr) 

Energy  
(kwh) 

Unmet  
(C-hr) 

Energy  
(kwh) 

Unmet  
(C-hr) 

Energy  
(kwh) 

Values Baseline 9.2 301.07 10 295.2 0.6 196.7 

MPC 3.4 316.93 3.4 310.7 0.5 200.2 

MPC-informed 
RBC 

5.2 346.7 5.1 314 0 237.5 

Change 
rate 

compared 
to the 

baseline 

MPC -63.0% 5.3% -66.0% 5.3% -16.7% 1.8% 

MPC-informed 
RBC 

-43.5% 15.2% -49.0% 6.4% -100.0% 20.7% 

Pdh 69.0% N/A 74.2% N/A 600.0% N/A 

Rec  N/A 187.7% N/A 21.3% N/A 1065.7% 

Effectiveness 36.7%  348.7%  56.3%  
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6.3 Summary 
This section conducts an advanced control strategy MPC for the precooling control in the 
residential building with only thermal mass in consideration under extreme whether events (e.g., 
heat waves), and then to extract operation rules with classification and regression tree to take 
advantage of the MPC results and make them easier to be applied in homes. This framework is 
implemented in the prototype building and generates several control rules in the form of decision 
tree. It demonstrates that thermal comfort can be improved (i.e., the decrease in unmet degree 
hours) with MPC-informed rules generated by the simulation results during another period.  
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7. Lab Testing 
The technology developed in this project utilizes low-cost sensors developed by the research 
team, which are installed throughout a residential dwelling. A demonstration of these 
technologies in a field testing setting was conducted at the PNNL Lab Homes. The 
demonstration effort entailed a dedicated testing period of seven weeks, from Aug. 10 to Sept. 
25, 2022. This testing assessed the comprehensive performance of various components: the 
sensor network capabilities, FDD algorithms, and comfort-oriented algorithms. 

The testing framework is shown in Figure 68. 

 
Figure 68. Framework of lab testing for FDD and controls 

7.1 Lab Testing Setup and Implementation 
7.1.1 Testing Homes 
Two identical Lab Homes, located in Richland, WA, were used for the field testing. Among 
them, Lab Home A serves as the test home, while Lab Home B is the baseline home. 

Each of the homes has three bedrooms and two bathrooms. They have one floor with an area of 
138.7 m2 (1493 ft2). Photographs of the homes are shown in Figure 69. The homes are equipped 
with double-pane windows (18.4 m2 (198 ft2) total of window area), wood siding, and 
composition asphalt shingle roofing. The interior flooring consists of sheet vinyl in areas with 
carpet throughout the rest of the home. The home is fitted with R-22 insulation in the floors, R-
11 insulation in the walls, and R-22 insulation in the ceiling. The floorplan is displayed in Figure 
70. As seen in the floorplan, the home is designed around an open-concept layout for the main 
gathering space. The home contains standard appliances, including a refrigerator, oven with 
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range, microwave, dishwasher, clothes dryer, washing machine, and water heater. The house is 
equipped with LED lighting in all lighting fixtures, and there are exhaust fans located in the 
kitchen and both bathrooms. There is also an electric vehicle charging station integrated into the 
homes for research on electric vehicle loads. 

 

Figure 69. Exterior photos of the PNNL Lab Homes 

Photos from project team 

 

 

Figure 70. Layout of the PNNL Lab Homes 

Image from project team 

7.1.2 Heating and Air Conditioning Information 
The homes are powered exclusively by electricity. Each home is equipped with an electric heat 
pump and central air distribution system (see Figure 71). The heat pump has a 13 SEER/7.7 
heating seasonal performance factor (HSPF) rating. The house has a dual heating system. In 
addition to the electric heat pump, there are Cadet electric fan wall heaters. The registers for the 
central air system are in the floor. As with typical manufactured homes, the floor joists are 
supported by large steel beams that run under the home. The floor is insulated with a blanket of 



IoT-Based Comfort Control and Fault Diagnostics System for Energy-Efficient Homes 

105 

insulation that is held in place with a large, watertight tarp between the floor joists and steel 
beam. The supply ductwork for the heat pump is located between the floor joists and insulation 
blanket underneath the home.  

 

Figure 71. Heat pump indoor and outdoor units for the PNNL Lab Homes 

Photos from project team 

 
7.1.3 Data Acquisition/Storage and Control Single System 
7.1.3.1 Lab Communication 

 

Figure 72. Summary of data flow for the IOT-based comfort control 
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The IoT-based comfort control requires sensors from multiple sources as well as the capability to 
implement control commands via the connected thermostat. Figure 72 summarizes the flow of 
data in the lab testing. Power measurements, FDD sensor measurements (installed on indoor and 
outdoor units), and weather station measurements are collected through the Campbell Scientific 
logger system at the PNNL Lab Homes. A data forwarder process running in VOLTTRON then 
forwards the data to the iComfort cloud database. At the same time, the low-cost sensors 
communicate with a central hub that also forward data to the database. The control algorithm 
processes the data and then sends the control signal via API command to the thermostat’s server. 

7.1.3.2 iComfort Database 
To stream and distribute the sensor data to the intelligent control algorithms, the data are 
uploaded to the cloud-based iComfort database and made accessible through a set of HTTP 
APIs. The sensor data are formatted by the data producer (the Gateway hub of iComfort sensors 
and data forwarder from PNNL lab home system) and submitted to the cloud database. 

In the database, the sensor records are validated, grouped by the sensor, and sorted by their 
measuring timestamp. As a data record is put into the database, an incremental index number is 
assigned to it. By accessing records using successive indexes, the latest records can be streamed 
to the control algorithms. 

The database provides unified APIs for different types of sensors, including iComfort sensors (all 
variants) and the various existing sensors in PNNL lab home. The APIs use standard HTTP 
protocol allowing the control algorithms to access easily with standard libraries. To prevent 
unauthorized access, the APIs are also protected by predistributed access control keys. The keys 
were securely delivered to the participant of this project before the experiment started. 

The database was reinitialized to wipe out the old development data at the beginning to prevent 
unexpected issues. The communication and functionality of the database were tested after 
reinitialization. 

7.1.3.3 Thermostat 
The heat pump system is controlled through an ecobee thermostat, which can be operated and 
adjusted through the cloud to match typical thermostat usage patterns and to implement control 
strategies. The control decision generated by the comfort control is the thermostat setpoint. The 
setpoint can be implemented remotely using the ecobee API (Ecobee). The manufacturer’s aims 
are to be backwards compatible with previous versions and have their API be self-documenting 
and easy to use and understand. Ecobee authorization is based on the OAuth 2.0 protocol and 
their implementation uses three different methods: authorization code, PIN authorization, and 
utility authorization (Widén 2015). 

7.1.4 Lab Testing Design 
Section 7.1.4 outlines the design for the testing of the FDD and control strategies. Further details 
related to the testing process, such as the testing timeline, occupancy simulation, sensor 
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installation, weather conditions, fault implementation, and operation schedules can be found in 
Appendix E.  

7.1.4.1 Fault Detection and Diagnosis for the Heat Pump System 
Only temperature measurements are used as features for the FDD of the heat pump system. Table 
24 lists all sensing parameters and corresponding features required. Some features can be 
measured directly (e.g., evaporating temperature), while others need to be calculated indirectly 
(e.g., suction line superheat equals the difference of evaporator exit refrigerant temperature and 
evaporator two-phase refrigerant temperature, Tsh=Tev-Te). Dependent variables are the main 
features for FDD, while independent variables are monitored to calculate the reference model. 

For the cooling mode, evaporator inlet air temperature Tiai (No.6) is approximately the same as 
the indoor dry-bulb temperature Tia (No.11); the condenser inlet air temperature Toai (No.8) is 
approximately the same as the outdoor dry-bulb temperature Toa (No.10). Therefore, 10 
parameters (temperature) in total are required for measurement in the residential HVAC system. 

7.1.4.2 MPC-Informed Rule-Based Control 

These MPC-informed rules are dedicated to two scenarios: adaptive to the HVAC (e.g., heat 
pump) faults and adaptive to the occupancy. Table 30 and Table 31 show different 
configurations for both Lab Homes in two scenarios. 

Table 30. Testing Design for Adaptive Control to Occupancy 
 

Lab Home Name HVAC System Configuration Setpoint Schedule 

Lab Home A Fault-free 

Remote from TAMU: Setback to 
28°C (82°F) when unoccupied. 

Precooling several hours ahead of 
being occupied 

Lab Home B Fault-free 

Scenario 1: Constant of 24°C 
(76°F) 

Scenario 2: Setback control 8:00-
18:00 28°C (82°F) 

18:00-8:00 24°C (76°F) 
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Table 31. Testing Design for Adaptive Control to HVAC Faults 
 

Lab 
Home 
Name 

HVAC System Configuration Setpoint Schedule 

Lab 
Home A 

Faulty condition: Refrigerant undercharge/heat 
exchanger fouling 

Remote from TAMU: Setpoints 
generated from MPC-informed rules 
(expected 72–76°F (22.2–24.4°C)) 

Lab 
Home B 

Faulty condition: Refrigerant undercharge/heat 
exchanger (make sure the same faults and 

severity levels in the two homes) 
Constant of 76°F (24.4°C) 

 

The implemented fault severity for the heat pump systems includes: 

• Refrigerant undercharge: 80% and 60% of the original charge 

• Refrigerant overcharge: 120% and 140% of the original charge 

• Evaporator fouling fault: 85% and 70% of the original airflow 

• Condenser fouling fault: 85% and 70% of the original airflow. 

 
7.1.4.3 Active Learning Data-Driven Model and Data Predictive Control 
In this project, an online data predictive control (DPC) framework was designed and tested at the 
PNNL Lab Home. The objective was to evaluate the performance of the developed data-driven 
forecasting models in a real-time online scenario as well as test the performance of a 
computationally efficient control strategy that would optimize HVAC system electric energy 
while constrained by occupant comfort. A comparison was performed between the baseline 
energy usage (Lab Home B) and the optimized energy usage (Lab Home A). 

The DPC framework developed in this project was adapted from L. Zhang (2018). That work 
sought to minimize the HVAC system electric energy over an hour. A three-hour period 
forecasting was used to avoid the optimizer being too near-sighted. At each hour, the framework 
would select a zone thermostat cooling setpoint combination (one setpoint for each hour period) 
that would result in the lowest energy consumption for the next three hours, while ensuring the 
zone temperature to be within the desired range. 

In Lab Home B (baseline home) the thermostat cooling setpoint was set to 75°F during all 
occupied periods and set to 78°F during all unoccupied periods. In Lab Home A, which is 
controlled using the DPC framework, the range of possible setpoints was from 75° to 90°F. The 
selected setpoints were sent to the installed ecobee Smart Thermostat in Lab Home A through the 
online framework discussed previously. 
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There was a constraint for zone temperature so the system did not choose setpoints that would 
result in an uncomfortable thermal environment should the zone be occupied by real occupants. If 
a setpoint combination would result in the lowest energy usage but break the comfort constraints 
at any point in the next three hours (using the forecasts from the zone temperature model), that 
combination was discarded and the next highest energy usage combination was assessed. This 
process was repeated until a combination was found that did not break the constraints. The 
occupant comfort constraint differed depending on whether the lab home was occupied or 
unoccupied. While there were no physical occupants present during the testing period, the PNNL 
team implemented an occupancy simulation using heating devices. The schedule simulated the 
occupants leaving for work during the day and leaving the home unoccupied. During the 
occupied periods, the occupant comfort range was set from 70° to 78°F. During the unoccupied 
periods, the range was set from 60° to 90°F. 

7.2 Analysis of Results 
7.2.1 Demonstration of the Hardware and Cloud Database 
During the experiment period, the 16 iComfort sensors collected and pushed 1,413,072 sets of 
temperature and humidity data (and airflow data from four of them). Also, the cloud database 
received 2,586,542 records from existing lab home sensors through a data forwarder. About 370 
megabytes of data were produced during this period. The cloud database’s API served more than 
5,198,000 query requests from the detection and control algorithms. The cloud database was 
working at 100% availability and completely error-free during the experiment. Figure 73 plots 
the temperature and humidity readings gathered by iComfort sensors in the lab home’s living 
room area, and the airflow sensed from the HVAC supply register nearby. 

 
Figure 73. Temperature, humidity and airflow data from the living room area 

Most of the sensors operated reliably throughout the experiment, consistently streaming 
measurements to the cloud at one-minute intervals. However, due to various reasons on the sensor 
side, part of the data was missing during this period. The data completion status of each day in 
this period is shown in Table 51 of Appendix E.9. 
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After analyzing the data, the following issues have been identified: 

1) PNNL Lab Home A has unstable internet connectivity, causing the data forwarder to 
occasionally go offline and lose data. Most of the lost data were recovered from PNNL’s 
local database and manually loaded later. Since the iComfort Gateway hub cached data 
when it failed to push them to the cloud, there was no data loss from the iComfort sensing 
system due to this issue. 

2) Five of the iComfort sensors had dead batteries at the beginning of the experiment and were 
not operating during the first week. After changing the batteries, three of them restored 
functionality and worked stably for the rest of the experiment time. 

3) The remaining two iComfort sensors had some hardware issues during assembly. From 
telemetry data, those sensors drained the battery much faster than others and tended to 
overdrain the battery. These two sensors provide unstable data streams, as shown in the 
table. After testing, a soldering defect was found on the two sensors’ power supply part and 
they were fixed by resoldering the board. 

7.2.2 Fault Detection and Diagnosis for the Heat Pump System 
7.2.2.1 Steady State Filter and Fault-Free Reference Model 
Figure 73 plots an example of temperature measurement for the heat pump system. All the heat 
pump-related temperatures correspond to the designed point in Figure 45. Figure 74 shows the 
steady-state analysis of the features that are used for the rule-based FDD. The value of features is 
calculated from Figure 73 with equations in Table 24. 

Similar to the experiment dataset case, Figure 75 shows the accuracy performance of different-
order multivariable polynomial regression models for all features with the field test dataset. 
Compared to experiment dataset, the models’ accuracy levels are lower on average. This is 
mainly a result of more uncertainties when the test is conducted in the field. The features whose 
models have a lower accuracy are all estimated indirectly. For example, condenser air 
temperature change (dTca) is the difference between condenser inlet air temperature (Tcai) and 
condenser outlet air temperature (Tcao). Similarly, features estimated indirectly can be calculated 
following the directly measured features. These directly measured features are typically 
associated with models of higher accuracy. Figure 76 and Figure 77, taking discharge 
temperature as an example, show a comparison of measured and predicted temperature in the 
scatter and series style, respectively. Those both show a close distribution between predicted 
values by the fault-free model and the real measured ones. 
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Figure 74. Temperature distribution in the heat pump system 

 

Figure 75. Heat pump feature temperature 

 

Figure 76. Accuracy performance of different-order multivariable polynomial regression models for all 
features with field test dataset 



IoT-Based Comfort Control and Fault Diagnostics System for Energy-Efficient Homes 

112 

 

Figure 77. Scatter comparison of measured and predicted discharge temperature  

 

Figure 78. Series comparison of measured and predicted discharge temperature  

7.2.2.2 Comparative Analysis and Hybrid FDD Approach Demonstration 
The FDD method that is conducted is a hybrid rule-based approach, which is described in 
Section 4. Because the objective is to diagnose a single fault, an additional rule is implemented:  

• If a refrigerant fault is diagnosed, then air-side fault diagnosis is skipped. 

• If a refrigerant fault is not filtered, the result for the air-side fault is displayed. 

The n-class evaluation matrix of diagnosis classification results is shown in Figure 78. Diagnosis 
for condenser fouling (85% and 70% of the original airflow) has the highest accuracy with 
100%, followed by undercharge (80% and 60% of the original charge) with an accuracy of 96%. 
The lowest diagnosis accuracy (58%) exists in the evaporator fouling case (85% and 70% of the 
original airflow). This fault is easily misdiagnosed as fault free. The reason behind this lower 
diagnosis accuracy is that feature temperatures in the evaporator fouling fault scenario 
sometimes overlap with temperature readings of the normal scenario under the same outdoor 
temperature (see Figure 79). This overlapping of temperatures makes it more challenging to 
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accurately diagnose the fault. Overall, the diagnosis accuracy is 90.18%, counting all cases 
(including fault-free ones). It should be noted that even though the accuracy of evaporator 
fouling diagnosis is not high, in practice, the malfunction alarm will be correct with the highest 
probability from the accumulative diagnosis results during a period. 

 

Figure 79. Diagnosis matrix for the FDD-VCC 

 

  

Figure 80. Temperature plot for evaporator inlet air temperature (Teai-Te) and suction line superheat (Tsh)  

Tod = outdoor dry-bulb temperature; NF = no fault; EF = evaporator fault 

Besides, according to the confusion matrix for fault detection shown in Figure 78, the calculated 
values are listed in Table 32. It shows all metrics are higher than 90%. Especially, the detection 
accuracy that the developed hybrid FDD method obtains is 96.4%. 
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Table 32. Confusion Matrix for Fault Detection 

Metric Value 

Sensitivity 93.5% 

Specificity 100.0% 

Precision 100.0% 

Negative Predictive Value 92.6% 

Accuracy 96.4% 

F1-score 96.6% 

 

7.2.3 MPC-Informed Rule-Based Control 
7.2.3.1 Adaptive to the Occupancy 
Figure 80 presents an energy comparison of heat pumps installed in Lab Home A and Lab Home 
B under occupancy adaption scenario 1. Lab Home A is the test home, while Lab Home B is the 
baseline home. It shows that due to a setback control strategy that adapts to the occupancy 
schedule, more than 14% energy saving was achieved, which meets the requirement that HVAC 
energy savings should be greater than 10%. 

 
Figure 81. Energy consumption in Lab Home A and Lab Home B under occupancy adaption scenario 1 

7.2.3.2 Adaptive to the Fault 
Figure 81 shows an example day (Sept. 18, 2022) of the unmet hours comparison between Lab 
Home A and Lab Home B. In Lab Home B (baseline), the thermostat setpoint is constant at 76℉, 
while the precooling control strategy is implemented in Lab Home A (test home) with MPC-
informed rules. It can be seen that with the adaptive control strategy in Lab Home A, all unmet 
hours (0.58°F-hr) are eliminated, compared to the baseline of Lab Home B. Figure 82 presents 
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unmet hours comparison of Lab Home A and B during the whole testing period. With precooling 
strategy, unmet hours could be decreased from 2.05°F-hr (Lab Home B) to 0.22°F-hr (Lab Home 
A). This benefit (difference between the control with/without precooling) can increase with the rise 
of outdoor temperature. 

 

 
Figure 82. Unmet hours comparison between Lab Home A and Lab Home B 

 

 
Figure 83. Unmet hours comparison of Lab Home A and B during the whole testing period 

 
7.2.4 Data Predictive Control 
The online DPC framework was executed from Aug. 23 at 8 a.m. local time (at the PNNL 
facility) until Aug. 29 at 8 a.m. local time. Figure 83 shows a timeline of the testing period with 
points of interest denoted. 
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Figure 84. Online DPC testing timeline 

 
For the first 48 hours of the testing, there were several communication errors (DU virtual 
machine crash, time zone mismatch, etc.) that resulted in the control framework quitting 
unexpectedly. The data during the communication errors was discarded from analysis. After 
August 25th at 6:00 AM, the DPC control framework was executed uninterrupted until August 
29th at 6:00 AM, when the PNNL facility experienced a power outage. 

At three points during the last three days of the testing period, the HVAC system accidentally 
entered heating mode due to an error present in the DPC control framework. The data from these 
periods were also discarded from analysis. 

The DPC framework controlled the ecobee thermostat cooling setpoint remotely from the Drexel 
University  campus. Figure 84 shows a plot of the setpoints for both Lab Home B (baseline, for 
reference), and Lab Home A (controlled by DPC). The plot also shows the HVAC energy for 
each Lab Home and the occupancy for Lab Home A. The insights from this plot are summarized 
in Table 33. The DPC strategy resulted in a 21% reduction in HVAC system power usage. It is 
believed that this reduction would be greater had the communication errors and heating mode 
issues been avoided. However, as can be seen from the plot in Figure 84, there is a high zone 
temperature in the evening hours, immediately after the lab home becomes occupied. These 
temperatures break the comfort constraints and result in 24 out of the 57 occupied hours (some 
occupied hours were removed due to erroneous data) being unmet hours for occupant comfort. 
Thus only 58% of the occupied time was met the occupant comfort criteria. As discussed in 
detail below, there was a discrepancy between the ecobee thermostat measurement and the 
iComfort sensor thermostat measurement at the same location. The zone temperature forecasting 
model (discussed previously) used in the DPC strategy used the iComfort sensor zone 
temperature measurement in its predictions as part of the supervisory control. Due to the 2°F 
difference present in the ecobee thermostat measurement used for local control, the zone 
temperature was always higher than the DPC strategy’s forecast. This resulted in loss of 
efficiency of the strategy and contributed to the unmet hours for occupant comfort. 
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Figure 85. Drexel University  online DPC testing period—thermostat setpoint and power  

 

Table 33. Drexel University  Online DPC Testing Period—Percentage Power Saved 

Period HVAC System Power Savings [%] 

Whole period (8/23–8/29) 10 

Whole period (communication errors removed) 21 

8/23* 18 

8/24* 41 

8/25* 15 

8/26* 13 

8/27* 7 

8/28* 7 

8/29** N/A 

* With communication errors removed 
** No data due to heating mode issue/facility power outage 
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7.3 Summary 
This section demonstrates the stability of iComfort sensors and cloud server in an established lab 
testing bed, as well as the effectiveness and efficiency of developed FDD methods and adaptive 
control strategies. Two identical Lab Homes were used for the field testing. Among them, Lab 
Home A serves as the test home, while Lab Home B is the baseline home. 

First, most of the sensors worked well during the experiment and streamed measurements to the 
cloud every minute. The 16 iComfort sensors collected and pushed 1,413,072 sets of temperature 
and humidity data (and airflow data from four of them). The cloud database’s API served more 
than 5,198,000 query requests from the detection and control algorithms. The cloud database was 
working at 100% availability and was completely error-free during the experiment. 

Secondly, for the FDD strategy demonstration, the accuracy of FDD for the heat pump system 
was 90.18%, counting all cases (including fault-free ones), with zero false alarms. The detection 
accuracy is 96.4%. Both of these two metrics met the required value of 80%. 

Furthermore, for the energy saving from the home temperature setpoint control, 14% energy 
saving was obtained by occupancy-based setback strategies, or 10% was achieved by DPC. Both 
of them demonstrate ≥10% energy saving required. In terms of thermal comfort improvement, 
unmet hours could be decreased from 2.05℉-hr (Lab Home B) to 0.22℉-hr (Lab Home A), 
which will help improve residents’ thermal comfort under the malfunction of HVAC systems or 
in a heat wave. 

The uncertainty analysis for the lab testing can be found in Appendix E.8. 
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8. Economic Analysis 
8.1 Introduction 
Commercial and residential buildings together comprise about 40% of primary energy 
consumption in the United States. While building automation systems intended to increase 
energy efficiency, lower operating costs, and improve indoor air quality have widely been 
adopted in the commercial sector, similar integrated systems are rarely seen in households. 
However, according to EIA’s Residential Energy Consumption Survey (RECS), the residential 
sector accounts for 55% of the energy used in U.S. buildings (EIA 2018a). Further, 51% of 
household annual average energy consumption is restricted to space heating and cooling (EIA 
2018b). This energy usage is often exacerbated due to undetected faults or inefficiently 
designed/installed HVAC systems. Previous studies have shown that households often consume 
30% more energy annually than needed due to HVAC installation, commissioning, and 
performance issues (Metzger et al. 2017). In addition, most residential buildings do not have any 
indoor environment monitoring systems other than a single thermostat, making it difficult for 
occupants to operate their households with optimized comfort and energy usage (EERE). 

As described, the primary goal of this project is to develop and demonstrate a scalable and low-
cost IoT-based comfort control and automated fault diagnostics system for energy-efficient homes. 
The research integrates low-cost sensors, IoT-enabled devices, data analytics, and advanced 
controls to produce a novel residential occupant comfort and efficiency control system which can 
also automatically diagnose faults for HVAC systems. This project aims to fill the current market 
gap in the residential sector of products by providing integrated comfort control that considers the 
real-time performance of residential HVAC systems and occupants’ thermal comfort. 

The economic analysis in this section is intended to describe the value provided by the developed 
product and discuss current and future market opportunities, barriers, and applicable standards. 
The markets for sensors, AFDD systems, and smart home energy management systems are 
evaluated. In addition, some technical, economic, and other considerations are discussed in 
detail. 

The primary audience for this section includes developers of the above-mentioned devices who 
could use this information to guide their innovations and marketing strategies. The secondary 
audience are homeowners who seek an overview of the residential sensors, AFDD products, and 
smart home management platforms currently available in the market. Research/consultancy 
firms, organizations working on building energy management, and professionals in the 
residential energy sector can also glean relevant insights. 

8.2 Market Opportunity 
The target market for this research is residential buildings with a focus on HVAC equipment and 
system and associated controls. The main objective of living environment conditioning for 
residents is to satisfy their well-being and work efficiency requirements, which became more 
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significantly essential when remote work became prevalent in 2020 (Mehta 2021). In the United 
States, 108.9 million out of 123.5 million housing units had installed air conditioning (AC) 
equipment as of 2020 (EIA 2020a). This number was 94 million of 113.6 million in 2009 (EIA 
2009) and 82.9 million of 100.4 million in 2001 (EIA 2001). In addition, buildings consume 
around 40% of total energy (with residences accounting for 22% and commercial buildings 
consuming 18%) (EIA 2008) and are responsible for 35% of carbon emissions (EIA 2020b). 
Among them, almost half is consumed by HVAC (L. Wang and Hong 2013). In terms of home 
energy management systems, the smart thermostats global market is growing by 31% annually 
through 2024 (Yahoo Finance). The smart thermostat market is projected to reach $6.2 billion by 
2028 with a 17.5% market share (see Figure 85) (Prnewswire). Reducing building HVAC energy 
consumption, especially in the residential sector, has a significant potential to contribute to the 
2030 U.S. greenhouse gas pollution reduction target (The White House 2021). 

 

Figure 86. U.S. smart thermostat market size trend (Prnewswire) 

Currently, the HVAC system sales for the residential market are a single distribution channel: 
from the manufacturers who design and build the HVAC equipment, to the distributors who sell it 
and the HVAC contractors, then to the homeowners who hire the HVAC contractors to install. 
HVAC controls (e.g., thermostats) are typically installed concurrently with the HVAC systems. 
The disconnection between the HVAC equipment and control manufacturers has left the market 
disjointed. Therefore, homeowners have alternatives for the optimized control system in their 
homes, other than the default systems that come with their HVAC units. Recent development and 
adoption of smart home technologies, such as IoT thermostats and IoT vents, demonstrate the 
strong desire for homeowners to adopt straightforward and cost-effective technologies to 
improve their comfort and life quality. 

Building mechanical systems are inherently subject to gradual degradation and capacity decline 
over time. Typical operational faults may arise from improper installation, equipment 
degradation, sensor offset, or control logic problems (Yanfei Li and O’Neill 2018). Soft faults, 
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such as heat exchanger fouling, or a slow leakage through ductwork, are more difficult to detect 
and diagnose compared to hard failures (Breuker and Braun 1998a). Although some of these 
faults do not occur severely, they could lead to premature failure of the HVAC components, 
dissatisfied thermal comfort, or unnecessary energy cost. Based on a 2017 PNNL report 
(Metzger, Goyal, and Baechler 2017), if 60% of homes in the U.S. were wasting 30% of their 
HVAC energy on performance issues that could be fixed with better HVAC control, about 146 
billion kWh, or 0.5 quads, could be saved. Therefore, FDD research applied to the air-cooled 
VCC system is attractive because this kind of system is widely used in most residential buildings 
and half of the commercial buildings in the U.S., such as rooftop units, heat pumps, etc. (Hu and 
Yuill 2021). There currently is no technology that is able to provide cost-effective AFDD and 
adaptive controls for maximized energy efficiency and occupant thermal comfort in residential 
homes.  

On the other hand, frequent maintenance or replacement for building HVAC systems is not 
practical. Degradation easily results in difficulty in meeting the required thermal environment, 
especially amid a heat wave (Zuo et al. 2015). Overheating is harmful to human health and 
productivity, and can lead to heat-related illnesses, like heat stroke, heat cramps, or fainting 
(Howe and Boden 2007). This concern is further amplified by the impacts of climate change, 
which accelerates the frequency of extreme weather events and thus has been a hot topic in 
recent years (Simon Brown 2020). 

To deal with severe heat wave conditions, several coordinated responses can be adopted: 

1) Replace HVAC systems with new ones with a higher capacity 

2) Retrofit the house (e.g., add envelope insulation or replace the windows) 

3) Purchase thermal storage (e.g., an ice tank) to supplement the cooling ability of the original 
HVAC system to combat heat waves. 

All these measures require additional initial investments, which are usually not feasible for 
ordinary families. An alternative method to the above steps is precooling, which is a control 
strategy that precools the building preceding a given period to enhance the cooling effect by only 
utilizing the thermal mass of building envelopes and home furniture rather than extra 
equipment/devices. As long as the programmable thermostat or remote thermostat is installed in 
the house, precooling can be applied to alleviate the effect of a heat wave to some extent. This is 
what is required as a flexible supplementary measure for air conditioning amid a heat wave period. 

Considering the limited computation ability and the requirement of higher control quality, the 
MPC-informed rule-based control strategy is cost-effective to be applied in residential 
thermostats in the form of “if-then.” It conducts the MPC offline in one hub, likely on a large 
scale, and then extracts several rules from its operation results (May-Ostendorp 2012).  
Consequently, these rules can be easily applied in ordinary houses. The goal is to select a 
minimum set of inputs, feed them to the rule-based controls and maintain the same or close 
levels of thermal comfort and energy consumption with the MPC simultaneously. Compared to 
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merely expert knowledge-involved rules, MPC-informed rules are more optimal and automatic 
by deriving the merits of MPC operation. At the same time, it avoids the online execution of 
computationally expensive optimization, thus alleviating the computation load in building 
HVAC controllers. 

8.2.1 Current Market 
There is already a sizeable market for the smart home energy management system, including 
sensors, AFDD, and indoor climate control. In this subsection, the smart home energy 
management system market is introduced, while details regarding sensor market and AFDD 
market can be found in Appendix F.4 and F.5. 

Smart Home Energy Management Systems 

The United States is currently the leader in the deployment of home energy management systems 
(Y. Liu et al. 2016). Key technology companies in the smart home energy management market 
include Aclara, Nest Labs, General Electric Company, Logitech, Honeywell, Trilliant, and C3 
Energy (Market Research Future). 

Some of the open-source home energy management systems currently available include Building 
Energy Management Open-source Software (BEMOSS), WattDepot, Home Assistant, Honda’s 
Smart Home, Neurio Home Energy Monitor, Freedomotic, and Power Matcher Suit (Zandi et al. 
2018). While these tools are inexpensive due to their non-proprietary nature and can be used by 
different vendors, they can be difficult and time-intensive for non-technical users to deploy 
(Zandi et al. 2018). Google Home, Apple Homekit, Samsung Smartthings Hub, DreamWatts, and 
Siemen’s Synco are some proprietary home energy management systems currently available in 
the market1 (Zandi et al. 2018; Zafar et al. 2020). Proprietary home energy management systems 
are generally easy to deploy and have user-friendly interfaces. However, they can be expensive 
and require extensive installation by expert contractors (Zandi et al. 2018). 

Advances in cloud computing, data analytics, and IoT-enabled devices will drive the growth of 
this market in the next few years. The communication technologies and software platforms of 
smart home energy management systems should be interoperable and compatible with appliances 
from different vendors (Y. Liu et al. 2016). The information collected by the smart home energy 
management system must be encrypted with proper cybersecurity measures to maintain customer 
privacy and protection (Zandi et al. 2018). Energy management in different homes in a 
community can be coordinated for increased demand response potential and to avoid rebound 
peaks. 

 
 

1 Note that throughout this report, we include several different company names. Building America, the Department 
of Energy, and the authors of this report do not endorse any specific company or product. These are included only as 
examples of currently available technology.  
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Very few people currently live in homes with smart energy controls, and most homeowners are 
unaware of the smart home energy management system products currently available on the 
market. While significant energy savings and cost reduction potential using smart home energy 
management systems have been demonstrated in some articles (Pang et al. 2021; Aliero et al. 
2021; H. Zhang et al. 2020), these products should be marketed widely to the non-technical 
community and particularly to homeowners, who are the key stakeholders in this spectrum. 

As more electric utilities start offering time-varying electricity prices like time-of-use rates or 
demand charges, homeowners might be motivated to invest in these technologies to save money 
without having to micromanage the operation and scheduling of multiple devices. 

Several utility-led pilot studies and academic simulation-based literature have demonstrated that 
smart thermostats can yield significant HVAC energy savings in the residential sector (Pang et 
al. 2021). Smart thermostats had an approximate adoption rate of 7% in 2018 (Koupaei et al. 
2020). Customer adoption of smart thermostats can further be increased by promoting awareness 
and utility offered rebates. Several utilities like Southern California Edison, Austin Energy, 
Pacific Gas & Electric, Georgia Power, and Baltimore Gas & Electric already offer rebates to 
customers investing in smart thermostats (some of these utilities require the customers to opt for 
time-varying pricing plans or request control of their thermostats during peak demand events to 
avail the rebates) (PGE ; Austin Energy). More utilities can follow in their footsteps to increase 
energy efficiency and cost savings in the residential sector. 

Potential adopters of the developed IoT-based comfort control and fault diagnostics system are 
residential heat pump/air-conditioner manufacturers, residential service companies, smart home 
automation companies, and utility companies. 

Table 34 describes prevailing smart thermostats on the market. Their features can be categorized 
into several groups: 

1) Energy saving strategy: Provide temperature control during the time in need with 
multiple approaches, like a setback when residents are away, or turning off when the 
window/door is open. 

2) Thermal comfort improvement: Precool/preheat the home before occupants arrive with 
the geofencing technique. 

3) Alleviate occupant operation: Learn occupancy schedule/thermal preference automatically. 
4) Integrated with demand response to the grid: Marginally adjust the indoor temperature 

around the community grid peak. 
5) Carbon care: Help consumers conduct carbon trade. 
6) Fault alert: Mostly report abnormal indoor temperature and remind filter replacement. 
7) Energy report and saving advice: Help consumers understand the energy performance of the 

house, and provide advices on energy savings opportunities. 
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Table 34. Specification of Commercial Thermostats in the Market 
 

Product Name Brand Price Annual 
Energy Cost 

Saving 

Saving 
Advice 

Energy 
Report 

Control 
From 

Anywhere 

Away 
Setback 

Geofencing Door/ 
Window 

Open 

Schedule 
Learning 

Amazon Smart Thermostat Amazon $80 Average of $50 N N Y Y N N N 

AccuLink Platinum 850 American Standard Not 
specify Not specify N N Y N N N N 

Cor TP-WEM01 Smart 
Thermostat Carrier $270 Not specify N N Y N N N N 

Infinity Carrier Not 
specify ~23% N N Y Y N N Y 

ecobee3 lite ecobee $150 ~23% Y Y Y Y Y Y Y 
ecobee Smart Thermostat 

Enhanced ecobee $190 ~26% Y Y Y Y Y Y Y 

ecobee Smart Thermostat 
With Voice Control ecobee $220 ~26% Y Y Y Y Y Y Y 

ecobee Smart Thermostat 
Premium ecobee $250 ~26% Y Y Y Y Y Y Y 

Sensi Smart Thermostat Emerson $130 23% N Y Y N Y N N 
CYNC Smart Thermostat GE $120 Not specify N Y Y Y N N N 
Google Nest Thermostat Google Nest $130 Not specify Y N Y Y N N N 

Google Nest Learning 
Thermostat Google Nest $249 Heating 10-12%, 

Cooling 15% Y Y Y Y Y N Y 

T9 Honeywell $180 Not specify N Y Y Y Y N N 
T10 PRO Honeywell $230 Not specify N Y Y Y Y N N 

MoesGo Programmable 
WiFi Smart Thermostat MoesGo $150 Over 23% N N Y N N Y N 

CT50 WiFi Smart 
Thermostat Radio $65 Not specify N Y Y N Y N N 

Sensibo Sky Sensibo $159 ~40% N N Y Y Y N N 
Sensibo Air Sensibo $199 ~40% N N Y Y Y N N 

Sensibo Air PRO Sensibo $279 ~40% N N Y Y Y N N 
ComfortLink® II XL850 

Thermostat Trane $375 Not specify N N Y N N N N 

XL824 Thermostat Trane $375 Not specify N N Y N N N N 
ComfortLink® II XL1050 

Thermostat Trane $675 Not specify N N Y N N N N 

Wyze Programmable 
Smart WiFi Thermostat Wyze $74 Not specify Y Y Y Y Y N N 

Zen Thermostat Zen $199 Not specify N N Y N N N N 
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Product Name Brand Thermal 
preference 
learning 

 Specific 
 room   

control 

Humidity 
control 

Community 
peak 

TOU Shift usage 
to cleaner 
grid time 

Carbon 
trade 

Fault 
alerts* 

Amazon Smart 
Thermostat Amazon N N N N N N N Y 

AccuLink Platinum 850 American 
Standard N N Y N N N N Y (2) 

Cor TP-WEM01 Smart 
Thermostat Carrier N N Y N N N N N 

Infinity Carrier N Y Y N N N N Y (1, 2) 
ecobee3 lite ecobee N Y Y Y Y Y N N 

ecobee Smart Thermostat 
Enhanced ecobee N Y Y Y Y Y N N 

ecobee Smart Thermostat 
With Voice Control ecobee N Y Y Y Y Y N N 

ecobee Smart Thermostat 
Premium ecobee N Y Y Y Y Y N N 

Sensi Smart Thermostat Emerson N N N N N N N Y (2, 3, 4) 
CYNC Smart Thermostat GE N N N N N N N N 
Google Nest Thermostat Google Nest N Y N N N N N Y (1) 

Google Nest Learning 
Thermostat Google Nest Y Y N Y Y Y Y Y (1) 

T9 Honeywell N Y N Y N N N Y (1, 4) 
T10 PRO Honeywell N Y Y Y N N N Y (1, 4) 

MoesGo Programmable 
WiFi Smart Thermostat MoesGo N Y N N N N N N 

CT50 WiFi Smart 
Thermostat Radio N N N N N N N Y (1, 4) 

Sensibo Sky Sensibo N N N N N N N Y (4) 
Sensibo Air Sensibo N N N N N N N Y (4) 

Sensibo Air PRO Sensibo N N N N N N N Y (4) 
ComfortLink II XL850 

Thermostat Trane N N N N N N N Y 

XL824 Thermostat Trane N N N N N N N Y 
ComfortLink II XL1050 

Thermostat Trane N N N N N N N Y 

Wyze Programmable 
Smart WiFi Thermostat Wyze N Y N N N   N 

Zen Thermostat Zen N N N N N N N N 
*Fault number: 1-abnormal indoor temperature; 2-system needs maintenance; 3-abnormal efficiency; 4-filter replacement 
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8.2.2 This Product and Service 
Compared with currently existing commercial products, the outcome completed in this project 
can be more cost-effective and multiple-functional. The team developed an IoT-based comfort 
and efficiency control system that can provide AFDD for central air conditioning, heat pumps, 
and air ducts, and conducts fault-adaptive controls in the residential sector. The schematic of the 
developed system is depicted in Figure 86. The product has three main components that are unique 
from the existing commercial products: 

1) An inexpensive wireless distributed sensor system (with low-cost temperature, airflow, and 
humidity sensors) and a Raspberry Pi-based local hub that interfaces with the cloud and 
other IoT-enabled devices (e.g., thermostats). 

2) AFDD for HVAC systems that utilizes real-time information from the sensor system. 

3) A smart home energy management system to optimize energy efficiency and occupant 
comfort in buildings using advanced controls. The smart home energy management system 
includes a whole-house energy forecasting model, an indoor thermal environment model, 
and an occupant thermal comfort forecasting model. 

 

 
Figure 87. Structure of developed smart home energy management system 
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An interface demo for indoor climate monitoring in this home energy management systems is 
also developed. A screenshot example is shown in Figure 87, while the screenshot of all the 
interface is presented in Appendix F: Market analysis. This system can monitor real-time data 
from different locations in one house. The current indoor climate status and the historical data can 
be easily accessed. 

 

Figure 88. Interface demo for indoor climate monitoring in this home energy management systems 

8.3 Life Cycle Cost Analysis 
8.3.1 Unit Cost of Developed Devices and Services 
The cost for the smart home energy management system completed in this project consists of 
three parts: the wireless sensors, the local hub, and the cloud service. Two sensors 
(temperature/humidity sensor and temperature/humidity/airflow sensor) are developed in this 
project. As listed in Table 35, the hardware cost for those two is $14.10 and $55.80, respectively. 
The assembly cost is approximately $17 for one sensor, which was quoted in the quantity of 200. 
The local hub that communicates with the wireless sensors, collects the sensor data, and uploads 
the distributed measurement results to the cloud, is implemented using Raspberry Pi. The local 
hub costs $76.25 on average. Amazon Web Service (AWS) serves as the Cloud system to collect, 
store, and analyze data submitted from hubs and to provide a user interface through a website. Its 
cost depends on the sensor numbers (i.e., the number of data streams) and the frequency of 
receiving and storing data. According to our application, the cost is $0.13 per month for one 
wireless sensor with a data streaming timestep of 5 minutes. 

  



IoT-Based Comfort Control and Fault Diagnostics System for Energy-Efficient Homes 

128  

Table 35. Unit Cost of the Hardware and Software for iComfort Smart Home Control System 

Category Product Name Cost 

Wireless Sensor 

Temperature/Humidity 
Sensor 

$14.10 

Temperature/Humidity
/Airflow Sensor 

$55.80 

Assembly fee $17.00 

Local Hub Raspberry Pi $76.25 

Cloud 
Amazon Web Services 
(monthly per sensor) 

$0.13 

 

8.3.2 Cost-Effectiveness Analysis 
This study conducts a cost-effectiveness analysis following the working procedures in NIST 
Handbook 135 (Kneifel and Webb 2020). A diagram is presented in Figure 88 to illustrate the 
structure. The cost-effectiveness analysis framework includes three major parts: definition of life 
cycle cost analysis (LCCA) parameters, definition of key performance indicators, and collection 
of supporting data.  

 

Figure 89. Structure of the cost-effectiveness analysis (Pang 2022) 

8.3.3 Nationwide Energy Simulation Suite 
The representative cities in the DOE residential prototype building models and top 30 population 
cities result in 41 cities, which are denoted in Figure 89. The climate zone that has the highest 
number of selected cities is 4A. It includes Baltimore (MD), Charlotte (NC), Cincinnati (OH), 
New York City (NY), Philadelphia (PA), St. Louis (MO), Washington DC (DC).  
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Figure 90. Geographical distribution of 41 selected cities in the US 

MSA stands for metropolitan statistical area 

 

 
Figure 91. Number of selected cities in each climate zone 

8.3.4 Definition of LCCA Parameters 
The present investigation employs the LCCA plan outlined in a report by Hart and Liu (2015), 
which encapsulates the methodology employed by PNNL to appraise the cost-effectiveness of 
modifications in building energy codes. The selected plan primarily draws upon Scenario 2 
(pertaining to private or business ownership) displayed in the report, albeit with necessary 
adjustments to account for the scope of this study. For example, the analysis period is truncated 
from 30 years to 10 years, given the lifespan of sensors, and tax deductions are excluded. The 
LCCA plan adopted in this study is presented in Table 36. 
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Table 36. LCCA plan 

Parameter Symbol Value 
Period of Analysis 𝐿𝐿 10 years 

Energy Price / Varies from city to city based on the BLS data  
Energy Escalation Rate / Based on the NIST Energy Escalation Rate Calculator 

Loan Term 𝑅𝑅𝐿𝐿 10 years (𝐿𝐿 = 𝑅𝑅𝐿𝐿) 
Loan Interest Rate 𝐼𝐼 6.00% 

Nominal Discount Rate 𝐷𝐷𝑛𝑛 6.00% (same as 𝐼𝐼) 
Real Discount Rate 𝐷𝐷𝑟𝑟 4.06% 

Inflation Rate 𝑅𝑅 1.87% annual 
Property Tax Rate / Not considered 

Federal/State Income Tax 
Rate / Not considered 

 

All supporting data that include electricity price, data for computing base-year energy cost 
savings, future energy cost savings, material costs and labor costs are all described in Appendix 
F: Market analysis. 

8.3.5 Key Performance Indicators 
8.3.5.1 Net Savings 
In this study, the net savings (NS) metric is utilized to evaluate the cost savings of HVAC 
controls over the long term, relative to a base case. NS is computed by taking the difference 
between the operational savings derived from an energy efficiency measure and the 
corresponding additional investment, as expressed in Equation (19). To account for the effects of 
discounts over time, the LCCA method is employed, which aggregates all relevant project costs 
over a specified study period. Consequently, all costs and savings are discounted to present 
values (PV) for analysis. PV represents the current value, as of the base date, of a future cash 
payment or receipt, and its calculation is presented in Equation (20), where 𝐴𝐴0 is the base-date 
price, 𝐷𝐷𝑛𝑛 is the nominal discount rate, and 𝑡𝑡 is the number of periods from the base date. The 
nominal discount rate 𝐷𝐷𝑛𝑛 is typically defined as the interest rate that makes an investment 
indifferent between cash amounts received or paid at different points (Fuller et al. 2001). 

𝑁𝑁𝐿𝐿 =  𝑃𝑃𝑃𝑃𝑙𝑙𝑜𝑜𝑒𝑒𝑟𝑟𝑜𝑜𝑜𝑜𝑖𝑖𝑙𝑙𝑛𝑛𝑜𝑜𝑙𝑙 𝑠𝑠𝑜𝑜𝑠𝑠𝑖𝑖𝑛𝑛𝑠𝑠𝑠𝑠 −  𝑃𝑃𝑃𝑃𝑜𝑜𝑑𝑑𝑑𝑑𝑖𝑖𝑜𝑜𝑖𝑖𝑙𝑙𝑛𝑛𝑜𝑜𝑙𝑙 𝑖𝑖𝑛𝑛𝑠𝑠𝑒𝑒𝑠𝑠𝑜𝑜𝑖𝑖𝑒𝑒𝑛𝑛𝑜𝑜  (19) 

𝑃𝑃𝑃𝑃 =  𝐴𝐴0 ∗  
1

(1 + 𝐷𝐷𝑛𝑛)𝑜𝑜
 (20) 

Figure 91 shows energy saving on a yearly basis. Energy savings calculations are derived from 
baselines, utilizing the DOE prototype residential building EnergyPlus models from 41 selected 
cities across the United States. An average of 15% energy saving rate was used for each city in 
this study. Figure 92 shows the net saving under different escalation scenarios. It shows that 
Fairbanks has the highest net saving potential. Different escalation scenarios do not make a 
significant difference. 
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Figure 92. Energy saving and cost saving 

 

Figure 93. Year-based net saving  

8.3.5.2 Payback Period 
Discounted payback period is another metric that is frequently utilized in LCCA. The payback 
period is a measure of the duration required for the cumulative savings from a project to 
recuperate the investment cost and any associated expenses. Typically, two common payback 
period methods are employed in building energy analysis to determine the economic viability of 
a single project. The first method is the simple payback period, which does not factor in the time 
value of money and is generally deemed less precise. The second method is the discounted 
payback period, which takes into account the time value of money by incorporating discounted 
cash flows. In this study, the discounted payback period method is utilized due to its greater 
accuracy. 
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Figure 94 shows the discount payback period for 41 cities (only including escalation scenario 0, 
as there is not much different between different scenarios). Corresponding to net savings result, 
the cities that have a high net saving have a shorter payback period. Most cities can get full 
payback in four years. Eight cities can achieve full payback in one year. Three cities (Los 
Angles, San Diego, and San Francisco) need more than five years to achieve full payback. 

 

Figure 94. Discount payback period  

8.3.6 Parametric Analysis 
As investments are made in the development of available sensors, it is anticipated that the cost of 
these sensors will decline over time. For instance, the Funding Opportunity Announcement of 
the ARPA-E SENSOR program (ARPA-E 2018) has established a target price of $0.08 per 
square foot of construction area for an occupant counting sensor as a benchmark for achieving 
acceptable monetary savings. 

This study recognizes the considerable uncertainty associated with sensor network pricing and 
thus conducts a parametric analysis to examine the impact of sensor prices on the discounted 
payback period of an MPC-informed rule-based control project. Specifically, the cost of a sensor 
unit is varied across a range to assess the sensitivity of the discounted payback period to the price 
fluctuations and to determine at what price level a project can attain an acceptable discounted 
payback period.  

The outcomes of this analysis are presented in Figure 95, where the x- and y-axes correspond to 
the representative city and the ratio of the sensor price to its original value, respectively. The 
cities are arranged in ascending order of cost-effectiveness, from left to right. Furthermore, the 
color of each cell corresponds to the discounted payback period duration. For Fairbanks, it is 
feasible to recover the initial investment within one year, regardless of whether the sensor 
network price is 10% or 200% of the prototype price. In the majority of other cities, it is possible 
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to recoup the costs within five years, even with a higher price compared to the prototype ones. A 
longer payback period is typically associated with warmer climates, such as Los Angeles, San 
Diego, and San Francisco. This correlation primarily arises because baseline energy consumption 
in these locations is lower, a factor that is largely attributed to the predominance of cooling. In 
severely cold locations, such as Boston and New York City, where heating is predominant, 
higher baseline energy consumption is typically observed. However, this relationship does not 
hold true universally. For instance, despite being a warmer climate, Honolulu still yields a 
shorter payback period since the energy price is higher in Honolulu.  

 

Figure 95. Discount payback periods for different sensor prices 
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9. Conclusions 
This report presents a cost-effective and straightforward smart home system that delivers an 
improved occupant-comfort-oriented thermal environment compared to the baseline control.  

We first created a low-cost and distributed wireless sensor system for energy and comfort-
oriented control. To achieve the diagnosis and control goal, scalable algorithms for active 
learning-based models, AFDD, and adaptive controls were developed. Real-time house 
performance monitoring and automated diagnostics leads to fewer faults and avoidance of 
equipment damage. Improved occupant comfort through an adaptive control considers both 
HVAC health status and occupant’s thermal comfort. Improved energy efficiency avoids 
unnecessary energy use and operation cost for homeowners. At the end, all developed algorithms 
were demonstrated in PNNL’s lab testing, followed by an economic analysis. The technology 
details are summarized in Figure 96. 

 
Figure 96. Smart Home Energy Management coupled with FDD for VCC systems and MPC/rule-based 

adaptive control 

For the sensing platform, the wireless sensor modules have high resolution and are capable of 
measuring temperature and relative humidity with a resolution of 0.1°C and 0.1%, respectively. 
The local hub can communicate with the wireless sensors successfully, as well as collect data, 
and upload the measurement results to the cloud. The cloud service is provided by Amazon Web 
Services, and the data handling functions are developed within the AWS, which enables real-
time data processing, storage, downloading, and display. The Temperature-Humidity Sensing 
Platform (THSP) was able to send readings to a hub within at least 100 meters in an open space 
and was able to penetrate at least three walls in an indoor test. Long-term testing showed that the 
system continuously worked for 60 days without human intervention, overcoming at least two 
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power outages and several network disconnections while successfully restoring its normal 
functions. 

For the fault modeling of the residential HVAC system, an expandable fault library was created 
first, which consists of fault taxonomy fault taxonomy that defines each fault and its systematic 
structure, as well as fault modeling elements such as fault attributes (direction types, bounds, and 
prevalence) and the corresponding objects and parameters in EnergyPlus. Fault modeling was 
implemented using EnergyPlus to generate 3,000 faulty models, representing 3000 fault 
scenarios with limited faults. These models can be used to simulate operational faults in 
residential HVAC systems and conduct a fault-relative investigation, including understanding the 
impact of faults, guiding and testing AFDD strategies, and assisting with adaptive controls. 

For the learning models, a framework was developed for creating learning-based models to 
forecast HVAC energy consumption, zone temperature, and occupant thermal comfort. The 
framework was tested on a virtual testbed and then applied to real data from the PNNL lab test 
homes. The models were developed using machine learning techniques such as MARS and 
kSVM, and a systematic feature selection process was used to select the most relevant features 
for the models. The evaluation results showed that the developed models performed accurately 
according to desired performance metrics. Specifically, the HVAC energy consumption and zone 
temperature forecasting models achieved a normalized mean absolute error of <15%, while the 
occupant thermal comfort forecasting model achieved less than 10% misjudgment. 

For the fault detection and diagnosis in the residential HVAC system, two cases are investigated: 
duct leakage and vapor compression cycle (VCC) system. The duct leakage case uses a robust 
multivariate temporal (RMT) based variate selection method to identify relevant variables for 
forecasting the target variable, and a convolution neural network (CNN)-based model to forecast 
the target variable during faulty periods. The VCC case investigates three existing rule-based 
AFDD methods and proposes a hybrid approach that integrates two of these methods to achieve 
higher diagnosis accuracy for different types of faults. The evaluation of the developed strategy 
for duct leakage detection showed that the fault can be flagged accurately at 100% at the 
beginning and end period of duct leakages when using the attic mean zone temperature as the 
target variate. The hybrid FDD approach achieved an overall diagnosis accuracy of 83.02% 
when counting only fault cases and 90.18% when counting all cases, including fault-free ones. 
The two-class confusion matrix for detection showed that all metrics were higher than 90%, with 
a detection accuracy of 96.4%. 

For the comfort-oriented adaptive control, it is designed mainly for the condition where the 
degradation of residential HVAC systems is developed. To leverage the benefits of optimized 
control strategies from MPC and at the same time ensure their practical application in ordinary 
households, MPC-informed rule extraction is employed. This technique conducts the MPC 
offline in one hub, probably on a large scale, and then extracts several rules from its operation 
results. Consequently, these rules can be applied easily in ordinary houses. This framework is 
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implemented in the prototype building and generates several control rules in the form of a 
decision tree. It demonstrates that thermal comfort can be improved with MPC-informed rules 
generated by the simulation results: During the same run period of testing and training, unmet 
hours decrease from 10°C-hr to 5.1°C-hr during July 14 to Aug. 2, and from 0.6°C-hr to 0 during 
Aug. 13 to 22; when applied to a different period, the MPC-informed rule control generated from 
one period can mitigate the unmet hours from 9.2°C-hr to 5.2°C-hr, with a more than 60% 
decrease rate. Furthermore, the online computation time for MPC-informed RBC is significantly 
faster than the original MPC. On average, MPC consumes 870 minutes for a 10-day running 
period, while MPC-informed RBC finishes in 0.2 minutes on average with the same computer 
configuration, which is 4,350 times faster. This indicates that the developed approach is not only 
effective in improving thermal comfort but also efficient in terms of computational time. 

For the field testing in the PNNL Lab Homes, the sensors were found to work stably and 
streamed measurements to the cloud every minute. The cloud database had 100% availability and 
was error-free during the experiment. The project also demonstrated FDD methods for the heat 
pump system, achieving an accuracy of 90.18% and a detection accuracy of 96.4%, both meeting 
the required value of 80%. The project also showed that occupancy-based setback strategies and 
DPC can save 14% and 10% of energy, respectively, both demonstrating ≥10% energy savings 
required. In terms of thermal comfort improvement, unmet hours could be decreased from 
2.05℉-hr to 0.22℉-hr, which can improve residents’ thermal comfort under the malfunction of 
HVAC systems or in the heat wave period. 

Future work includes: 

1) For the faulty models, the fault prevalence is assumed to follow some statistical distribution, 
rather than the real survey results. This is because the survey work is the lack of existing 
research data. Once well-organized survey distribution of residential HVAC faults is 
generated, it is easy to replace the assumed distribution with more professional ones. 

2) The impact analysis and fault detection based on the fault library is not conducted as 
comprehensive work. The focus of this study is to develop a fault library for residential 
HVAC systems and to develop the workflow for fault simulation model generation. A more 
comprehensive analysis of residential HVAC faults will be explored in the future.  

3) A hybrid FDD approach for VCC system is only limited to the single faults. So future work 
will involve investigation of multiple faults. The corresponding data are in preparation. 

4) For the duct leakage FDD, the detection accuracy needs to be improved. In order to learn the 
adaptive threshold to classify the instantaneous predictive error output from the forecasting 
model, a 1D SVM classifier is being tested. Since the output data from the forecasting model 
is imbalanced and contains a greater number of fault-free samples than faulty samples, the 
fault classifier model is found to be biased. Hence, a data augmentation technique referred to 
as Synthetic Minority Oversampling Technique (SMOTE) can be used to address this issue. 
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The output samples from SMOTE can then be used to train the 1D SVM fault classifier. We 
plan to integrate the fault classifier model into our developed framework in the future. 
Alternatively, a statistical difference approach could also be implemented to differentiate the 
fault-free and faulty period.  

5) MPC-informed rules can be enhanced by deploying MPC and extracting rules in a wider 
range of climate zones. It will help improve thermal comfort in different locations. Benefits 
from precooling only using building thermal mass are limited. Other types of active thermal 
storage systems could be explored in the future. 

6) The control design and testing were only conducted in the cooling season. It would be 
valuable to explore the performance in the heating season and shoulder season. 
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Appendix A: IoT-Based Sensor Network 
A.1 Example Data for the Sensor Network 

 
Figure 97. Example data in the sensor information table 

 
Figure 98. Example data in the sensor data table 
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Figure 99. Sample data from the cloud database 

 

 

Figure 100. Sensor measurements received by the hub 

 

 
Figure 101. The airflow reading on the hub display 
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Figure 102. Temperature and humidity charts of 30 days’ readings for living room, kitchen, and study room 

A.2 Processing and Communication Module 
The processing and communication module includes a LoRa transceiver (SX1262) and a 
microcontroller (MCU, STM32L412C8U6) to provide the basic LoRa communication functions 
and essential data acquisition and processing capability. The module measures 30mm × 22mm × 
2mm and has 19 half-hole soldering pads (8 on the left side and 11 on the right side) for adding 
functional modules such as the temperature and humidity sensing module and the antenna.  
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Figure 103 shows a fully assembled processing and communication module. It is as small as 
about the size of a U.S. quarter coin. If necessary, the size can be further reduced. 

 
Figure 103. Processing and communication module 

The SX1261 LoRa transceiver is connected to the STM32 MCU by the SPI bus. The module 
provides multiple interfaces for inter-chip communications, including GPIO, SPI, IIC, and 
UART. Figure 104 shows the internal connection and available interfaces of a processing and 
communication module. 

 
Figure 104. Components and interfaces in the processing and communication module 

The SX1261 LoRa transceiver is a low-power, long-range sub-GHz radio transceiver for long-
range wireless applications. The transceiver is designed for a long battery life that consumes 
down to 4.2 mA current in an active receive mode. The chip also integrates a DC-DC converter 
and low-dropout regulator that allows the chip to be powered by a wide range of input voltage 
(1.8V ~ 3.7V). With the integrated power amplifier, the SX1261 can transmit up to +15 dBm. 
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Appendix B: Basics for Residential Building Systems 
B.1 Basics for Residential Building Systems 
Residential buildings are classified physically by the types of foundation. There are three typical 
types: slab-on-grade, basement, and crawl space. A rough drawing compares these three types, as 
shown in Figure 105. 

 

Figure 105. Three types of residential building foundations 

Compared to the HVAC system in commercial buildings, a residential HVAC unit’s operation is 
subjected to a similar law of physics, but it is simpler because it only needs to cool or heat a 
much smaller space (Scott Brown et al. 2013). Figure 106 summarizes all components in the 
residential HVAC system and displays the energy flow from the energy source to the end user, 
through heating/cooling units and medium (Matulka 2013; Brumbaugh 2012). Red lines and red 
boxes represent the heating process, and the blue represents the cooling process.  

Table 37 and Table 38 show the relationships between energy source, heating/cooling source, 
and medium commonly used by residential buildings. In most residential buildings, heating is 
done by a gas furnace or a boiler. The HVAC system in residential buildings also includes a pipe 
system for the fluid transferring the heat for the hydronic system or the ductwork for the forced 
air system. Cooling (i.e., air conditioning, or AC) is the reverse of heating. Currently, most 
residential air conditioners and heat pumps provide heating and/or cooling through a vapor-
compression cycle. Ventilation in residential buildings can either be forced or natural. Forced 
ventilation systems are most often used to improve indoor air quality and occupant thermal 
comfort. The application of natural ventilation is limited, especially in humid and warm months. 
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Figure 106. Energy flow mechanism of residential heating/cooling systems  

Stars mark the most prevailing combination of HVAC components in the United States (DOE); Red lines and 
red boxes represent the heating process, while the blue ones show the cooling process. 

1) Energy fuels: Only electricity and ground energy can be used for both cooling and heating 
system in general. The rest are usually utilized only for heating the room, as they release the 
heat by burning.  

2) HVAC units: In most residential buildings, heating is done by a gas furnace or a boiler, 
while cooling is completed through a vapor-compression cycle. 

3) Heating/cooling medium: Air/refrigerant is the primary medium for heating and cooling. 
Water and steam sometimes serve as the heat transfer medium by radiation. 

4) Heating/cooling distribution: Forced ventilation systems are most often used to improve 
indoor air quality and comfort, as the application of natural ventilation is limited, especially 
in humid and warm months.  
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Table 37. Energy source used in residential HVAC systems 

System Medium 

Energy Source 

Natural 
Gas Propane Heating 

Oil Electricity Biomass Ground Solar 

Furnace Air √ √ √ √    

Boiler Water/steam √ √ √ √ √   

Air conditioner Refrigerant    √    

Heat pump Refrigerant    √  √  

Active solar 
heating Water/air       √ 

Electric heating     √    

 

Table 38. Distribution and medium used in residential HVAC systems 

System Medium 

HVAC Equipment 

Furnace Heat 
Pump 

Active Solar 
Heating 

Boiler Electric 
Baseboard 

Forced air system Air √     

Steam radiant Steam    √  

Radiant heating 
Refrigerant, 

water, steam, 
electricity 

 √ √ √ √ 

Hot water baseboard 
(Hydronic heat) Water   √ √  

Electric heating Electricity     √ 

 

In this project of fault modeling, we focus our research on two selected groups of HVAC 
systems: heat pumps and vapor-compression air conditioners with furnaces in the slab-on-grade 
residential building, since currently these two combinations are most common and have more 
complicated possible faults in the residential sector (DOE). 
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B.2 Air Loop and Water Loop in the EnergyPlus Model of Residential Prototype 
Building Model  

 
Figure 107. Air loop in the EnergyPlus model of the prototype residential building 

 

 
Figure 108. Heat pump module in the EnergyPlus model of the prototype residential building 
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Figure 109. Water loop in the EnergyPlus model of the prototype residential building 

B.3 Energy Consumption Analysis for a Typical Operation 
Because the heating system is the heat pump, supplemented by the electric resistance, only 
electricity consumption for the heating is reported. The resistive heating coil is a standby 
component to provide additional warmth when the primary heating system falls short of the 
heating demand. When activated, the supplemental resistive heating coil imparts extra heat to the 
air circulated within the building, compensating for the main system’s heating capacity deficit. 
The activation of this supplemental heating coil is generally regulated by the thermostat setpoint. 
If the heat demand exceeds the main system’s supply capacity, the thermostat’s control logic 
triggers the supplemental heating coil. This control logic is based on the difference between the 
thermostat setpoint and the current indoor temperature, as well as the outdoor temperature. 

Figure 110 shows the monthly energy consumption of heating and cooling in this prototype 
residential building in Houston weather conditions. This is a typical energy consumption pattern. 
The peak consumption of cooling is higher than heating because the outdoor temperature 
deviation from the expected limits for indoor temperature based comfort is higher in summer in 
Houston. 
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Figure 110. Heating and cooling energy consumption 
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Appendix C: Fault Modeling for Residential HVAC Systems 
C.1 Examples of the PDF Distribution for Different Fault Types 
The prevalence distribution is calculated based on the relative fault bias of the fault behavior, as 
defined in Equation (21).  

𝑧𝑧 =
𝑥𝑥 − 𝑥𝑥0
𝑥𝑥0

 (21) 

where z is the relative bias, x0 is the nominal value (fault-free) of the model parameter, and x is 
the fault model parameter. 

Fault-by-Lacking 

This type of fault leads to fault-related parameters decreasing with the increased severity. 
Condenser fouling is a typical example. When it occurs, air conditioning or heat pump COP will 
perform less than the COP with the fault-free case. Its occurrence distribution follows the 
Weibull model (Bourguignon, Silva, and Cordeiro 2014). The equation of fault-by-lacking is 
defined in Equations (22) - (25): 

pdf =  −3ez3z2 (22) 

cdf =  1 − ez3  (23) 

z = [ln(1 − cdf)]1/3 (24) 

z ∈ [−1, 0] (25) 

where the probability distribution function (pdf) shows the fault occurrence rate distribution 
corresponding to the specified cumulative distribution function (cdf).  

Fault-by-Excess 

The second type is the fault that results in fault-related parameters increasing compared with the 
fault-free ones. Typical faults include the fan pressure increase due to a dirty air filter. The 
equation of fault-by-excess is defined in Equations (26) - (29): 

pdf =  8e−�
z+0.2
0.5 �

2

(
z + 0.2

0.5
) (26) 

cdf =  1 − e−�
z+0.2
0.5 �

2

 (27) 

z = 0.5[− ln(1 − cdf)]1/2 − 0.2 (28) 

z ∈ [−1, 0] (29) 
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Fault-by-Deviating 

The third fault type is the case that the fault-associated parameters can be both increasing and 
decreasing compared with the fault-free models. Typical faults are the sensor/thermostat offsets. 
The equation of fault-by-excess is defined in Equation (30):  

pdf =
1

√2πσ2
e−

z2
2σ2  (30) 

Fault-by-Uniform 

The fourth type of fault with a uniform PDF curve is relatively rare. One typical example is the 
schedule fault. The equation of fault-by-excess is defined in Equation (31): 

pdf =  
1

b − a
 (31) 

 

An example of the PDF distribution for fault-by-lacking is shown in Figure 111. 

 

Figure 111. An example of fault-by-lacking PDF curve  

(Yanfei Li and O'Neill 2019) 

An example of the PDF distribution for fault-by-excess is shown in Figure 112. 
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Figure 112. An example of fault-by-excess PDF curve  

(Yanfei Li and O'Neill 2019) 

An example of the pdf distribution for fault-by-deviating is shown in Figure 113. 

 
Figure 113. An example of fault-by-deviating PDF curve  

(Yanfei Li and O'Neill 2019) 
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An example of the pdf distribution for fault-by-uniform is shown in Figure 114. 

 

Figure 114. An example of fault-by-uniform PDF curve  

(Yanfei Li and O'Neill 2019) 

C.2 Fault Impact Analysis 
Based on the developed fault library for residential HVAC systems, fault impact analysis is 
conducted with the prototype building model in Houston. Analysis criteria include: 

1) Single faults are injected into the baseline models. 

2) A selected double-faults case is simulated to compare the combination impact and 
individual impact. 

3) All faults are injected into the residential building model simultaneously. 

C.2.1.1 Matrix for Fault Impact Analysis 
Table 39 describes the fault level information for 12 faults in four faulty systems (i.e., heat 
pump, air handler, air loop, thermostat) and includes the fault-free normal condition. Some heat 
pump-related faults, like heat transfer fouling, liquid line restriction, and the presence of non-
condensable gas, are integrated and represented in the symptoms of the heat pump (COP and 
capacity), as they are difficult to be simulated in EnergyPlus.  
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Table 39. Fault Factors and Levels for Residential HVAC Modeling 

 

IDF ID Fault Name Faulty Object in IDF 
Faulty 

Parameter in 
IDF 

Normal 
Value 

Fault 
Mode 
Unit 

Faulty 
Levels 

CC-COP 
Cooling COP 
Degradation 

Coil:Cooling:DX:SingleSp
eed 

Gross Rated 
Cooling COP 

4.07 1 
90%,80%,6

0% 

CC-Cap 
Cooling Capacity 

Degradation 

Gross Rated 
Total Cooling 

Capacity 
 W 

90%,80%,6
0% 

HC-
COP 

Heating 
Efficiency 

Degradation Coil:Heating:DX:SingleSp
eed 

Gross Rated 
Heating COP 

3.69 1 
90%,80%,6

0% 

HC-Cap 
Heating Capacity 

Degradation 

Gross Rated 
Heating 
Capacity 

 W 
90%,80%,6

0% 

HCE-Eff 
Electric Heating 

Efficiency 
Degradation 

Coil:Heating:Electric 

Efficiency 1.00 1 
90%,80%,6

0% 

HCE-
Cap 

Electric Heating 
Capacity 

Degradation 

Nominal 
Capacity 

 W 
90%,80%,6

0% 

Fan-
TEff 

Blade Dirty 

Fan:OnOff 

Fan Total 
Efficiency 

0.50 1 
90%,80%,6

0% 

Fan-
Meff 

Motor Worn-Out 
Motor 

Efficiency 
0.86 1 

90%,80%,6
0% 

Fan-PR Air Filter Dirty Pressure Rise 400.00 Pa 
90%,80%,6

0% 

ADL-
ELR 

Air Duct Leakage 
AirflowNetwork:Distributi
on:Component:Leakage

Ratio 

Effective 
Leakage Ratio 

0.10 1 
90%,80%,6

0% 

Inf-ELA 
Envelope 
Infiltration 

ZoneInfiltration:Effective
LeakageArea 

Schedule 

56.669 
(long 

wall)/42.
502 

(short 
wall) 

cm2 
90%,80%,6

0% 

Therm-
OSP 

Thermostat 
Offset 

FaultModel:ThermostatO
ffset 

Reference 
Thermostat 

Offset 
0.00 

Delta 
C 

-1, -0.5, 0.5, 
1 
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C.2.1.2 Single Fault 
We designed the experiment for single fault analysis using orthogonal arrays of Taguchi methods 
(Pignatiello 1988). Orthogonal design of experiment can avoid the exponential growth of factors 
number resulting from full factorial design, and at the same time, maintain the ability of 
interaction analysis. The 12 factors and four levels (including normal and faulty ones) follow the 
design in Table 39. The orthogonal table of  L64(412) is shown in Table 40, which is adapted from 
Taguchi L64 (type B) Orthogonal Design (Taguchi 1987). Eventually, 65 cases are simulated in 
total, much less than 412 of full factorial design. 

Table 40. Orthogonal Design of Experiment Table L64(412) 

No. of cases 
Factors 

A B C D E F G H I J K L 

1 A1 B1 C1 D1 E1 F1 G1 H1 I1 J1 K1 L1 

2 A1 B1 C1 D1 E1 F2 G2 H2 I2 J2 K2 L2 

3 A1 B1 C1 D1 E1 F3 G3 H3 I3 J3 K3 L3 

4 A1 B1 C1 D1 E1 F4 G4 H4 I4 J4 K4 L4 

5 A1 B2 C2 D2 E2 F1 G1 H1 I1 J2 K2 L2 

6 A1 B2 C2 D2 E2 F2 G2 H2 I2 J1 K1 L1 

7 A1 B2 C2 D2 E2 F3 G3 H3 I3 J4 K4 L4 

8 A1 B2 C2 D2 E2 F4 G4 H4 I4 J3 K3 L3 

9 A1 B3 C3 D3 E3 F1 G1 H1 I1 J3 K3 L3 

10 A1 B3 C3 D3 E3 F2 G2 H2 I2 J4 K4 L4 

11 A1 B3 C3 D3 E3 F3 G3 H3 I3 J1 K1 L1 

12 A1 B3 C3 D3 E3 F4 G4 H4 I4 J2 K2 L2 

13 A1 B4 C4 D4 E4 F1 G1 H1 I1 J4 K4 L4 

14 A1 B4 C4 D4 E4 F2 G2 H2 I2 J3 K3 L3 

15 A1 B4 C4 D4 E4 F3 G3 H3 I3 J2 K2 L2 

16 A1 B4 C4 D4 E4 F4 G4 H4 I4 J1 K1 L1 

17 A2 B1 C2 D3 E4 F1 G2 H3 I4 J1 K2 L3 

18 A2 B1 C2 D3 E4 F2 G1 H4 I3 J2 K1 L4 

19 A2 B1 C2 D3 E4 F3 G4 H1 I2 J3 K4 L1 

20 A2 B1 C2 D3 E4 F4 G3 H2 I1 J4 K3 L2 

21 A2 B2 C1 D4 E3 F1 G2 H3 I4 J2 K1 L4 

22 A2 B2 C1 D4 E3 F2 G1 H4 I3 J1 K2 L3 

23 A2 B2 C1 D4 E3 F3 G4 H1 I2 J4 K3 L2 
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No. of cases 
Factors 

A B C D E F G H I J K L 

24 A2 B2 C1 D4 E3 F4 G3 H2 I1 J3 K4 L1 

25 A2 B3 C4 D1 E2 F1 G2 H3 I4 J3 K4 L1 

26 A2 B3 C4 D1 E2 F2 G1 H4 I3 J4 K3 L2 

27 A2 B3 C4 D1 E2 F3 G4 H1 I2 J1 K2 L3 

28 A2 B3 C4 D1 E2 F4 G3 H2 I1 J2 K1 L4 

29 A2 B4 C3 D2 E1 F1 G2 H3 I4 J4 K3 L2 

30 A2 B4 C3 D2 E1 F2 G1 H4 I3 J3 K4 L1 

31 A2 B4 C3 D2 E1 F3 G4 H1 I2 J2 K1 L4 

32 A2 B4 C3 D2 E1 F4 G3 H2 I1 J1 K2 L3 

33 A3 B1 C3 D4 E2 F1 G3 H4 I2 J1 K3 L4 

34 A3 B1 C3 D4 E2 F2 G4 H3 I1 J2 K4 L3 

35 A3 B1 C3 D4 E2 F3 G1 H2 I4 J3 K1 L2 

36 A3 B1 C3 D4 E2 F4 G2 H1 I3 J4 K2 L1 

37 A3 B2 C4 D3 E1 F1 G3 H4 I2 J2 K4 L3 

38 A3 B2 C4 D3 E1 F2 G4 H3 I1 J1 K3 L4 

39 A3 B2 C4 D3 E1 F3 G1 H2 I4 J4 K1 L1 

40 A3 B2 C4 D3 E1 F4 G2 H1 I3 J3 K2 L2 

41 A3 B3 C1 D2 E4 F1 G3 H4 I2 J3 K1 L2 

42 A3 B3 C1 D2 E4 F2 G4 H3 I1 J4 K2 L1 

43 A3 B3 C1 D2 E4 F3 G1 H2 I4 J1 K3 L4 

44 A3 B3 C1 D2 E4 F4 G2 H1 I3 J2 K4 L3 

45 A3 B4 C2 D1 E3 F1 G3 H4 I2 J4 K2 L1 

46 A3 B4 C2 D1 E3 F2 G4 H3 I1 J3 K1 L2 

47 A3 B4 C2 D1 E3 F3 G1 H2 I4 J2 K4 L3 

48 A3 B4 C2 D1 E3 F4 G2 H1 I3 J1 K3 L4 

49 A4 B1 C4 D2 E3 F1 G4 H2 I3 J1 K4 L2 

50 A4 B1 C4 D2 E3 F2 G3 H1 I4 J2 K3 L1 

51 A4 B1 C4 D2 E3 F3 G2 H4 I1 J3 K2 L4 

52 A4 B1 C4 D2 E3 F4 G1 H3 I2 J4 K1 L3 

53 A4 B2 C3 D1 E4 F1 G4 H2 I3 J2 K3 L1 
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No. of cases 
Factors 

A B C D E F G H I J K L 

54 A4 B2 C3 D1 E4 F2 G3 H1 I4 J1 K4 L2 

55 A4 B2 C3 D1 E4 F3 G2 H4 I1 J4 K1 L3 

56 A4 B2 C3 D1 E4 F4 G1 H3 I2 J3 K2 L4 

57 A4 B3 C2 D4 E1 F1 G4 H2 I3 J3 K2 L4 

58 A4 B3 C2 D4 E1 F2 G3 H1 I4 J4 K1 L3 

59 A4 B3 C2 D4 E1 F3 G2 H4 I1 J1 K4 L2 

60 A4 B3 C2 D4 E1 F4 G1 H3 I2 J2 K3 L1 

61 A4 B4 C1 D3 E2 F1 G4 H2 I3 J4 K1 L3 

62 A4 B4 C1 D3 E2 F2 G3 H1 I4 J3 K2 L4 

63 A4 B4 C1 D3 E2 F3 G2 H4 I1 J2 K3 L1 

64 A4 B4 C1 D3 E2 F4 G1 H3 I2 J1 K4 L2 

 

The effect index of each fault is computed by Equation (32). The quantity is like a sensitivity 
analysis to analyze what factors have a higher effect on the output, i.e., energy consumption. 

 (32) 

where,  
xi is the variable for one factor, 
f(x) is the output of the model, i.e., energy consumption, 
μ is the overall mean of output, 
μxi,Lj is the means for each variable level. 
 

Figure 115 and Figure 116 show the impact of a single fault on the heating and the cooling 
separately, and the overall HVAC energy consumption, throughout a year. Figure 117 illustrates 
monthly effects from the aspect of each fault, where the deeper color represents a higher impact. 
Consistent with our knowledge, heating-related faults are found to have the largest impact in 
winter, while cooling-related faults dominate during summer. Additionally, fan-related faults 
have a high influence coefficient only in the cooling and shoulder seasons. Leakage, including 
duct leakage and envelope infiltration, have a higher impact on energy consumption when it is 
the heating season. Thermostat offset in ± 1℃ range has less effect, compared to other faults. 
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Figure 115. Monthly fault effect on the heating and cooling energy consumption 

 

 

Figure 116. Monthly fault effect on the overall HVAC energy consumption 
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Figure 117. Monthly effect on the energy consumption for each fault 

C.1.3 Double Faults 
Double faults are simulated separately and are integrated to investigate the different impacts 
between the individual and the integrated. 

The fault impact of a single fault is described by Equations (33) - (34). 

F(A) = E(fault A) – E(Baseline) (33) 

F(B) = E(fault B) – E(Baseline) (34)  

Where F is the fault impact metrics, while E is energy consumption. 

Double fault impact is defined as the additional change, compared to the sum of two individual 
fault impacts (Khire and Trcka 2013). It can be calculated by Equation (35). 

F(AB) = [E(faults A & B) – E(Baseline)] – [F(A) + F(B)] (35) 

Figure 118 depicts an example of the impact comparison of individual and coupled faults. 
Additional fault combination impact can be positive or negative. It shows an example of a 
comparison of two individual faults (cooling coil COP decrease and fan total efficiency 
decrease) and their coupled fault. The first gray bar is the HVAC energy consumption of the 
baseline model. The second bar represents the cooling coil capacity degradation result, where the 
cyan segment is the additional energy consumption compared to the baseline. Similarly, the 
yellow segment in the third bar represents the extra consumption due to the fan total efficiency 
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decrease. In the fourth bar group, the impact of the former is higher than the latter, which means 
the combination of cooling coil COP decrease and fan total efficiency decrease has a negative 
effect on the HVAC energy consumption. 

 

 

Figure 118. Performance comparison between individual and coupled faults during the month of July 
(residential building in Houston) 

C.1.4 Multiple Faults 
Three thousand fault EnergyPlus models are generated as described in Section 4.2. Figure 119 
illustrates the fault sampling distribution of cooling coil COP. The COP decrease results from 
eight lacking faults: condenser fouling, evaporator fouling, liquid line restriction, non-
condensable gas in the refrigerant, charge fault, compressor degradation, expansion valve 
restriction, and four-way reverse valve leakage. Those eight faults follow the lacking 
distribution, shown in Figure 31(a). Due to the random feature of sampling, the combination of 
these multiple lacking-type faults shows a normal-like distribution. 
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Figure 119. Fault sampling distribution of cooling coil COP values in 3,000 fault models 

Figure 120 shows the HVAC energy consumption distribution from these 3,000 simulations. In 
this case, we can see that energy consumption from the faulty EnergyPlus models increases as 
compared to the normal case. This is because a majority of faults developed in this project 
contribute to an increase in energy consumption. Even though thermostat control schedule fault 
may contribute to energy savings, Figure 115–Figure 117 demonstrate that thermostat offset has 
less impact on the HVAC energy consumption compared to other faults. 

 

Figure 120. Probability distribution of HVAC energy consumption from 3000 fault simulations 

The X-axis is the total energy consumption, Y-axis is the probability of each consumption, and the red dot 
displays the output from the normal case without any fault. 
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C.3 Fault Library for the Residential HVAC System 
Table 41. Fault Library for Residential HVAC Systems 

Fault Taxonomy Fault Impact Fault Modeling 

Faulty 
System 

Faulty 
Component Fault Name Faulty Symptom 

Modeling 
Approach 1 

Faulty Object in IDF Faulty Parameter in IDF  Value Type Fault 
Direction 

Fault Bound 
(Yunhua Li et al. 
2014; Ahmed 
2013; Mowris et 
al. 2012; M. Kim 
et al. 2009; B. 
Chen and Braun 
2000; Breuker 
and Braun 
1998a) 

Heat 
Pump 

Condenser 1) Condenser fouling* Heating/cooling 
efficiency and capacity D Coil:Cooling:DX:SingleSpeed, 

Coil:Heating:DX:SingleSpeed 
Gross Rated Cooling COP 
Gross Rated Total Cooling 
Capacity 
Gross Rated Heating COP 
Gross Rated Heating 
Capacity 

Continuous Lacking -19%~-30%; 
-10%~-21% 

Evaporator 2) Evaporator fouling* D Continuous Lacking -3%~-17%; 
-9%~-20% 

Compressor 3) Compressor degradation* D Continuous Lacking Null/-8%~-24% 

Valve 
4) Expansion valve restriction D Continuous Lacking   

5) Reverse valve leakage D Continuous Lacking -11%~-23%; 
-10.9% 

Pipe 6) Liquid line restriction D Continuous Lacking -8.7%~-55%; 
-7.5~-34% 

Refrigerant 

7) Presence of non-
condensable gas D Continuous Lacking -1%~-21%; 

-2%~-33% 
8) Refrigerant 
undercharge/line leakage* D Continuous Lacking -2%~-67%; 

-3%~-39% 

9) Refrigerant overcharge D Continuous Lacking -1%~-17%; 
1%~4.5% 

Furnace 

Heat 
Exchanger 10) Heat exchanger fouling Burner efficiency and 

capacity D Coil:Heating:Fuel Burner Efficiency 
Nominal Capacity Continuous Lacking No source 

Gas Valve 11) Valve block D Continuous Lacking No source 
Ignitor 12) Ignite malfunction D Discrete Lacking No source 

Draft Inducer 
13) Motor problem D Discrete Lacking No source 
14) Draft inducer damper 
stuck close D Discrete Lacking No source 

Air 
Handler 

Electric 
Resistance 2 15) Electric coil fouling Heating/cooling 

efficiency and capacity D Coil:Heating:Electric Efficiency 
Nominal Capacity Continuous Lacking No source 

Blower 
16) Blade dirty Pressure rise; fan energy; 

airflow D Fan:OnOff Fan Total Efficiency Continuous Lacking No source 

17) Motor worn-out Pressure rise; fan energy; 
airflow D Motor Efficiency Continuous Lacking No source 

Air Filter 18) Air filter dirty Pressure rise; fan energy; 
airflow D Pressure Rise  Continuous Excessing No source 

Air Loop    Air Duct  19) Air duct leakage* 
Pressure rise; fan energy; 
airflow; heating/cooling 
energy 

D AirflowNetwork:Distribution:
Component:LeakageRatio Effective Leakage Ratio  Continuous Excessing 6%~30% 
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Fault Taxonomy Fault Impact Fault Modeling 

Envelope 20) Envelope infiltration 
Pressure rise; fan energy; 
airflow; heating/cooling 
energy 

D 

a)ZoneInfiltration: 
EffectiveLeakageArea 
b)AirflowNetwork:MultiZone:
Surface:EffectiveLeakageArea 

a) Schedule 
b) Effective Leakage Area Continuous Uniform 

No source 

Register 21) Register stuck/diffuser 
blocked 

Pressure rise; fan energy; 
airflow; heating/cooling 
energy 

     Continuous Excessing 
No source 

Thermost
at 

Mode 22) Incorrect HVAC on/off 
mode 

Heating/cooling energy; 
thermal comfort D ThermostatSetpoint: 

DualSetpoint 
Heating/Cooling Setpoint 
Temperature Schedule Discrete Uniform No source 

Schedule 23) Inappropriate setpoints 
for thermostats 

Heating/cooling energy; 
thermal comfort D Heating/Cooling Setpoint 

Temperature Schedule Discrete Uniform No source 

Bias 24) Thermostat offset Heating/cooling energy; 
thermal comfort N FaultModel:ThermostatOffset Reference Thermostat Offset Discrete Normal No source 

* The most common fault in the residential HVAC 
1 D = Direct modeling: heating/cooling efficiency and capacity; N = Native fault objective: thermostat offset 
2 Heat Pump Heating Supplementary
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Appendix D: Fault Detection and Diagnosis for Residential 
HVAC Systems 
D.1 Evaluation Metrics 
Evaluation metrics are essential to evaluate and compare the effectiveness of selected FDD 
classification methods. Evaluating an FDD method can be conducted from various perspectives, 
including cost, generality and transferability, capability, modeling efforts, interpretability, 
automation level, etc. (J. Chen et al. 2022; Shi and O'Brien 2019). The capability, which 
represents the accuracy of detecting and diagnosing the existing faults, is the most effective and 
prevailing metrics to assess FDD methods. For the detection, four typical metrics were provided 
in (Bode et al. 2020): 

• True positive, where the sample is true, and the prediction is true 

• True negative, where the sample is false, and the prediction is false 

• False positive, where the sample is false, and the prediction is true 

• False negative, where the sample is true, and the prediction is false. 

Similarly, four evaluation metrics are specified for detection and diagnosis (Yuill and Braun 
2016; Bode et al. 2020): 

• Accuracy (also known as correctness rate, i.e., the sum of true positive and true negative): 
detected or diagnosed result is the same as the actual failure 

• False alarm (i.e., false positive): the degradation level does not exceed a given threshold, 
but the abnormal operation is reported 

• Misdiagnosis: the AFDD detects a fault correctly as its presence, but the fault diagnosed 
is different from the actual one 

• Missed detection (i.e., false negative): a fault is present, but the AFDD does not detect it. 

The most common metric is the accuracy rate and false alarm. They show the correction rate in 
the total diagnosis cases and the misdetection rate of fault-free cases as faulty. 

The confusion matrix, as shown in Figure 120, is often used to evaluate the performance of a 
classification task in a comprehensive way on a two-class and n-class basis (Han et al. 2011). A 
two-class case, which consists of normal condition and fault condition, is more often picked for 
fault detection tasks. It includes sensitivity (i.e., recall), specificity, precision, negative predictive 
value, accuracy, and F1 score with equations marked in Figure 120(a). Fault diagnosis is a 
multiclass classification problem (Zhao et al. 2014; D. Li et al. 2017). Its task is to determine 
which fault class the data belong. Thus, the n-class type, shown in Figure 120(b), is considered 
with multiple fault conditions. The classification accuracy of the nth fault class is displayed for 
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each fault and no-fault condition. It equals the ratio between class n samples that are correctly 
classified and the total class n data samples (G. Li et al. 2018). 

 

  

(a) (b) 

Figure 121. Confusion matrix for fault detection 
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D.2 Forecasting Results and Absolute Difference Error for Duct Leakage Case 

 

Figure 122. Forecasting results and absolute difference error for Scenario 1-1 (50% leakage) 

 

Figure 123. Forecasting results and absolute difference error for Scenario 1-1 (10% leakage) 
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Figure 124. Forecasting results and absolute difference error for Scenario 2 (N2-2) 

 

Figure 125. Forecasting results and absolute difference error for Scenario 3 
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D.3 Temperature-Entropy in Normal and Faulty Conditions of a VCC System 
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Figure 126. Comparison of temperature-entropy in normal (black line) and faulty (red line) condition of a VCC 
system 

Note: Fault impact on the air side is not illustrated. 

D.4 FDD Classification Methods for the VCC System 
Three existing AFDD methods for the residential VCC system are investigated: statistical rule-
based chart, sensitivity ratio method, and simple rule-based method.  

D.4.1 Statistical Rule-Based Chart 
The statistical rule-based chart is characterized by considering probabilities in three uncertainty 
sources: measurement noise uncertainty, steady-state uncertainty, and fault-free model 
uncertainty. It identifies faults with change direction patterns (i.e., increase ↑, decrease ↓, or 
remain unchanged →) for a set of features (shown in Table 42) corresponding to a given fault, 
and calculates statistical probabilities to classify the current operation state. Change directions 
are determined by a predefined threshold for each feature. The basic calculation workflow 
consists of: 

1) Calculating the probabilities of three directions for each feature (i): P(C↑|Xi), P(C↓|Xi), 
P(C→|Xi) 

2) Calculating the individual probability of corresponding feature directions for each fault (j): 
P(Cij) 

3) Calculating the overall probability for each fault(j): Pj 
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Table 42. Rule-Based Chart of Seven Features for VCC FDD  

(M. Kim et al. 2008) 

  Zone*  Te Tsh Td Tc Tsc dTca dTea 

Compressor valve leakage (CV) A  ↑ →  ↑  ↓  ↓  ↓  ↓ 

Improper outdoor airflow (CF) A  ↑ →  ↑  ↑  ↓ →  ↓ 

  B  ↓  ↑  ↑  ↑  ↓  ↓  ↓ 

Improper indoor airflow (EF) A  ↓ → →  ↓ →  ↓  ↑ 

Liquid-line restriction (LL) A → → → → → → → 

  B  ↓  ↑  ↑  ↓  ↑  ↓  ↓ 

Refrigerant undercharge (UC) A →  →  →   ↓  ↓  ↓  ↓ 

  B  ↓  ↑  ↑  ↓  ↓  ↓  ↓ 

Refrigerant overcharge (OC) A →  →  ↑  ↑  ↑ → → 

No fault (NF) - → → → →  → → → 
*Zone A: Tsh < 9ºC; Zone B: Tsh > 9ºC 

Fault probability is a key calculation for fault diagnosis. Its inputs include: 

1) FDD neutral threshold εi  

2) Predicted mean of features �̅�𝑥𝑖𝑖,𝑁𝑁𝑁𝑁 

3) Measured mean of features �̅�𝑥𝑖𝑖 

4) Amplification factor s (assumed as 1 at first; will be adjusted in the field test). 

Equations for probabilities of three directions for each feature (i) are provided as Equation (36) - 
(38) (M. Kim et al. 2008). The summation equals 1 as Equation (39). 

𝑃𝑃(𝐶𝐶↓|𝑋𝑋𝑖𝑖) = 𝑃𝑃(𝑥𝑥𝑖𝑖 ≥ 𝜇𝜇𝑖𝑖 + 𝜀𝜀𝑖𝑖) =
1
2
�1 − 𝐼𝐼𝐼𝐼𝑓𝑓 �

𝐼𝐼𝑖𝑖 + 𝜀𝜀𝑖𝑖
√2𝜎𝜎𝑖𝑖,𝑁𝑁𝑁𝑁

�� (36) 

𝑃𝑃(𝐶𝐶↑|𝑋𝑋𝑖𝑖) = 𝑃𝑃(𝑥𝑥𝑖𝑖 ≤ 𝜇𝜇𝑖𝑖 + 𝜀𝜀𝑖𝑖) =
1
2
�1 + 𝐼𝐼𝐼𝐼𝑓𝑓 �

𝐼𝐼𝑖𝑖 − 𝜀𝜀𝑖𝑖
√2𝜎𝜎𝑖𝑖,𝑁𝑁𝑁𝑁

�� (37) 

𝑃𝑃(𝐶𝐶−|𝑋𝑋𝑖𝑖) = 𝑃𝑃(𝜇𝜇𝑖𝑖 − 𝜀𝜀𝑖𝑖 < 𝑥𝑥𝑖𝑖 < 𝜇𝜇𝑖𝑖 + 𝜀𝜀𝑖𝑖) =
1
2
�𝐼𝐼𝐼𝐼𝑓𝑓 �

𝐼𝐼𝑖𝑖 + 𝜀𝜀𝑖𝑖
√2𝜎𝜎𝑖𝑖,𝑁𝑁𝑁𝑁

� − 𝐼𝐼𝐼𝐼𝑓𝑓 �
𝐼𝐼𝑖𝑖 − 𝜀𝜀𝑖𝑖
√2𝜎𝜎𝑖𝑖,𝑁𝑁𝑁𝑁

�� (38) 

𝑃𝑃(𝐶𝐶↓|𝑋𝑋𝑖𝑖) + 𝑃𝑃(𝐶𝐶↑|𝑋𝑋𝑖𝑖) + 𝑃𝑃(𝐶𝐶−|𝑋𝑋𝑖𝑖) = 1 (39) 

The diagnosed fault will be the one with the highest probability after calculation. More 
explanation of equations for probabilities of three directions for each feature (i) and fault 
identification table can be found in the work of Kim et al. (2008). 
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D.4.2 Sensitivity Ratio Method  
The core concept of the sensitivity ratio method is to use a unique pair of measurements for each 
fault type, where one measurement is sensitive to the fault and the other is not (B. Chen and 
Braun 2000). The sensitivity ratio of one fault is represented as Equation (40). 

𝑅𝑅𝑖𝑖 =
�𝐼𝐼𝑖𝑖𝑛𝑛𝑠𝑠𝑒𝑒𝑛𝑛𝑠𝑠,𝑖𝑖�
�𝐼𝐼𝑠𝑠𝑒𝑒𝑛𝑛𝑠𝑠,𝑖𝑖�

 (40) 

 

where, Ri is the fault sensitivity ratio; rinsens,I and rsens,i are the residuals for the insensitive and 
sensitive measurements, respectively. 

The residual of a given temperature measurement T is defined as Equation (41): 

𝐼𝐼𝑇𝑇 = 𝑇𝑇𝑜𝑜𝑒𝑒𝑜𝑜𝑎𝑎𝑜𝑜𝑙𝑙 − 𝑇𝑇𝑜𝑜𝑟𝑟𝑒𝑒𝑑𝑑  (41) 

where, Tactual is the measurement and Tpred is the model prediction for normal operation. 

In order to identify a fault, at least one of the fault sensitivity ratios must be less than 1, as shown 
in Figure 126 (B. Chen and Braun 2000). All the sensitive and insensitive measurement residuals 
are expected to be below the noise threshold (determined by specific users) in normal conditions. 
In the work of Chen et al. (2000), the residuals are set to 0.1°F, and the computed sensitivity 
ratios are 1. As a fault occurs, at least one of the fault-sensitive residuals should increase to 
exceed the noise threshold, and the corresponding sensitivity ratio should decrease. A fault type, 
i, is reported if Ri < 1.  A more detailed description of workflow can be found in the work of 
Chen et al. (2000). 
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Figure 127. Sensitivity ratio method 

D.4.3 Simple Rule-Based Method 
The simple rule-based method conducts FDD by comparing performance indices of raw data 
with preset thresholds (B. Chen and Braun 2000) (see Table 43). It is crucial to find indicators 
that are sensitive to faults but insensitive to operating conditions. Generally, air-side features are 
more sensitive to air-side faults. It is also applied to the refrigerant side. In addition, for each 
type of fault, there should be a particular pattern of changes in the performance indices. The no-
fault/fault ranges in Table 43 are predefined by Chen et al. (2000). Those ranges require 
additional adjustments for specific cases, which are usually derived from the quantile or 
confidence interval of feature values distribution in the normal condition. 
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Table 43. Simple Rule-Based Method  

(B. Chen and Braun 2000) 

Fault Type Performance Indices Sensors and 
Locations 

No-Fault Range* Fault Range* 

Evaporator fouling (Teai-Te) is abnormally 
high 

Te, Tra 32–33°F >34°F 

Condenser fouling (Tc-Tod) is abnormally 
high 

Tc, Tod 19–20°F >21°F 

Liquid line 
restriction 

dTII is abnormally high Tll,in, Tll,out 1–2°F >3°F 

Refrigerant 
leakage 

Tsc is abnormally low Tc, Tcl 13–14°F <12°F 

Refrigerant 
overcharge 

Tsc is abnormally high >15°F 

Non-condensable 
gas 

Tsc is abnormally high >15°F 

Compressor 
leakage 

(Teai-Te) is abnormally 
low 

Te, Tra 32–33°F <31°F 

*These values are examples extracted from the work of Chen et al. (2000), which should be adjusted specifically in the practical cases. 

11.1.1 D.4.4 Comparison of Measured and Predicted Temperature 

 
Figure 128. Comparison of measured and predicted discharge temperature 
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Figure 129. Comparison of measured and predicted superheating temperature 

 
Figure 130. Comparison of measured and predicted evaporator temperature 

 
Figure 131. Comparison of measured and predicted evaporator exit refrigerant vapor temperature 

D.4.5 Parameter Adjustment for Statistical Rule-Based Chart   
Statistical rule-based chart is well-developed because it considers probabilities in three 
uncertainty sources (measurement noise uncertainty, steady-state uncertainty, and fault-free 
model uncertainty). In the FDD classification, the threshold standard deviation multiplier s and 
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the confidence interval of uncertainties k vary with specific datasets and are usually determined 
using professional experience. This is the biggest challenge for the application of this FDD 
method. As the diagnosis accuracy of the statistical rule-based chart is highly sensitive to s and k, 
a pre-investigation of optimum values is conducted around the default values (k = 2; s = 1) with 
training data. The accuracy results from multiple scenarios with different combinations of k and s 
are shown in Figure 132 for six fault cases (using the grid search). We can see that there is no 
single set of k and s values that can achieve optimum accuracy for all faulty cases. Moreover, 
even after the adjustment, the high accuracy rates only can be obtained for no fault, liquid line 
restriction, and undercharge cases, while it is difficult to obtain a satisfactory diagnosis accuracy 
rate for condenser fouling cases. This observation certainly implies that only one FDD method 
(statistical rule-based chart) is not sufficient to achieve desirable high detection and diagnosis 
accuracy. 

The optimum sets of k and s are selected and listed in Table 44. The corresponding accuracy 
rates for each fault case are also included.   

 

Figure 132. Accuracy rate results from statistical rule-based chart method with different combinations of k 
and s values 

Table 44. Selected Optimum Set of k and s for Different Faults 

k s Fault Accuracy Rate 

2.5 0.5 CF 4.60% 

1 0.5 EF 63.11% 

2 0.1 LL 100.00% 

2 0.5 UC 69.49% 

3 0.5 OC 32.10% 

2 0.5 NF 100.00% 
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Appendix E: Lab Testing 
E.1 Testing Timeline 
Table 45 lists a timeline for the lab testing, which includes fault implementation, control 
strategies, and occupancy schedules for each day in both Lab Homes during the full testing 
period. 

Table 45. Timeline for the Lab Testing 

  Lab Home A – Test Home Lab Home B – Baseline Home Occupancy 

Schedule 

Note 

Week Date Fault Control  Fault Control  

Week  

01 

Aug. 08 40% overcharge Constant of 
24℃ (76℉) 

NA NA Schedule 2  

Aug. 09 20% overcharge Constant of 
24℃ (76℉) 

NA NA Schedule 2  

Aug. 10 15% evaporator 
fouling 

Constant of 
24℃ (76℉) 

NA NA Schedule 2  

Aug. 11 30% evaporator 
fouling 

Constant of 
24℃ (76℉) 

NA NA Schedule 2  

Aug. 12-14 Fault free Constant of 
24℃ (76℉) 

NA NA Schedule 2 Data missing due 
to communication 
issue 

Week  

02 

Aug. 15 30% evaporator 
fouling 

Constant of 
24℃ (76℉) 

NA NA Schedule 2  

Aug. 16 20% Undercharge Constant of 
24℃ (76℉) 

NA NA Schedule 2  

Aug. 17 40% Undercharge Constant of 
24℃ (76℉) 

NA NA Schedule 2  

Aug. 18-21 Fault free Constant of 
24℃ (76℉) 

NA NA Schedule 2  

Week  

03 

Aug. 22-29 No fault Remote  
from DU 

No fault Controlled 
through DPC 
framework 

Schedule 1  

Week  

04 

Aug. 30 NA NA NA NA NA Communication 
test 

 Aug. 31- 
Sep. 02 

No fault Remote  
from TAMU 

No fault Constant of 
24℃ (76℉) 

Schedule 1 For adaptive to 
occupancy 
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  Lab Home A – Test Home Lab Home B – Baseline Home Occupancy 

Schedule 

Note 

Week Date Fault Control  Fault Control  

 

 Sep. 03-05 No fault Remote  
from TAMU 

No fault 8:00-18:00 
28℃ (82℉) 

18:00-8:00 
24℃ (76℉) 

Schedule 1 For adaptive to 
occupancy 

Week  

05 

 

Sep. 06 

 

Evaporator  
fouling fault: 85% 
original airflow 

Remote  
from TAMU 

Evaporator fouling 
fault: 85% original 
airflow 

Constant of 
24℃ (76℉) 

Schedule 2   

 Sep. 07-08 Evaporator  
fouling fault: 85% 
original airflow  

Undercharge 
faults: 80% original 
charge 

Remote  
from TAMU 

Evaporator fouling 
fault: 85% original 
airflow  

Undercharge faults: 
80% original charge 

Constant of 
24℃ (76℉) 

Schedule 2  

 Sep. 09-11 Evaporator  
fouling fault: 85% 
original airflow 

Undercharge 
faults: 60% original 
charge 

Remote  
from TAMU 

Evaporator fouling 
fault: 85% original 
airflow 

Undercharge faults: 
60% original charge 

Constant of 
24℃ (76℉) 

Schedule 2 Keep the fault 
through the 
weekend 

Week  

06 

 

Sep. 12-13 Evaporator  
fouling fault: 85% 
original airflow 

Overcharge faults: 
115% original 
charge 

Remote  
from TAMU 

Evaporator fouling 
fault: 85% original 
airflow 

Overcharge faults: 
115% original 
charge 

Constant of 
24℃ (76℉) 

Schedule 2  

Sep. 14 Evaporator fouling 
fault: 85% original 
airflow 

Overcharge faults: 
130% original 
charge 

Remote  
from TAMU 

Evaporator fouling 
fault: 85% original 
airflow 

Overcharge faults: 
130% original 
charge 

Constant of 
24℃ (76℉) 

Schedule 2   

Sep. 15-16 Evaporator fouling 
fault: 70% original 
airflow 

Remote  
from TAMU 

Evaporator fouling 
fault: 70% original 
airflow 

Constant of 
24℃ (76℉) 

Schedule 2 transfer to the 
next fault in the 
late afternoon of 
Sep. 16 (Fri.)  
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  Lab Home A – Test Home Lab Home B – Baseline Home Occupancy 

Schedule 

Note 

Week Date Fault Control  Fault Control  

Undercharge 
faults: 80% original 
charge 

Undercharge faults: 
80% original charge 

Sep. 17-18 Condenser fouling 
fault: 70% original 
airflow 

Undercharge 
faults: 80% original 
charge 

Remote  
from TAMU 

Condenser fouling 
fault: 70% original 
airflow 

Undercharge faults: 
80% original charge 

Constant of 
24℃ (76℉) 

Schedule 2 Keep the fault 
through the 
weekend 

Week  

07 
 

Sep. 19 
 

30% Condenser 
fouling fault: 70% 
original airflow 

20% Undercharge 
faults: 80% original 
charge 

Remote  
from TAMU 

30% Condenser 
fouling fault: 70% 
original airflow 

20% Undercharge 
faults: 80% original 
charge 

Constant of 
24℃ (76℉) 

Schedule 2 
 

Sep. 20-21 

 

15% Condenser 
fouling fault: 85% 
original airflow 

20% Undercharge 
faults: 80% original 
charge 

Remote  
from TAMU 

15% Condenser 
fouling fault: 85% 
original airflow 

20% Undercharge 
faults: 80% original 
charge 

Constant of 
24℃ (76℉) 

Schedule 2  

Sep. 22-23 

 

15% condenser 
fouling fault: 85% 
original airflow 

Remote  
from TAMU 

15% Condenser 
fouling fault: 85% 
original airflow 

Constant of 
24℃ (76℉) 

Schedule 2 transfer to the 
next fault in the 
late afternoon of 
Sep. 23 (Fri.) 

Sep. 23-25 
 

30% Condenser 
fouling fault: 70% 
original airflow 

Remote  
from TAMU 

30% Condenser 
fouling fault: 70% 
original airflow 

Constant of 
24℃ (76℉) 

Schedule 2 Keep the fault 
through the 
weekend 

E.2 Occupancy Simulation 
The Lab Homes were unoccupied during the testing period, so to characterize the performance of 
the IOT-based comfort control, occupant behavior and occupant-driven loads must be simulated. 
First, occupancy sensor values were simulated to determine how the control responds to occupant 
behavior. In addition to the simulated occupancy sensors, an electric heater was scheduled to 
reflect the heat gain from kitchen appliances. 

E.2.1 Occupancy Sensor Schedules 
The low-cost iComfort sensors included physical occupancy sensors in six rooms. Rather than 
use the actual measurements from these sensors, the control relied on simulated occupancy 
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sensor measurements. Figure 133 outlines two schedules for the occupancy sensors. Schedule 1 
simulates an unoccupied home between 9:00 a.m. and 6:00 p.m., and Schedule 2 simulates an 
occupied home between 9:00 a.m. and 6:00 p.m. All separate schedules are combined as one 
integrated schedule for the whole building occupancy. 

 

Figure 133. Two simulated occupancy schedules that are used to test and characterize the performance of the 
IOT-based comfort control 

E.2.2 Appliance Load Schedule 
The heat gain from larger appliances (e.g., range, oven, dishwasher, clothes washer and dryer) 
was simulated using a 500 W electric resistance space heater located in the kitchen and dining 
area of the homes. Both homes used this schedule to match the loads in the baseline home and 
controlled home. As shown in Figure 134, the space heater operated for three 30-minute periods 
during the day: starting at 5:30 a.m., 6:30 p.m., and 8:30 p.m. 

 
Figure 134. Simulated appliance load schedule that is implemented using an electric resistance space heater 
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While Lab Homes can simulate other occupant-driven loads, changing from one schedule to 
another is time-consuming. The developed appliance schedule accounts for the largest heat gains 
and was used for both schedules outlined in Figure 133, eliminating the need for any changeover.  

E.3 Sensor Installation 
The Lab Homes are outfitted with a comprehensive set of sensors to measure building 
performance. Table 46 summarizes the list of sensors available in each of the homes. These 
sensors provide detailed data on building operation to evaluate the impact of various energy 
conservation measures on building energy performance and occupant comfort.  

The homes have power meters on every breaker in the electrical panel for detailed electrical end-
use data. There are temperature sensors in every living space, the crawl space under the home, 
multiple supply registers, and the exterior of the homes. There are a few relative humidity sensors 
found inside and outside of the homes. The Lab Homes also have a weather station to record the 
outdoor temperature, relative humidity, wind speed, wind direction, solar irradiance, and 
barometric pressure. These meters and sensors serve as supplementary and backup for the 
iComfort sensors. 

Table 46. Sensor Overview in Lab Homes 

Measurement 
Type 

Quantity Notes 

Power 48 Meter on every breaker (includes all appliances) 

Temperature 39 Located in living spaces, supply air registers, outside, and on water lines 

Relative Humidity 4 Two inside the home, two on the exterior 

Other 9 Includes solar irradiance, wind speed, wind direction, air pressure, and 
water flow 

 

While the Lab Homes contain a wide variety of sensors, there are specialized research needs that 
require the installation of additional sensors. To create a suitable test bed for the control 
algorithms, additional sensors were installed in the Lab Homes to create a suitable test bed. 
There are three different sets of sensors that were installed in the Lab Homes: 

1) iComfort sensors that were developed for this project 

2) Temperature sensors that were installed on the HVAC unit for FDD testing 

3) Various temperature/relative humidity data loggers. 

iComfort Sensors 

The iComfort sensors, developed for this project, were deployed into Lab Home A (the test 
home) along with a hub that shows sensor status for each sensor. In total, 16 iComfort sensors 
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were deployed in the test Lab Home, and they are shown in Figure 135. The sensors measure a 
combination of airflow, temperature, relative humidity, and occupancy. 

 

 

Figure 135. Installation map of iComfort sensors 

HVAC FDD Sensors and Data Loggers 

To evaluate the HVAC Fault Detection and Diagnostic (FDD) tests, eight additional temperature 
sensors were installed and used a DS18B20 chip to measure temperature. These sensors are 
connected to a Raspberry Pi using a single GPIO, and use “One Wire” to communicate with the 
Raspberry Pi. The added sensors for this project are described below in Table 47, and their 
locations are plotted in Figure 135. 

Table 47. Installed Sensors for HVAC FDD Testing 

Measurement Sensor Location 

Evaporator coil temperature Indoor unit, return bend on evaporator 

Suction line temperature Outdoor unit, on compressor suction line 

Discharge line temperature Outdoor unit, on compressor discharge line 

Condensing temperature Outdoor unit, return bend on condenser 

Liquid line temperature Outdoor unit, at condenser outlet 

Condenser outlet air temperature Outdoor unit, above fan 

Evaporator inlet air temperature Thermocouple by indoor air inlet 

Supply air temperature Supply duct inside the home 
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Active Learning-Based Performance Model Sensors 

For the Active Learning-Based Performance Model, there are three types of sensors that were 
installed in the Lab Homes. The first two are the custom sensors built specifically for this project. 
The first of these measures the occupancy state, the temperature, and the relative humidity of the 
space. Four of these sensors were installed within the homes at various locations. The second 
type of custom sensor measures the air speed, temperature, and relative humidity within the 
space. Four of these were located within the main gathering area of the homes. Two additional 
relative humidity sensors were installed for verification purposes in the main gathering area of 
the home. Table 48 details these sensors, and Figure 135 shows the installation locations for the 
custom iComfort sensors. 

Table 48. Required Sensors for the Active Learning Based Performance Model 
 

Sensor Origin Quantity Measurements Sensor Location(s) 

PNNL 2 Heat pump and furnace power Breaker box 

PNNL 1 Total building power Breaker box 

PNNL 1 Outdoor air temperature East side of Lab Home B 

PNNL 1 Outdoor relative humidity East side of Lab Home B 

PNNL 1 Outdoor wind speed Roof of Lab Home B 

PNNL 1 Outdoor wind direction Roof of Lab Home B 

PNNL 1 Barometric pressure East side of Lab Home B 

PNNL 1 Solar irradiance South side of Lab Home B 

iComfort 8 Occupancy, temperature, relative humidity See map on Figure 5 

iComfort 8 Air speed, temperature, relative humidity See map on Figure 5 

PNNL 2 Relative humidity (for verification) Living Room, Dining Area 

 
In addition to the location of the new sensors, Figure 135 displays other key equipment and 
sensors for reference. The supply registers, which are on the floor, are shown for each space. The 
heat pump outdoor unit and indoor unit (labeled ‘FURN.’; located in the utility room) are also 
highlighted. The thermostat is in the hallway. The solar irradiance sensor is located on the south 
wall, and the outdoor air temperature sensor is in a shaded alcove on the eastern side of the 
house. 

E.4 Metrics and Targets 
E.4.1 Metrics and Targets for Sensors and Measurements 
Table 49 displays the metrics and targets specifically related to sensing within the Lab Homes. 
The metrics apply to the sensors identified in Table 47 and Table 48. For the required sensors, 
there is a minimum data acquisition rate of two minutes per sample. Additionally, all sensor 
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measurements that are required for control decisions are available in the iComfort database 
within 30 seconds. Finally, the sensors are available and transmitting for at least 95% of the 
testing period. 

Table 49. Metrics and Targets for Sensing During Testing 
 

Metric Description Target 
Sensors and Data Acquisition (Highest Priority Sensors) 

Data Acquisition 
Rate 

The sampling period for measured values. < 2 
min. 

Reliability of 
Measured Values 

The portion of sampling periods during which no sensor measurements 
are received. 

< 5% 

Time Delay of 
Measured Values 

The average amount of time between when the sensor measurement 
occurs and when the measurement is available in the cloud. 

< 30 
sec. 

 

E.4.2 Metrics and Targets for Control Signal Capability 
The control decision generated by the comfort control is the thermostat setpoint. The setpoint is 
implemented remotely using the Ecobee API (Ecobee). 

Changing the setpoint when desired is a critical capability for testing the control algorithm. The 
success with which the control signal may be changed is quantified using two metrics: the 
reliability of the control signal and the time delay of the control signal. These metrics are defined 
and targets are specified for each metric below. 

Reliability of Control Signal: The portion of setpoint API commands that are not received and 
implemented on the physical thermostat device within 5 minutes. Target: Less than 5%. 

Time Delay of Control Signal: The average amount of time between the setpoint API command 
being sent and the setpoint on the physical thermostat device being received. Target: Less than 
2 minutes. 

E.5 Weather Conditions 
The Lab Homes are based at Richland, Washington, which is located at approximately 46.3°N, 
119.3°W. The front door of the house faces north. Richland, which is located in Energy 
Information Administration (EIA) climate zone 2, is characterized by a semi-arid climate with 
warm summers and cool winters. The average wintertime lows are in the mid-20s°F, and the 
average summertime highs are in the low 100s°F. The average precipitation is 7 to 8 inches per 
year. 

The lab testing was conducted in August and September of 2022. During that period, the highest 
outdoor temperature was 105℉ on Aug. 18 and the lowest temperature was 42℉ on Sep. 17. To 
be specific, during the MPC-informed rule-based control period, the highest and lowest 
temperatures were 93℉ on Sep. 7 and 42℉ on Sep. 17. 
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E.6 Fault Implementation 
The rule-based FDD methods can diagnose some of the most common process faults in the air 
duct and vapor compression-based cooling systems: duct leakage, evaporator and condenser 
fouling, high and low refrigerant charge, refrigerant flow restriction in the liquid line, and 
degradation of the compressor or three-way reversing valve (reversing valve applies to heat 
pumps only), etc. Implementing some faults, such as placing paper over the evaporator filter to 
simulate evaporator fouling, does not require major changes to the system and are therefore 
considered to be non-invasive (Kim et al. 2008; Rossi and Braun 1997). 

Implementing other faults, such as using a hot gas bypass line to simulate compressor leakage, 
require significant changes to the system and are highly invasive. Highly invasive 
implementation methods such as those for liquid line restriction and compressor/valve leakage 
can be implemented on laboratory systems but not on field systems. The PNNL Lab Homes are 
designed and intended to operate identically to one another and to reflect field operation. 

Making significant changes to the refrigerant lines may degrade the design of the Lab Homes; at 
the conclusion of the FDD study, they may not operate identically to one another and may be less 
reflective of field systems. 

Therefore, the FDD testing is limited to implementation methods that can easily and reliably 
revert to the original condition after testing. The faults that were tested include condenser 
fouling, evaporator fouling, low refrigerant charge, and high refrigerant charge. 

E.6.1 Implementing Condenser and Evaporator Fouling Faults 
Condenser and evaporator fouling can occur on both the air side and the refrigerant side of the 
heat exchangers. Air-side fouling is the most common and is easier to simulate. Therefore, this 
study is limited to testing air-side fouling. Condenser air-side fouling occurs as debris such as 
dirt, leaves, or grass clippings cover the heat exchanger coils. Evaporator air-side fouling more 
commonly occurs as the air filter accumulates dust and other particles. Previous studies 
(Katipamula et al. 2015; Rogers et al. 2019b) have implemented fouling by preventing airflow 
through parts of the heat exchanger or air filter using strips of paper (see Figure 136).  

To improve the simulation of heat exchanger fouling, a mesh screen is placed over the heat 
exchanger. The mesh screen restricts airflow more uniformly over the heat exchanger area. 
However, in order to achieve the desired level of airflow restriction, strips of tape are added to 
the mesh screen. They are applied perpendicular to the flow of refrigerant. This method is used 
to achieve fault severity levels of 15% and 30% airflow reduction for both the evaporator and 
condenser. Figure 137 shows an example of fouling fault simulation. 

Adjusting the mesh screen and tape in order to achieve the desired airflow reduction requires an 
airflow measurement. An air velocity measurement is taken at several points across the flow 
section using a hot wire anemometer probe. While this method is unlikely to produce an accurate 
airflow measurement, it provides an indication of how much airflow has been reduced relative to 
the initial baseline (i.e., the percent reduction). 
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Figure 136. Condenser fouling implemented using paper  

Archived photos from PNNL, not directly from this specific testing 

 
Figure 137. Photo of evaporator fouling simulation 

 
E.6.2 Implementing Low and High Refrigerant Charge Faults 
To implement refrigerant charge faults, the existing baseline charge is first measured. Then the 
refrigerant is adjusted to different levels relative to the baseline. Low refrigerant charge faults are 
tested at 60% and 80% of the baseline; high refrigerant charge faults are tested at 115% and 
130% of the baseline. Figure 138 shows how the refrigerant charge was conducted. 

All details related to the implementation of different faults and their severity levels are presented 
in Table 50. 
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Figure 138. Refrigerant overcharge and undercharge simulation  

Archived photos from PNNL, not directly from this specific testing 

Table 50. Details of Fault Scenarios 

Scenarios Charge Test Fouling Test 
Adj. 
(oz) 

Charge 
(oz) 

Sheets 
LHA CFM-Evap CFM-Cond 

1 No faults n/a 0 132 0 1140 1440 

2 40% 
overcharge 

n/a 56 188 0 1130 No measured 

3 20% 
overcharge 

n/a 28 160 0 1137 No 
measured 

4 20% 
undercharge 

n/a -26 106 0 1150 No 
measured 

5 40% 
undercharge 

n/a -52 80 0 No 
measured 

No 
measured 

6 n/a 15% evaporator 
fouling 

0 132 3 935 n/a 

7 n/a 30% evaporator 
fouling 

0 132 9 775 n/a 

8 n/a 15% condenser 
fouling 

0 132 3 No 
measured 

1240 

9 n/a 30% condenser 
fouling 

0 132 9 No 
measured 

1005 

 

E.7 Operation Schedules 
The homes are unoccupied, but equipment has been installed within the homes to simulate 
occupant loads. Specifically, incandescent lighting is placed in different rooms of the homes that 
can be controlled remotely to simulate heat gains. Additionally, water and electrical appliance 
loads can be simulated by remotely scheduling electric resistance heaters. While heat gains and 
water use can be simulated, there is currently no way to add the humidity gain from occupants in 
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the homes. The main factors that affect indoor humidity are outdoor air infiltration and heat 
pump operation in the cooling mode. 

The current occupancy simulation schedule was designed to reflect the Building America House 
Simulation Protocols (Wilson 2014). Figure 139 shows the measured power over a day for the 
devices used to simulate occupant and plug load impacts. The lights in various rooms are turned 
on and off throughout the day to reflect occupants moving from one room to the next. For 
example, the bedroom lights are on in the evening, and the kitchen lights are on in the afternoon 
and evening. An electric resistance heater is used in the dining/kitchen area to reflect the higher 
power usage of the oven, range, and smaller kitchen appliances. 

 

 
Figure 139. Typical occupant load simulation for the PNNL Lab Homes including heat gains from lighting, 

occupants, and appliances 

To modify the equipment schedule, an operator must manually adjust the schedule for each 
individual power breaker. The process is cumbersome and prone to error. The difficulty in 
adjusting the schedule limits the flexibility in providing heat gain schedules with realistic 
uncertainty regarding start time, duration, and magnitude of energy usage. Of note, the maximum 
period for any schedule is one day, so reprogramming is required for different days. 

E.8 Uncertainty Analysis 
The uncertainty for indoor temperature control mainly derives from the sensor measurement and 
the future weather forecast. 

The indoor temperature fed into the control algorithm is from the iComfort sensor. A near-
optimal setpoint is generated and then sent to the Ecobee thermostat. Figure 140 illustrates the 
comparison of temperature readings from the iComfort sensor (blue curve) and Ecobee 
thermostat (red curve) at the same location. The solid green line represents the setpoint. It can be 
seen that there is around a 2°F difference between the iComfort sensor and the Ecobee 
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thermostat. One possible reason is that the indoor air going through the thermostat is warmed by 
the heat that is generated by the microprocessor operation. The temperature from the Ecobee 
thermostat is used for the local control while the temperature from iComfort is used for the 
supervisory control. This discrepancy impacts the accuracy of indoor temperature control. 

 
 

Figure 140. Indoor temperature comparison from iComfort and Ecobee 

Another sensor uncertainty exists in the heat pump-related temperature measurement during FDD 
testing. An obvious issue can be found in the subcooling temperature. In this project, subcooling 
is defined as the difference between condensing temperature and condenser liquid temperature, 
which is positive. But Figure 140 shows that the subcooling temperature is sometimes below zero 
(marked with red dots). This is mainly due to the small value for subcooling temperature, which 
is easily measured as abnormal ones with drifting of sensors. Therefore, in the FDD analysis, 
those periods of data with abnormal values are removed in the data preprocessing stage. 
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Figure 141. Heat pump feature temperature 

Another uncertainty comes from the discrepancy between predicted weather and real weather. 
Future outdoor dry-bulb temperature is used for the supervisory control. These values are 
directly extracted from the National Oceanic and Atmospheric Administration (NOAA) data 
server. Figure 141 shows the comparison of forecast outdoor dry-bulb temperatures from NOAA 
and the real ones from local sensors. Temperature from NOAA is on an hourly basis, while the 
local sensor measures data every minute. It can be seen that the change trends of the two curves 
are similar, but there is some discrepancy at every clock. At night, the forecast temperature tends 
to be higher than real values, with a maximum of around 6°F. During the day, the condition is 
inverse. This inaccuracy of outdoor dry-bulb temperature prediction also results in uncertainty in 
the supervisory control. 

 

Figure 142. Comparison of forecast and real outdoor dry-bulb temperature 
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E.9 Data Completion Status in the Experiment Period 
 

Table 51. Data Completion Status in the Experiment Period 
 

 
Purpose 

 
Data 

FDD DPC RBC FDD 
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 

HP FDD analysis  Im C C C N N N Im C Im C C C C Im Im N N N N N N N Im C C C C C C C C C C C C C C C C C C C C C C C C C 
MPC-informed RBC Tod C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C 

A-Tid @Tstat Im C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C 
B-Tid @Tstat N N N N N N N N N N N N N N C C C C C C C C C C C C C C C N N N N C C C C C C C C C C C C C C C C 

A-Tsp C C C C C C C C C C C C C C C Im C C C C C Im Im C C C C C C C C C C C C C C C C C C C C C C C C C C 
B-Tsp C C C C C C C C C C C C C C C C C C C C C Im N C C C C C C C N N C C C C C C C C C C C C C C C C C 
A-HPP C C C C N N N Im C C C C C C Im Im C C C C C Im C C C C C C C C C C C C C C C C C C C C C C C C C C C 
B-HPP C C C C C N C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C 

Indoor temperature 
dynamics 

THA-FMABA Im N N N N N N N Im C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C 

THA-FMACS Im C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C 

THA-FUAEY N N N N N N N N Im C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C 

THA-JMACE N N N N N N N N Im C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C 

TH-FMABI Im C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C 

TH-HAABQ Im C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C 

TH-HAADA Im C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C 

TH-JQACC Im C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C 

THO-FQABG Im C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C 

THO-FQAFS Im C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C 

THO-FUADI Im C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C 

THO-FUADU Im C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C 

THO-FUADY Im C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C 

TH-JQABS Im Im N Im N N N N N Im Im N N N Im Im Im Im Im C C C C C C C C Im N C N N Im N N Im N Im N N N N N Im N Im N N N 
THO-FUACU N N N N N N N N Im Im Im Im Im N Im Im Im Im Im C Im Im N C C C C Im Im C Im Im Im Im Im Im N N N N N N N N N Im Im Im N 
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Appendix F: Market Analysis 
F.1 Codes and Standards 
The following standards and guidelines apply to our product as well as the market products 
surveyed in the following subsections: 

ANSI/ASHRAE Standard 55-2017: Thermal Environmental Conditions for Human Occupancy: 
This standard specifies the combination of indoor thermal environmental conditions 
(temperature, thermal radiation, humidity, and airspeed) and personal factors (activity and 
clothing) that produces acceptable indoor thermal environmental conditions to the majority of 
healthy adult occupants within a particular space at up to 3,000 m of altitude (ASHRAE 2017). 
This standard was first published in 1966 and is applicable for spaces occupied for at least 15 
minutes by people not sleeping/reclining, not wearing highly impermeable clothing, and not 
having extremely high metabolic rates (ASHRAE 2017).  

ANSI/ASHRAE Standard 62.2-2019: Ventilation and Acceptable Indoor Air Quality in 
Residential Buildings: This standard specifies the minimum requirements for mechanical and 
natural ventilation systems and building envelopes in residential buildings with non-transient 
occupants (ASHRAE 2019). Acceptability is defined as a majority of occupants in the space not 
expressing dissatisfaction regarding smells or other irritations, and the space having 
contaminants below any health risk levels occupants (ASHRAE 2019). This standard does not 
consider thermal comfort requirements or biological, chemical, and physical contaminant 
occupants (ASHRAE 2019).  

ANSI/ASHRAE Standard 100-2018: Energy Efficiency in Existing Buildings: Retrofitting 
existing infrastructure can be more cost-effective and environmentally friendly than constructing 
new sustainable energy-efficient buildings (ASHRAE 2018b). This ASHRAE standard provides 
guidelines for improving energy efficiency and thermal performance of existing (residential and 
non-residential) buildings or building portions that result in a decrease in energy consumption 
(ASHRAE 2018b). It establishes an energy management plan, energy targets, audit requirements, 
as well as implementation and verification requirements (ASHRAE 2018b).  

ANSI/ASHRAE/IES Standard 90.2-2018: Energy-Efficient Design of Low-Rise Residential 
Buildings: This standard specifies minimum design, construction, and verification criteria for 
energy efficient new non-transient residential buildings (and new portions of existing residential 
buildings) (ASHRAE 2018a). It provides requirements regarding the building envelope, HVAC 
and mechanical systems, service hot-water systems, other major appliances, lighting systems, 
snow and ice melt systems, as well as pools and spas (ASHRAE 2018a). The recent revision to 
Standard 90.2 in 2018 also acknowledges the significant role of renewable energy and other on-
site power systems in improving the energy efficiency of the whole building (ASHRAE 2018a).  

International Code Council International Energy Conservation Code (IECC) 2018: The IECC 
reduces energy consumption and the environmental footprint of new and renovated (residential 
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and commercial) buildings by specifying minimum criteria for energy features and thermal 
performance (ICC 2018). Some of the stipulations include setting requirements for different 
components of the building envelope (like fenestration, ceiling, walls, etc.), providing guidelines 
to prevent air leakage, and specifying the efficiency of lighting equipment (ICC 2018).  

IEEE 802.15.4 standard: This standard was first introduced in 2003 and specifies the operation of 
low-cost, low-speed wireless personal area networks (IEEE 2020). IEEE 802.15.4 provides the 
physical layer and media access control and is the basis for various applications like Zigbee and 
Z-wave, which are used in smart home energy management systems (IEEE 2020).  

IEEE 802.11 standard: Many smart home appliances and smart home energy management 
systems are connected using WiFi. The IEEE 802.11 standard specifies the physical layer and 
media access control for WiFi communication in various frequencies, and was first created in 
1997 (Vaughan-Nichols 2010).  

IEEE 802.3 standard: IEEE 802.3 is one of the leading communication standards used for wired 
ethernet networks in smart home energy management systems (Christensen et al. 2010). It 
provides the physical layer and media access control, and was first introduced in 1983 
(Christensen et al. 2010). Since then, the standard has periodically been updated to keep up with 
technical advancements (Christensen et al. 2010).  

There is a lack of standards in the residential AFDD product market about testing approaches, 
fault types that need to be consistently reported, fault codes, and what information to report to 
stakeholders (Butzbaugh et al. 2020). 

F.2 Barriers and Limitations 
There are a number of technical, market, and other barriers that affect the adoption of occupant 
thermal comfort, home energy management, and automated fault diagnostic products in the 
residential sector. 

F.2.1 Cost 
Previous studies have shown that cost is the primary obstacle preventing the widespread 
adoption of smart HVAC devices in homes (Danova 2014). For example, the price of commonly 
available smart thermostats ranges from $65 in addition to professional installation costs of $675, 
with the price of $100~$300 for the most prevailing ones. Thus, the total expenditure can be 
more than 10 times the cost of a manual thermostat (Home Advisor). Many electric utilities offer 
rebates on these products but, in return, request control of those devices during peak demand 
events (which many customers might not be comfortable with). Further, most of the AFDD 
devices available today are meant for large commercial buildings where the financial returns are 
substantial (Granderson et al. 2017). It is not financially feasible to scale these down to small 
residential buildings without building automation systems (Granderson et al. 2017). Currently, 
only high-end, variable-speed HVAC systems have embedded AFDD software with monitoring 
capability (Butzbaugh, Tidwell, and Antonopoulos 2020). Finally, the integration of advanced 
controls and home energy automation systems might not always guarantee energy and cost 
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savings. For example, if a household has one member who works from home, the setpoint 
temperature might not be able to be lowered at any time of the day while maintaining occupant 
comfort levels. Thus, adopters might be hesitant to invest in these technologies without 
guaranteed returns.  

F.2.2 Lack of Customer Awareness 
Customers often have difficulty figuring out the terms and symbols of smart thermostat display 
panels as well as the complexity of the software (Meyers et al. 2010). To mitigate this issue, all 
future smart controls must have user-friendly interfaces. Additionally, building owners are often 
unsure that wireless sensors will operate as reliably as their wired counterparts, and technicians 
often do not have enough training to properly install and commission wireless sensors (Sofos et 
al. 2020).  

Further, while AFDD products can improve energy efficiency and occupant comfort level in 
buildings by minimizing equipment downtime, most homeowners are unaware of the products 
currently available and their potential benefits (Butzbaugh, Tidwell, and Antonopoulos 2020). 
HVAC contractors also require additional training regarding how to use smart diagnostic tools or 
utilize diagnostic data (Butzbaugh, Tidwell, and Antonopoulos 2020).  

Although the global smart home energy management market has developed rapidly over the past 
few years, most residential customers are uninformed about the devices available and choose to 
rely on old technology (Market Research Future). Further, homeowners are often only interested 
in installing smart energy efficiency controls at the time of home construction or a preplanned 
renovation or replacement of failed equipment (Frank et al. 2018).  

F.2.3 Communication Barriers 
The communication technologies should be interoperable across the various smart appliances as 
well as future and legacy systems. Interferences from other communication sources and signal 
crosstalk could be a potential barrier to optimized performance of smart home energy 
management systems, and these should be eliminated (Sofos et al. 2020).  

F.2.4 Increased Reliance on Technology and Connectivity 
The proper functioning of connected sensors, smart home energy management systems, and 
AFDD devices all depend on having a strong internet connection and their ability to maintain 
occupant comfort, maximize energy efficiency, and detect faults accurately might be hampered if 
the WiFi is down or the home is situated in a rural area without fast and reliable internet access. 

F.2.5 Lack of Standards 
There is a lack of standards in the residential AFDD product market about testing approaches, 
fault types that need to be consistently reported, and what information to report to stakeholders. 
Further, since standardized communication software does not exist, the indoor unit, outdoor unit, 
and connected thermostat need to be part of a set produced by the same manufacturer 
(Butzbaugh, Tidwell, and Antonopoulos 2020). Industry-set protocols for fault codes also do not 
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exist, and contractors have to keep themselves updated on fault code sets used by different 
manufacturers (Butzbaugh, Tidwell, and Antonopoulos 2020).  

F.2.6 Privacy and Network Security Issues 
The issue of cybersecurity and privacy also exists since any IoT-enabled device can be hacked if 
smart password practices are not followed. There have been alarming news in the past about 
cybercriminals gaining control of smart thermostats and increasing the room setpoint to 90oF 
(Alladi et al. 2020). As a result of the absence of building energy managers like in the large 
commercial sector, homeowners have the onus of installing security updates on their IoT-
connected devices or regularly hiring contractors to do so. Further, the data collected by smart 
devices must be protected using high-quality encryption or other cybersecurity measures, and 
any identifiable information should be removed before sharing with third-party companies or 
research organizations (Rotondo et al. 2016). For example, if a smart device has information 
about the time of day when homeowners leave for work, that data could be used for security 
breaches.  

F.2.7 Unavailability of Data 
Advanced AFDD or optimized home energy management requires empirical disaggregated 
energy consumption and appliance-level data from the residential sector. This data is very rare, 
and when available, the quality might not be adequate for the control algorithm or machine 
learning algorithm to learn from and detect faults accurately. Further, the data collected might 
not be made widely available to preserve customer privacy, security rights, and satisfaction 
(Rotondo et al. 2016). Finally, whole-house energy management systems must have 
interoperable datasets available from all IoT-enabled smart appliances so that these devices can 
securely exchange operative information (Rotondo et al. 2016).  

F.2.8 Lack of Mandatory Residential Dynamic Electricity Prices 
While more electric utilities in the United States are offering residential dynamic rates like time-
of-use rates or critical peak pricing to encourage load-shifting behavior, these options are often 
voluntary. Mandating these pricing schemes, in addition to embedding smart HVAC devices to 
receive real-time price signals, could increase customer energy savings and motivate more 
homeowners to invest in these technologies (Granderson et al. 2017).   
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F.3 Intellectual Property 
There are an extensive number of patents for smart home energy management systems. Table 52 
collects several active patents from ecobee and Google Nest, as the quantity of smart home 
energy management system-related patents is large, and these two companies are prominent in 
this field. Those patents reflect the product features in Table 34. Intellectual property is 
complicated in this field currently. For example, EcoFactor sued Google in 2020, claiming that 
its Nest thermostats infringed on its patents related to “early on” and won the lawsuit with $20 
million compensation (6:20-cv-00075 - Ecofactor Inc v. Google LLC), even though Google is 
reportedly planning to appeal the verdict. EcoFactor has also accused ecobee and Amazon. 

Table 52. Selected Patents for Smart Home Energy Management Systems 

Patent Number Patent Name Assignee Application 
Granted 

US6508407B1 Apparatus for remote temperature control ecobee Inc. 01/21/2003 

US20130238140A1 HVAC controller with a device scheduling 
program 

ecobee Inc. 02/24/2015 

US20130018513A1 HVAC controller with predictive set-point control ecobee Inc. 04/28/2015 

US9016593B2 System and method for web-enabled enterprise 
environment control and energy management 

ecobee Inc. 04/28/2015 

US20140039691A1 Multidimensional heating and cooling system ecobee Inc. 10/06/2015 

US9377791B2 Monitoring user position to determine a time for 
providing a specified state at a user premises 

ecobee Inc. 06/28/2016 

US9696052B2 HVAC controller with predictive setpoint control ecobee Inc. 07/04/2017 

US20170074540A1 Intelligent thermostat control system ecobee Inc. 09/26/2017 

US9978290B2 Identifying a change in a home environment ecobee Inc. 05/22/2018 

US20210302052A1 Thermostat device with improved energy 
optimization 

ecobee Inc. In progress 

US11143429B2 Control device for HVAC fan coil units ecobee Inc. In progress 

US8510255B2 Occupancy pattern detection, estimation and 
prediction 

Google LLC., 
Nest Labs Inc. 

08/13/2013 

US8554376B1 Intelligent controller for an environmental control 
system 

Google LLC., 
Nest Labs Inc. 

10/08/2013 

US8606374B2 Thermodynamic modeling for enclosures Google LLC., 
Nest Labs Inc. 

12/10/2013 

US8630741B1 Automated presence detection and presence-
related control within an intelligent controller 

Google LLC., 
Nest Labs Inc. 

01/14/2014 

US8630742B1 Preconditioning controls and methods for an 
environmental control system 

Google LLC., 
Nest Labs Inc. 

01/14/2014 
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Patent Number Patent Name Assignee Application 
Granted 

US8965587B2 Radiant heating controls and methods for an 
environmental control system 

Google LLC., 
Nest Labs Inc. 

02/24/2015 

US9298197B2 Automated adjustment of an HVAC schedule for 
resource conservation 

Google LLC., 
Nest Labs Inc. 

03/29/2016 

US9459018B2 Systems and methods for energy-efficient control 
of an energy-consuming system 

Google LLC., 
Nest Labs Inc. 

10/04/2016 

US9714772B2 HVAC controller configurations that compensate 
for heating caused by direct sunlight 

Google LLC., 
Nest Labs Inc. 

07/25/2017 

US9810442B2 Controlling an HVAC system in association with a 
demand-response event with an intelligent 
network-connected thermostat 

Google LLC., 
Nest Labs Inc. 

11/07/2017 

US9890970B2 Processing and reporting usage information for 
an HVAC system controlled by a network- 
connected thermostat 

Google LLC., 
Nest Labs Inc. 

02/13/2018 

 

However, the outcome of this project avoids patent violations entirely after reviewing the 
existing patent literature. No blocking patents have been found to prevent the freedom to operate 
under any new intellectual property discovered or created under this project. The FDD methods 
are developed based on the published FDD approaches, which were proposed by Chen et al. 
(2000), Breuker et al. (1997), and the NIST (M. Kim et al. 2008). Control strategies, derived 
from the MPC and rule extraction process, are unique and completed by the team independently. 
The intent of this project, including engaging an industrial partner and potentially interested 
companies, is to make the intellectual property widely available, which will provide the largest 
market impact possible. The experimental data generated from this project will be public data. 
This project involves both hardware and software prototypes and development. 

F.4 Sensors in the Market 
Temperature, humidity, and airflow are key parameters to ensure occupant health and comfort as 
well as to maintain energy-efficient homes. Temperature and humidity control inside a home is 
important for occupant comfort and mold prevention. If humidity levels within a home are not 
maintained within certain limits, occupants can be susceptible to health risks in addition to 
indoor mold and mildew problems and issues with wood finishes. Insufficient airflow in a home 
can cause stagnant contaminants inside the building, build up odors, cause chronic allergies, and 
wear down the HVAC system. 
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Table 53. Specification of Commercial Sensors in the Market 

Product Name Brand Price Compatible with 
a smart 

thermostat? 

Function Notes 

Smart Sensor ecobee $50.00 Y Temperature/humidity 
and occupancy 

 

Smart Sensor for 
Doors and 
Windows 

ecobee $40.00 Y Doors and windows  

Temperature 
Sensor 

Nest $39.00 Y Temperature/humidity  

Smart Room 
Sensor 

Honeywell $41.99 Y Temperature/humidity  

Thermostat 
Smart Room 
Sensors 

Wyze $29.98 Y Temperature/humidity 
and occupancy 

 

Smart ZigBee PIR 
Motion Sensor 

MoesGo $19.99 Y Occupancy Required 
MoesGo 
ZigBee Hub 
($27.99) 

Smart ZigBee 
Door and Window 
Sensor 

MoesGo $19.99 Y Doors and windows Required 
MoesGo 
ZigBee Hub 
($27.99) 

Smart IR Remote 
Sensor 

MoesGo $29.99 Y Temperature/humidity  

FILTERSCAN 
Home Air Filter 
Monitor 

Clean 
Alert 

$129.00 N Air filter monitor  

 

Nest, ecobee, Honeywell, etc., offer a range of smart sensor products from approximately $19.99 
to $50.00, detailed in Table 53. In addition to measuring temperatures, these thermostats can also 
sense humidity. Some of these sensors also have occupancy sensing ability to assist in keeping 
particular rooms comfortable or save energy when the occupants are not at home (e.g., the 
‘Home’ and ‘Away’ features in a Nest learning thermostat) (Pang et al. 2021). However, this 
data should be encrypted with appropriate cybersecurity measures to avoid security breaches. A 
smart airflow sensor is seldom in the current market. FILTERSCAN WiFi Home Air Filter 
Monitor ($129) is an example that alerts homeowners once the filter is clogged and needs to be 
replaced.  
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Technological innovations and increased customer awareness/interest will drive the growth of 
sensors in the residential market over the next decade. The advanced sensor market is expected 
to grow to $3.2 billion by 2025 (Sofos et al. 2020). For integrated success in this spectrum, the 
goals of technology developers (selling more sensors, developing inexpensive low-power 
sensors, etc.) and homeowners (buying fewer sensors, reducing electricity bills using data from 
sensors, etc.) need to be aligned (Sofos et al. 2020). A study on users’ perception of 
commercially available smart thermostats found that users discuss more about cost, control, ease 
of use, installation, etc. (Koupaei et al. 2020). Thus, developments of new sensors must focus on 
these aspects of design and operation. 

While the capital cost of wireless sensors can be considerably low, the installation and 
maintenance costs of the sensor networks should be reduced for successful widespread 
deployment (Sofos et al. 2020). Future cost-effective wireless sensors must also be easily 
mountable and interoperable with legacy and future control infrastructure (Sofos et al. 2020). 
Often, homeowners are hesitant that wireless sensors will function as reliably as their wired 
counterparts (Sofos et al. 2020). These notions should be eliminated with utility-led awareness 
drives and marketing strategies demonstrating real-world comparative analyses. Further, 
technicians should be provided with training for proper installations and knowledge of how 
integrated wireless sensors function (Sofos et al. 2020).   

  



 
IoT-Based Comfort Control and Fault Diagnostics System for Energy-Efficient Homes 

  

209  

F.5 Automated Fault Detection and Diagnosis in the Market 
Table 54. Current AFDD Technologies for Residential HVAC Systems  

Excerpt from Butzbaugh, Tidwell, and Antonopoulos (2020) 

 
 

AFDD is currently common in large commercial buildings—some common “software-as-a-
service” products include Clockworks by KGS buildings, Analytika by Cimetrics, and Building 
Analytics by Schneider Electric (Frank et al. 2018). Only high-end, variable-speed residential 
central air conditioning/air-source heat pump models currently have embedded AFDD (which 
has the added benefit of not increasing installation costs) in the residential sector. The root cause 
behind this low adoption is the high cost of the sensors of the embedded systems that connect the 
outdoor and indoor units (Butzbaugh, Tidwell, and Antonopoulos 2020). Additionally, some 
third-party AFDD products are available that could be attached to already-installed equipment 
and operated digitally (Butzbaugh, Tidwell, and Antonopoulos 2020). An overview of the major 
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residential AFDD products currently available is provided in Table 54 (Butzbaugh, Tidwell, and 
Antonopoulos 2020).  

Research has shown that 10%–20% of HVAC systems will need replacement in the next five 
years. When a piece of equipment fails at the later stages of the lifetime, they are generally more 
expensive to repair, and this presents a great opportunity for the homeowner to invest in AFDD-
embedded systems (Butzbaugh, Tidwell, and Antonopoulos 2020).  

Data must be collected on the energy savings and reduction in customer expenditure before and 
after AFDD-embedded technologies are installed to clearly communicate the efficacy and value 
of these devices to homeowners (Wheeler et al. 2020). Pricing information must be widely made 
available and incentives like pay-for-performance service plans should be offered to encourage 
homeowners to invest in these technologies. Electric utilities in regions of the country that 
already provide incentives for ENERGY STAR® certified appliances or smart thermostats can 
utilize these partnerships to promote residential AFDD approaches (Butzbaugh, Tidwell, and 
Antonopoulos 2020).  

Additionally, future AFDD approaches must minimize the reliance of algorithms on historical 
data since such disaggregated temporal datasets from a wide variety of residences are very rare. 
FDD methods can be classified into quantitative analysis, qualitative analysis, and historical data 
analysis, which is commonly accepted by multiple researchers (Venkatasubramanian, 
Rengaswamy, and Kavuri 2003; Venkatasubramanian, Rengaswamy, Kavuri, et al. 2003; 
Venkatasubramanian, Rengaswamy, Yin, et al. 2003; Katipamula and Brambley 2005a, 2005b; 
Mirnaghi and Haghighat 2020; Singh, Mathur, and Bhatia 2022; Alzghoul et al. 2014). Historical 
data analysis, also known as data-driven methods in some research studies, is increasingly 
prevalent in the past two decades, largely due to the rapid development of communication 
technology. However, compared to the data-driven approaches, the knowledge-based reference 
still has irreplaceable advantages, such as being much simpler, having less computation load, less 
data required, easily interpretable, etc. Therefore, a rule-based approach is more likely to be 
deployed in currently ordinary homes, as it complies with unitary physics principles and does not 
necessarily depend on a mass of measured data for training (Rogers, Guo, and Rasmussen 
2019a). This logic is behind the AFDD method proposed in this project. 

Finally, an ideal AFDD system should be low cost, reliable, have low false diagnostic rates, be 
compatible with other AFDD tools, be automatically configurable, and use heuristic evidence 
(Shi and O'Brien 2019). Since residential AFDD products are still at a nascent stage, near-term 
AFDD technologies should focus on reporting high-priority faults that significantly affect energy 
efficiency (Butzbaugh, Tidwell, and Antonopoulos 2020). As research in this area continues, 
HVAC contractors can continue using inexpensive smart diagnostic tools to perform targeted 
measurements and detect faults. 
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F.6 Interface Demo for Indoor Climate Monitoring in the Home Energy 
Management System We Created 

 

Dashboard 

 
Sensor list 
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Sensor map 

 

 
Measurement data 

Figure 143. Interface demo for indoor climate monitoring in this home energy management system 
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Appendix G: Economic Analysis 
G.1 Electricity Price 
The prices of electricity for residential buildings are obtained through the U.S. Bureau of Labor 
Statistics (Statistics 2023). 22 cities have data that is located exactly at the same locations. For 
the remaining cities, their price data is represented by the corresponding regions. For example, in 
the case where there is no direct data available for Austin, the data for West South Central is 
utilized to represent it. 

All data are for the residential buildings in 2022, except Houston, Atlanta, Detroit, and Denver, 
which have some data missing. So for this case, the price escalation from 2021 in the 
corresponding area is used to estimate the electricity price in one given month of a city. For 
example, shown in Table 55, the 2022 price data in April and June is missing for Houston. As 
Houston is located in the West South Central region, the escalation rates of electricity price from 
2021 in April and June in the West South Central region is used to estimate the price data on the 
basis of 2021. This is also applied to other cities that have missing data. 

Table 55. Example of Data Processing for Missing Electricity Price 

Region Houston (dollar) West South Central (dollar) 

Year 2021 2022 2021 2022 Escalation rate 
of 2021-2022 

Jan 0.139 0.138 0.116 0.132 13.79% 

Feb 0.143 0.148 0.117 0.134 14.53% 

Mar 0.144 0.141 0.118 0.134 13.56% 

Apr 0.141 0.165 0.119 0.139 16.81% 

May 0.138 0.188 0.121 0.149 23.14% 

Jun 0.138 0.177 0.126 0.162 28.57% 

Jul 0.147 0.258 0.129 0.180 39.53% 

Aug 0.152 0.257 0.133 0.182 36.84% 

Sep 0.157 0.241 0.136 0.180 32.35% 

Oct NA  0.207 0.136 0.173 27.21% 

Nov 0.156 0.182 0.134 0.163 21.64% 

Dec 0.156 0.190 0.133 0.160 20.30% 

 

The monthly electricity price data is plotted in Figure 144 and Figure 145, which shows that 
Honolulu has the highest electricity price. The electricity prices in Montgomery, Great Falls, and 
Internal Falls are relatively lower. 



 
IoT-Based Comfort Control and Fault Diagnostics System for Energy-Efficient Homes 

  

214  

 
Figure 144. Monthly electricity price for 41 selected cities 
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Figure 145. Annual electricity price on average for residential buildings in 41 selected U.S. cities (2022) 

 

G.2 Data for Computing Base-Year Energy Cost Savings 
The cost-effectiveness of an energy-efficiency project highly depends on two factors: the 
investment on the renovation, and the cost savings due to reductions in energy consumption. 
Relevant data are collected to calculate the savings and costs. 

The inputs for computing energy cost savings include the reduction in energy consumption and 
price of electricity and natural gas. The equation to calculate the base-year energy cost savings is 
presented in Equation (42), where 𝑖𝑖 is the type of fuel (i.e., electricity or natural gas), 𝑖𝑖 is the 
number of fuel types in building operation, 𝑅𝑅𝑖𝑖 is the reduction in fuel type 𝑖𝑖 consumption, 𝑃𝑃𝑖𝑖 is 
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the cost rate of the fuel type 𝑖𝑖 in the base year, and 𝐶𝐶𝑖𝑖 is the amount of monetary savings of the 
base year. 

𝐶𝐶0 =  � 𝑅𝑅𝑖𝑖 ∗  𝑃𝑃𝑖𝑖
𝑛𝑛

𝑖𝑖=0
 (42) 

The results of energy savings for difference building types, cities, and energy code versions are 
obtained from the building energy simulation suite introduced in Section 8.3.3. 

The commercial price of natural gas is obtained based on the database of the U.S. EIA (2022c), 
which provides an annual summary of the volumetric natural gas price and its average heating 
value (HV) in each state. The rate of natural gas per Btu is hence calculated using Equation (43). 
The gas price used in this study is based on the data of 2021, and is specific to each state.  

𝑃𝑃𝑠𝑠 =  𝑃𝑃𝑠𝑠,𝑠𝑠𝑙𝑙𝑙𝑙  / 𝐿𝐿𝑃𝑃𝑠𝑠 (43) 

The commercial price of electricity is calculated based on the 2020 EIA-861 database (EIA 
2022b). Form EIA-861, also known as Annual Electric Power Industry Report, collects the 
operation data of electric power industry entities in the United States and its territories regarding 
the generation, transmission, distribution, and sale of electric energy (EIA 2022b). The EIA-861 
database is considered a census of all U.S. electric utilities (EIA 2022a) due to its comprehensive 
coverage of the operational data of various distribution utilities and power marketers of 
electricity in this country. However, the local retail price of electric energy is not provided in the 
database because of many reasons, e.g., the dynamic tariff structure and intricate network of 
utility distribution—one county may be served by multiple power marketers and one power 
marketer can also serve multiple counties.  

Given the knowledge gap, a workaround is taken to approximate the retail electricity price in the 
selected cities by making two homogenous assumptions. First, the price of electric energy 
delivered by one power marketer stays stable regardless of where and what the consumer is, the 
time of usage, and demand charge. This assumption can be represented by Equation (44), where 
𝑃𝑃𝑒𝑒,𝑗𝑗 is the retail electricity price of the power marketer 𝑗𝑗, while 𝑅𝑅𝑗𝑗 and 𝑅𝑅_𝐼𝐼𝑗𝑗 are its total revenue 
(in dollars) and sold electricity (in kWh), respectively. Second, the electricity sold to a 
metropolitan statistical area (MSA) by various power marketers is proportional to their 
respective total electricity sale. The mathematical form of this assumption is presented in 
Equation (45), where 𝑗𝑗 is the identifier of the power marketer, 𝑘𝑘 is the identifier of the MSA, 
𝑅𝑅_𝐼𝐼𝑗𝑗,𝑘𝑘 is the electricity sold by power marketer 𝑗𝑗 to MSA 𝑘𝑘, 𝑅𝑅_𝐼𝐼𝑘𝑘 is the total electricity 
consumption of MSA 𝑘𝑘, and 𝐼𝐼 is the number of power marketers that distribute electricity to 
MSA 𝑘𝑘. 

𝑃𝑃𝑒𝑒,𝑗𝑗 =  𝑅𝑅𝑗𝑗 𝑅𝑅_𝐼𝐼𝑗𝑗�  (44) 
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𝑅𝑅_𝐼𝐼𝑗𝑗,𝑘𝑘 = 𝑅𝑅_𝐼𝐼𝑘𝑘 ∗  𝑅𝑅_𝐼𝐼𝑗𝑗
∑ 𝑅𝑅_𝐼𝐼𝑗𝑗𝑖𝑖
𝑗𝑗=0

�  (45) 

Hence, the retail electricity price of an MSA 𝑘𝑘 (i.e., 𝑃𝑃𝑒𝑒,𝑘𝑘) can be calculated following Equation 
(46). The identification of the geographical range of MSAs is based on the U.S. Census Bureau 
data (U.S. Census Bureau 2022). Albeit bearing lumped assumptions, the estimated retail 
electricity price plays an important role in the cost-effectiveness analysis by taking into 
consideration the impact of local energy price on the cost benefits of occupancy-based HVAC 
controls.  

𝑃𝑃𝑒𝑒,𝑘𝑘 =  
∑ 𝑅𝑅𝑗𝑗𝑖𝑖
𝑗𝑗=0

∑ 𝑅𝑅_𝐼𝐼𝑗𝑗𝑖𝑖
𝑗𝑗=0

�  (46) 

G.3 Data for Computing Future Energy Cost Savings 
The Energy Escalation Rate Calculator developed by NIST (NIST) is used to generate the energy 
escalation rate for the calculation of future energy costs over the performance period. The 
Energy Escalation Rate Calculator is developed on the basis of EIA’s projections of the future 
energy price. The future energy cost savings can be calculated following Equation (47), where 𝐶𝐶𝑜𝑜 
is the energy cost savings in year 𝑡𝑡, and 𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖 is the energy escalation rate of fuel type 𝑖𝑖. The 
energy escalation rate result is specific to different energy types and locations. 

𝐶𝐶𝑜𝑜  = ∑ 𝑅𝑅𝑖𝑖 ∗  𝑃𝑃𝑖𝑖𝑛𝑛
𝑖𝑖=0 ∗ (1 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖)𝑜𝑜 (47) 

The Energy Escalation Rate Calculator generates four scenarios of energy escalation rate under 
different levels of estimated social cost of carbon (NIST). The social cost of carbon is originally 
defined as the monetary value of the damage done by emitting one more ton of carbon at some 
point of time (Pearce 2003). Considering social cost of carbon in a cost-benefit analysis reflects 
the societal value of reducing carbon emissions, and has been a regular practice of federal 
agencies in the decision-making of climate policies since 2008 (Interagency Working Group on 
Social Cost of Greenhouse Gases 2021). This study considers all four scenarios when calculating 
future cost savings to account for the benefits of carbon emissions reduction. These four 
scenarios are Baseline (with social cost of carbon not considered), Low, Medium, and High. 
Further details are available in the User Guide of the Energy Escalation Rate Calculator (NIST 
2022). These values are directly exported from the Energy Escalation Rate Calculator tool. 

G.4 Data for Computing Material Costs 
The materials needed for implementing occupancy-based controls are primarily the occupancy 
sensors. The price of occupancy presence and occupant counting sensors designed for 
commercial building applications is determined based on a coherent consideration of the input 
from sensor developers during previous field testing (Kong et al. 2022) and a search of the 
prevailing products on the market (Density 2022; Trafsys 2022). In addition, the number of these 
two types of sensors are determined by the layout of buildings, i.e., the number and type of 
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zones. The input data for the computation of material costs are presented in Table 56. A 
contingency ratio of 10% is added on top of the total cost of sensors to account for any 
unexpected expenses during the installation progress (Touran 2003).  

There are a lot of uncertainties with the price of occupancy sensors. Therefore, a parametric 
analysis is conducted to investigate how the change in sensor costs influences the payback of an 
occupancy-based control project. 

Table 56. Input Data for the Computation of Material Costs 

 Temperature/Humidity Sensor 

Unit price of sensor $14.10 

Number of sensors for air side 2 

Number of sensors for refrigerant side 7 

Local hub (e.g., Raspberry Pi) $76.25 

Cloud (recurring) (e.g., Amazon Web Services, monthly per sensor) $0.13 

G.5 Data for Computing Labor Costs 
The developed sensor and service system in this project is straightforward to install, similar to 
other commercial smart home energy management systems, so generally the installation can be 
completed by the homeowner. This means no additional labor cost is required. 
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Appendix H: Literature Review 
Table 57. Literature Review of Fault Modeling 

Building type/ 
components 

Modeling 
software 

Fault description Reference Year 

Office building EnergyPlus Four individual faults (plant pipe clog, economizer 
outdoor air damper leakage, fouled water heating coil, 

and room air temperature sensor offset) 

Basarkar et 
al. (2011) 

2011 

Office building Unspecified Six individual HVAC faults (e.g., incorrect setpoint 
temperature, min outdoor air damper fails open) 

Otto et al. 
(2012) 

2012 

Office building TRNSYS 48 individual faults (e.g., O.A. damper stuck, Setpoint 
offset, Dirty coil) 

Khire and 
Trcka (2013) 

2013 

Office building EnergyPlus 16 individual faults (e.g., Supply air temperature sensor 
offset, Fouled cooling tower, Outdoor air damper 

leakage) and two combination scenarios 

Wang and 
Hong (2013)  

2013 

Office building EnergyPlus/ 
OpenStudio 

Three individual faults (Outdoor air damper stuck, 
Fouled heating coil, and Supply fan stuck)  

Li and O’Neill 
(2016) 

2016 

Office building EnergyPlus Four individual faults (Economizer sensor fault, 
Thermostat/Humidistat offset, Coil fouling, and Dirty air 

filter) 

Zhang and 
Hong (2017)  

2017 

Office building EnergyPlus/ 
OpenStudio 

41 individual fault models (e.g., Outdoor air damper 
stuck, Supply fan degradation, Pump clog) and 129 

combination scenarios 

Li and O’Neill 
(2019) 

2019 

Office building EnergyPlus/ 
Empirical 

equations/ 
Semi-

empirical 
Models 

17 individual faults (e.g., Economizer opening stuck, 
Non-standard refrigerant charging) 

Kim et al. (J. 
Kim, Frank, 
Braun, et al. 

2019; J. Kim, 
Frank, Im, et 

al. 2019) 

2019 

AHU Simulink 
(SIMBAD 
library) 

Three individual faults (Control of three-way valve, 
Mixing box damper, and Sensor inversion) 

Ginestet et al. 
(2008) 

2008 
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Air-cooled 
chiller and 
air-cooled 
unitary air 

conditioner 

Empirical 
equations 

Unspecified Cheung and 
Braun 

(2013b, 
2013a) 

2013 

Water-cooled 
chiller 

Empirical 
equations 

Four individual faults (overcharging, excess oil, non-
condensable in refrigerant, and water-side condenser 

fouling) 

Cheung and 
Braun (2016) 

2016 
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Table 58. Comparison of Different FDD Methods for the VCC System 

Authors Year 
  

  
Features Fault-free  

reference model 
  Faults FDD 

methods 

      Temperature Pre. Ele.       1 2 3 4 5 6 7 
 

       Te Tev Tsh Tc Tcl Tsc Td Toae Tiac dP Power Tia Tidp Toa UC OC LL CMF CF EF NC 
 

Yoshimura 1989 Packaged 
air 

conditioner 

√ √ √ √ √ √   √ √ √ √ No FFRM √ √ √ √ √ √   Decision tree 

Rossi 1995 RTU (fixed 
orifice) 

√ √ √ √ √ √ √ √ √     √ √ √ √   √ √ √ √   Statistical rule 
-based chart 

Breuker 1998 RTU √ √ √ √ √ √ √ √ √     √ √ √ √   √ √ √ √   Statistical rule 
-based chart 

Chen 2000 RTU (TXV) √     √ √ √           √ √ √ √ √ √ √ √ √ √ Sensitivity 
ratio method 

Chen 2000 RTU (TXV)           √   √ √     No FFRM √ √ √ √ √ √ √ Simple rule-
based method 

Kim 2008 Split heat  

pump 

√ √ √ √ √ √ √ √ √     √ √ √ √ √ √ √ √ √   Statistical rule 
based chart 

Payne 2020 Split heat  

pump 

√ √ √ √ √ √ √ √ √     √ √ √ √ √ √ √ √ √   Statistical rule 
based chart 
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Table 59. Literature Review of Rule Extraction Research 

Author Year Rule extraction 
methods 

Target system Control variable Data source Open/closed loop 
testing 

Control 
performance 

evaluation 

Coffey (2011a, 
2011b, 2013) 

2011 Look-up table External shading 
and natural 
ventilation 

Shading percentage 
and natural ventilation 

percentage 

Simulation 
(EnergyPlus and 

Modelica) 

Closed loop  EC, TC (PPD) 

Ostendorp (2011; 
2012) 

2011 Generalized linear 
model (GLM) 

Natural ventilation 
with the window 

Window on/off Simulation: 
EnergyPlus 

Open loop EC 

Domahidi (2012) 2012 Adaptive boosting 
(AdaBoost) 

Six one-zone of 
different office 

buildings 

Energy recovery load 
and unload, free 
cooling load and 

unload 

Simulation 
(BACLab) 

Open loop and 
closed loop  

EC, TC (unmet 
hours) 

Ostendorp (May-
Ostendorp, Henze, 
Rajagopalan, and 

Corbin 2013) 

2013 Classification and 
regression trees 

(CART), 
Generalized linear 

models 

(GLM), AdaBoost 

Natural ventilation 
with the window  

Window on/off Simulation: 
EnergyPlus 

Open loop and 
closed loop  

TC 

Ostendorp (May-
Ostendorp, Henze, 
Rajagopalan, and 

Kalz 2013) 

2013 CART Thermo-active 
building systems 

cooling and natural 
ventilation 

Window on/off, 
circulation pump pulse-
width modulation 

(PWM) fractions 

Field test Closed loop  EC, TC, RMA  

Domahidi (2014) 2014 Support vector 
machine (SVM), 

AdaBoost 

Six one-zone of 
different office 

buildings 

Energy recovery load 
and unload, free 
cooling load and 

unload 

Simulation 
(BACLab) 

Open loop and 
closed loop  

EC, TC, (unmet 
hours) 

Le (2014) 2014 SVM Shading systems in 
residential building 

Blind position 
(0,0.5,0.75,1) 

Simulation 
(SIMBAD) 

Open loop TC (Tid violation), 
VC (Lum violation) 

Tanner (2014) 2014 CART Window controls in 
the simplified 

building model 

Window state (closed, 
open) 

Simulation 
(EnergyPlus) 

Open loop and 
closed loop  

EC, TC (PMV) 
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Author Year Rule extraction 
methods 

Target system Control variable Data source Open/closed loop 
testing 

Control 
performance 

evaluation 

Robillart (M 
Robillart et al. 

2014) 

2014 GLM An experimental 
passive single-
family house 

Heating power Simulation 
(COMFIE) 

Open loop and 
closed loop  

EC, TC, RMA, Cost, 
LS, CT  

Drgoňa (2018) 2018 Time Delay Deep 
Neural Network 

(TDNN) 

One radiator per 
room 

fed by a central 
gas-boiler, in a six-

zone building 

Radiators heat flows Simulation 
(Modelica) 

Open loop and 
closed loop  

EC, TC, CT 

Robillart (M. 
Robillart, 

Schalbart, and 
Peuportier 2017) 

2018 Beta Regression Heating systems Heating power Simulation 
(COMFIE) 

Closed loop CT, RMA, EC, Cost, 
LS, TC (discomfort 

rates) 

Qiu (2019) 2018 CART, Weighted 
association rule 
mining (WARM)  

Lighting system  
chiller  

On/off control 
sequencing control 

coordinated 
control  

Field test Open loop RMA 

Bursill (2019) 2019 Decision tree  Variable air volume 
system 

The HVAC equipment is 
overridden or using 

reactive control 

Field test Open loop EC 

Gunay (2019) 2019 Decision tree AHU system AHU schedule, indoor 
temperature setpoint, 

outdoor air rate 

Simulation 
(EnergyPlus) 

Not test NA 

Piscitelli (2019) 2019 CART Smart glazing Discrete state of 
glazing 

Simulation 
(EnergyPlus) 

Open loop and 
closed loop  

EC 
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Bursill 
(2020) 

2020 Decision tree Variable air volume system Variable air volume damper 
position, variable air volume  

reheat coil valves, radiant 
heater valve position (only for 

heating) 

Field test Open loop EC, TC 

Chen (2021) 2021 Logistic 
regression 

Chiller On/off, chilled water 
temperature 

Simulation 
(EnergyPlus) 

Open loop RMA 

 
CART: Classification and regression trees 
AdaBoost: Adaptive boosting 
GLM: Generalized linear models 
WARM: Weighted association rule mining 
XGBoost: Extreme gradient boosting 
PWM: Pulse-width modulation 
VC: Visual comfort 
EC: Energy consumption 
TC: Thermal comfort 
RMA: Rule model accuracy 
CT: Computation time 
LS: Load shifting 
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